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Abstract

We obtain a tight distribution-specific characterizatidntlte sample complex-
ity of large-margin classification withls regularization: We introduce the
~-adapted-dimension, which is a simple function of the spectof a distribu-
tion’s covariance matrix, and show distribution-specifigparand lower bounds
on the sample complexity, both governed by the@dapted-dimension of the
source distribution. We conclude that this new quantithttigcharacterizes the
true sample complexity of large-margin classification. Dbhends hold for a rich
family of sub-Gaussian distributions.

1 Introduction

In this paper we tackle the problem of obtaining a tight cbem@zation of the sample complexity
which a particular learning rule requires, in order to leanparticular source distribution. Specif-
ically, we obtain a tight characterization of the sample ptaxity required for large (Euclidean)
margin learning to obtain low error for a distributidn( X, Y"), for X € R%, Y € {+1}.

Most learning theory work focuses on upper-bounding thepsaroomplexity. That is, on pro-
viding a boundm(D, ¢) and proving that when using some specific learning rule, éf tample
size is at leastni(D, ¢), an excess error of at most(in expectation or with high probability) can
be ensured. For instance, for large-margin classificatierkmow that if Pp[|| X|| < B] = 1,
thenm(D,€) can be set taD(B?/(y%¢*)) to get true error of no more thaff, + ¢, where
3 = min,| <1 Pp(Y(w, X) <) is the optimal margin error at margin

Such upper bounds can be useful for understanding posipects of a learning rule. But it is
difficult to understand deficiencies of a learning rule, océmnpare between different rules, based
on upper bounds alone. After all, it is possible, and oftend&se, that the true sample complexity,
i.e. the actual number of samples required to get low esantich lower than the bound.

Of course, some sample complexity upper bounds are knowe tidht” or to have an almost-
matching lower bound. This usually means that the boundjig &is a worst-case upper bound for
a specific class of distributions (e.g. all those with[|| X || < B] = 1). That is, there existsome
source distribution for which the bound is tight. In otherrds the bound concerns some quantity
of the distribution (e.g. the radius of the support), andheslbwest possible bourid terms of this
guantity. But this is not to say that for argpecificdistribution this quantity tightly characterizes the
sample complexity. For instance, we know that the samplgx@xity can be much smaller than the
radius of the support ok, if the average norm/E[|| X [|2] is small. HoweverE[|| X ||] is also not

a precise characterization of the sample complexity, fstaince in low dimensions.

The goal of this paper is to identify a simple quantity deteed by the distribution thatloes
precisely characterize the sample complexity. That ish sliat the actual sample complexity for the
learning rule on thispecificdistribution is governed, up to polylogarithmic factorg,this quantity.



In particular, we present the-adapted-dimensiok, (D). This measure refines both the dimension
and the average norm &f, and it can be easily calculated from the covariance matrix.oNe show
that for a rich family of “light tailed” distributions (spéeally, sub-Gaussian distributions with
independent uncorrelated directions — see Section 2),uh@ar of samples required for learning
by minimizing they-margin-violations is both lower-bounded and upper-b@mw@(kﬂ,). More
precisely, we show that the sample complexitye, v, D) required for achieving excess error of no
more thare can be bounded from above and from below by:
k‘f (D) )
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As can be seen in this bound, we @@ concerned about tightly characterizing the dependence of
the sample complexity on the desired error [as done e.g. imat]with obtaining tight bounds for
very small error levels. In fact, our results can be intagmteas studying the sample complexity
needed to obtain error well below random, but bounded away fzero. This is in contrast to
classical statistics asymptotic that are also typicadjiatii but are valid only for very smadl As was
recently shown by Liang and Srebro [2], the quantities orchithe sample complexity depends on
for very smalle (in the classical statistics asymptotic regime) can be d#fgrent from those for
moderate error rates, which are more relevant for macharaileg.

Q(k, (D)) < me,, D) < O

€

Our tight characterization, and in particular the disttido-specific lower bound on the sample
complexity that we establish, can be used to compare laggim(L, regularized) learning to other
learning rules. In Section 7 we provide two such examplesusesour lower bound to rigorously
establish a sample complexity gap betwégrandL, regularization previously studied in [3], and to
show a large gap between discriminative and generativeiteaon a Gaussian-mixture distribution.

In this paper we focus only on larde, margin classification. But in order to obtain the distributi
specific lower bound, we develop novel tools that we belieme loe useful for obtaining lower
bounds also for other learning rules.

Related work

Most work on “sample complexity lower bounds” is directedpabving that under some set of

assumptions, there exists a source distribution for which weeds at least a certain number of
examples to learn with required error and confidence [4, 5,T8lis type of a lower bound does

not, however, indicate much on the sample complexity of rotl&ributions under the same set of
assumptions.

As for distribution-specific lower bounds, the classicahlgais of Vapnik [7, Theorem 16.6] pro-
vides not only sufficient but also necessary conditionsHerliéarnability of a hypothesis class with
respect to a specific distribution. The essential conditsothat thee-entropy of the hypothesis
class with respect to the distribution be sub-linear in thetlof an infinite sample size. In some
sense, this criterion can be seen as providing a “lower Boomdearnability for a specific distribu-
tion. However, we are interested in finite-sample convergeates, and would like those to depend
on simple properties of the distribution. The asymptotiguanents involved in Vapnik's general
learnability claim do not lend themselves easily to suchyasis

Benedek and Itai [8] show that if the distribution is knownth® learner, a specific hypothesis
class is learnable if and only if there is a findkeover of this hypothesis class with respect to the
distribution. Ben-David et al. [9] consider a similar sedti and prove sample complexity lower
bounds for learning with any data distribution, for somealnynhypothesis classes on the real line.
In both of these works, the lower bounds hold for any algaritiut only for a worst-case target
hypothesis. Vayatis and Azencott [10] provide distribntgpecific sample complexity upper bounds
for hypothesis classes with a limited VC-dimension, as &tion of how balanced the hypotheses
are with respect to the considered distributions. Thesad®are not tight for all distributions, thus
this work also does not provide true distribution-specifimple complexity.

2 Problem setting and definitions

Let D be a distribution oveR? x {+1}. Dx will denote the restriction o> to R?. We are
interested in linear separators, parametrized by unitnegctors inB¢ £ {w € R? | |lwl» < 1}.



For a predictorw denote its misclassification error with respect to distitou D by ¢(w, D) =
Pxyvy~p[Y{w,X) < 0. Fory > 0, denote they-margin loss ofw with respect toD by
l,(w,D) & Pix,yv)~p[Y{w, X) < ~]. The minimal margin loss with respect 10 is denoted
by ¢%(D) £ min,,cgq £ (w, D). For a sampleS = {(z;, y;)};%, such thalz;, y;) € R x {1},
the margin loss with respect ®is denoted by, (w, S) £ L|{i | yi(zi, w) < v}| and the misclas-
sification error ig(w, S) £ L|{i | yi(zi, w) < 0}]. Inthis paper we are concerned with learning by
minimizing the margin loss. It will be convenient for us tediss transductive learning algorithms.
Since many predictors minimize the margin loss, we define:

Definition 2.1. A margin-error minimization algorithm A is an algorithm whose input is a
margin v, a training sampleS = {(x;,%;)}", and an unlabeled test sampkx = {z;}",,
which outputs a predictotr € argmin,, cgd ¢y (w, S). We denote the output of the algorithm by
W = A, (S, Sx).

We will be concerned with the expected test loss of the algorgiven a raqdom tr:i\ining~ sample and
a random test sample, each of sizeand define,,,(A,, D) £ Eg 5opm[L(A(S, Sx),5)], where

S, S ~ D™ independently. Fof > 0, € € [0, 1], and a distributiorD, we denote theistribution-
specific sample complexityy m(e, 7, D): this is the minimal sample size such that for any margin-
error minimization algorithmd, and for anym > m(e,v, D), (A, D) — £§(D) <e.

Sub-Gaussian distributions

We will characterize the distribution-specific sample ctexiy in terms of the covariance of ~
Dyx. Butin order to do so, we must assume thatis not too heavy-tailed. Otherwis& can
have even infinite covariance but still be learnable, fotanse if it has a tiny probability of having
an exponentially large norm. We will thus restrict oursslte sub-Gaussian distributions. This
ensures light tails in all directions, while allowing a sciféintly rich family of distributions, as we
presently see. We also require a more restrictive conditioamely thatD x can be rotated to a
product distribution over the axes Bf'. A distribution can always be rotated so that its coordisiate
areuncorrelated Here we further require that they airedependentas of course holds for any
multivariate Gaussian distribution.

Definition 2.2 (See e.g. [11, 12])A random variableX is sub-Gaussian with momentB (or
B-sub-Gaussian) foB > 0 if

Vt € R, Elexp(tX)] < exp(B?*t?/2). Q)
We further say thak is sub-Gaussian witkelative momentp = B//E[X?].

The sub-Gaussian family is quite extensive: For instanog,lmunded, Gaussian, or Gaussian-
mixture random variable with mean zero is included in thisifg.

Definition 2.3. A distribution Dx over X € R? is independently sub-Gaussiarwith relative
momenp if there exists some orthonormal basis . . . , ag € RY, such that X, a;) are independent
sub-Gaussian random variables, each with a relative moment

We will focus on the familyD5? of all independently-sub-Gaussian distributions in arbitrary di-
mension, for a small fixed constant For instance, the familp3), includes all Gaussian distribu-
tions, all distributions which are uniform over a (hyperjband all multi-Bernoulli distributions,
in addition to other less structured distributions. Ouremppounds and lower bounds will be tight
up to quantities which depend a@n which we will regard as a constant, but the tightness witl no
depend on the dimensionality of the space or the variandgeddistribution.

3 The~y-adapted-dimension

As mentioned in the introduction, the sample complexity afgmn-error minimization can be upper-
bounded in terms of the average ndfti X ||2] by m(e, v, D) < O(E[|| X||?]/(v2€?)) [13]. Alter-

natively, we can rely only on the dimensionality and conelud(e, v, D) < O(d/e?) [7]. Thus,



although both of these bounds are tight in the worst-cassesé®. they are the best bounds that
rely only on the norm or only on the dimensionality respestivneither is tight in a distribution-
specific sense: If the average norm is unbounded while themBionality is small, an arbitrarily
large gap is created between the trué:, -y, D) and the average-norm upper bound. The converse
happens if the dimensionality is arbitrarily high while @nerage-norm is bounded.

Seeking a distribution-specific tight analysis, one sinmggéon to try to tighten these bounds is to
consider their minimumnin(d, E[|| X|?]/7?)/€2, which, trivially, is also an upper bound on the
sample complexity. However, this simple combination iailst tight: Consider a distribution in

which there are a few directions with very high variance, it combined variance in all other
directions is small. We will show that in such situations saenple complexity is characterized not
by the minimum of dimension and norm, but by the sum of the rermobhigh-variance dimensions
and the average norm in the other directions. This behavicaptured by the-adapted-dimension

Definition 3.1. Letb > 0 andk a positive integer.

(@). A subsett C R is (b, k)-limited if there exists a sub-spadé C R of dimensioni — k
such that¥ C {z € R? | ||z’ P||? < b}, whereP is an orthogonal projection ont®’.

(b). A distributionDx overR? is (b, k)-limited if there exists a sub-spadé C R of dimen-
siond — k such thafEx . p . [|| X’ P||?] < b, with P an orthogonal projection ontd’.
Definition 3.2. Thevy-adapted-dimensionof a distribution or a set, denoted lay,, is the minimum
k such that the distribution or set {3/%k, k) limited.

It is easy to see thdt, (Dx) is upper-bounded byin(d, E[|| X ||*]/7?). Moreover, it can be much
smaller. For example, foX € R!%°! with independent coordinates such that the variance of the
first coordinate i4000, but the variance in each remaining coordinate.i¥1 we havek; = 1 but

d = E[||X|?] = 1001. More generally, if\; > X\, > --- )\, are the eigenvalues of the covariance
matrix of X, thenk, = min{k | Zf:kH Ai < ~%k}. A quantity similar tok., was studied
previously in [14]. k. is different in nature from some other quantities used fowvjaling sample
complexity bounds in terms of eigenvalues, as in [15], sihcedefined based on the eigenvalues
of the distribution and not of the sample. In Section 6 we sek that these can be quite different.

In order to relate our upper and lower bounds, it will be uk&fuelate they-adapted-dimension for
different margins. The relationship is established in tkWing Lemma , proved in the appendix:

Lemma 3.3. For 0 < a < 1, > 0 and a distributionD x, k, (Dx) < ks (Dx) < 222 4 g,

We proceed to provide a sample complexity upper bound bas#teg-adapted-dimension.

4 A sample complexity upper bound usingy-adapted-dimension

In order to establish an upper bound on the sample complexéywill bound the fat-shattering
dimension of the linear functions over a set in terms oftkedapted-dimension of the set. Recall
that the fat-shattering dimension is a classic quantitypforing sample complexity upper bounds:
Definition 4.1. LetF be a set of functiong : X — R, and lety > 0. The se{xz1,...,z,} C Xis
~-shattered by F if there existy, ..., r, € R such that for ally € {1} there is anf € F such
thatVi € [m], y;(f(x;) — ;) > 7. The~-fat-shattering dimension of F is the size of the largest
setinX that isy-shattered byF.

The sample complexity of-loss minimization is bounded b@(d,y/s/e2) wered, g is the~ /8-
fat-shattering dimension of the function class [16, Theol.4]. LetWW(X') be the class of linear
functions restricted to the domaiti. For any set we show:

Theorem 4.2. If a setX is (B2, k)-limited, then they-fat-shattering dimension of)(.X’) is at most
3(B%/4* + k + 1). Consequently, it is also at mat, (X) + 1.

Proof. Let X be am x d matrix whose rows are a set of points inR¢ which is y-shattered.

For anye > 0 we can augmenX with an additional column to form the m~atrD? of dimensions
m x (d+1), such that for aly € {—v, +7}™, there is av, € B{T! such thatXw, = y (the details
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can be found in the appendix). Sindeis (B2, k)—ﬁmited, there is an qrthogonal projection matrix
P of size(d + 1) x (d + 1) such thawi € [m], | X;P|* < B* whereX; is the vector in row of
X. LetV be the sub-space of dimensidn- k& spanned by the columns &f. To bound the size of

the shattered set, we show that the projected rows oh V are ‘shattered’ using projected labels.
We then proceed similarly to the proof of the norm-only faaering bound [17].

We haveX = XP + X(I — P). In addition, Xw, = y. Thusy — XPw, = X(I — P)w,.
I — Pis a projection onto & + 1-dimensional space, thus the rankXf/ — P) is at mostk + 1.
Let T" be anm x m orthogonal projection matrix onto the subspace orthogtmahe columns

of X(I — P). This sub-space is of dimension at mést m — (k + 1), thus trac€l’) = I.
T(y — XPwy,) =TX(I — P)wy = 0g41)x1. ThusTy = T X Pw, for everyy € {—v, +v}™.

Denote rowi of 7 by t; and rowi of TXP by z. We haveVi < m, (z,wl) = tiy =
> j<m tildlyls). Therefore(3=; ziy[i], wy) = 37, 32 < aqm) tililylilyls]. Sincellwy|l < 1+,

Vo € RTL (14 o)|lz]| > |lzllJwyll > (,wy). ThusVy € {—v,+v}™, (1 + )|l X, zaylilll >
D i<m 2j<m til7lylilyls]. Taking the expectation af chosen uniformly at random, we have

(1+ OB S #lill) = 3 Elbllylilylill = * 3 tli = v*racdT) = 121

In addition, 5E[|| 3, ziy[il|[?] = i, [|2il|* = tracd P’ X'T? X P) < trac P'X' X P) < Bm.
From the inequality®[X 2] < E[X]?, it follows that/? < (1 + e)”j—fm. Since this holds for any

e > 0, we can set = 0 and solve form. Thusm < (k+ 1) + % + ,/%+f—§(k+1) <

(k+1)+ 22+ /2 (k+1) < 3(Er +k+1). O

Corollary 4.3. Let D be a distribution ove®t’ x {£1}, X C R%. Then

mie, . D) < O (kw/ss(?f)) .

€

The corollary above holds only for distributions with boeddsupport. However, since sub-Gaussian
variables have an exponentially decaying tail, we can usecitrollary to provide a bound for
independently sub-Gaussian distributions as well (seeragip for proof):

Theorem 4.4(Upper Bound for Distributions i®5%). For any distributionD overR? x {+1} such
that Dx € D[S)g’

m(e,y, D) = O(M)

This new upper bound is tighter than norm-only and dimensialy upper bounds. But does the
~-adapted-dimension characterize the true sample contplaithe distribution, or is it just another
upper bound? To answer this question, we need to be ableite dample complexity lower bounds
as well. We consider this problem in following section.

5 Sample complexity lower bounds using Gram-matrix eigenvaes

We wish to find a distribution-specific lower bound that deggeon they-adapted-dimension, and
matches our upper bound as closely as possible. To do thatjliWenk the ability to learn with

a margin, with properties of the data distribution. The igpilo learn is closely related to the
probability of a sample to be shattered, as evident from Megformulations of learnability as a
function of thee-entropy. In the preceding section we used the fact thatshattering (as captured
by the fat-shattering dimension) implies learnabilityr Bee lower bound we use the converse fact,
presented below in Theorem 5.1: If a sample can be fat-shdtteth a reasonably high probability,
then learning is impossible. We then relate the fat-shatjeasf a sample to the minimal eigenvalue
of its Gram matrix. This allows us to present a lower-boundhensample complexity using a lower
bound on the smallest eigenvalue of the Gram-matrix of a gadrmawn from the data distribution.
We use the termry-shattered at the origin’ to indicate that a setyishattered by setting the bias
r € R™ (see Def. 4.1) to the zero vector.



Theorem 5.1. Let D be a distribution oveiR? x {+1}. If the probability of a sample of size
drawn fromD}} to bey-shattered at the origin is at least then there is a margin-error minimization
algorithm A, such that,, »(A,, D) > n/2.

Proof. For a given distributiorD, let A be an algorithm which, for every two input samplesnd
S, labelsSy using the separaton € argmin,,cpg £, (w, S) that maximizess, ¢ .. [, (w, 5)].
For everyz € R? there is a labe) € {+1} such thal(x,y).p[Y #y | X = a] > 3. If the set of
examples inSx andSx together isy-shattered at the origin, the# chooses a separator with zero
margin loss orf}, but loss of at least on S. Therefore?,, /»(A,, D) > /2. O

The notion of shattering involves checking the existenca ohit-norm separatar for each label-
vectory € {£1}™. In general, there is no closed form for the minimum-normesafor. However,
the following Theorem provides an equivalent and simpleattarization for fat-shattering:

Theorem5.2.LetS = (X4, ..., X,,) be asample ifR?, denoteX them x d matrix whose rows are
the elements of. ThenS is 1-shattered iffX is invertible andvy € {£1}™, o/ (XX') "1y < 1.

The proof of this theorem is in the appendix. The main issubénproof is showing that if a set is
shattered, it is also shattered with exact margins, sinees¢h of exact margingt1}™ lies in the
convex hull of any set of non-exact margins that corresporad the possible labelings. We can now
use the minimum eigenvalue of the Gram matrix to obtain adefft condition for fat-shattering,
after which we present the theorem linking eigenvalues aadhbbility. For a matrixX, A, (X)
denotes the'th largest eigenvalue ok .

Lemma5.3. LetS = (X1,..., X,,) be a sample iiR?, with X as above. If\,,,(XX’) > m then
S'is 1-shattered at the origin.

Proof. If \,,,(XX’) > m thenX X’ is invertible and\; (X X’)~1) < 1/m. For anyy € {£1}™
we havel|ly| = v/m andy' (X X") "1y < |ly||? 1 (X X')~1) < m(1/m) = 1. By Theorem 5.2 the
sample isl-shattered at the origin. O

Theorem 5.4. Let D be a distribution oveR? x {+1}, S be ani.i.d. sample of size drawn fromD,
and denoteX s them x d matrix whose rows are the points frosh If P[\,,,(XsX§) > m~?] > 7,
then there exists a margin-error minimization algoritbdrsuch that/,,, /5 (A, D) > n/2.

Theorem 5.4 follows by scaling’s by ~, applying Lemma 5.3 to establighfat shattering with
probability at least), then applying Theorem 5.1. Lemma 5.3 generalizes the nemeint for linear
independence when shattering using hyperplanes with ngim@e. no regularization). For unreg-
ularized (homogeneous) linear separation, a sample itesbdtff it is linearly independent, i.e. if
Am > 0. Requiring)\,, > m~? is enough fory-fat-shattering. Theorem 5.4 then generalizes the
simple observation, that if samples of sizeare linearly independent with high probability, there
is no hope of generalizing fromn /2 points to the othem /2 using unregularized linear predictors.
Theorem 5.4 can thus be used to derive a distribution-spéaifier bound. Define:

1 1
m. (D) £ imin {m‘ Pspm[An(XsX%) > my?] < 2}

Then for anye < 1/4 — ¢ (D), we can conclude that (e, v, D) > m., (D), thatis, we cannot learn
within reasonable error with less tham, examples. Recall that our upper-bound on the sample

complexity from Section 4 Waé)(k,y). The remaining question is whether we can refateand
k~, to establish that the our lower bound and upper bound Yigipicify the sample complexity.

6 A lower bound for independently sub-Gaussian distributions

As discussed in the previous section, to obtain sample aiitpllower bound we require a bound
on the value of the smallest eigenvalue of a random Grambmatne distribution of this eigenvalue
has been investigated under various assumptions. Theesle@sults are in the case wheted —
oo and” — 8 < 1, and the coordinates of each example are identically bisted:



Theorem 6.1(Theorem 5.11 in [18]) Let X; be a series ofn; x d; matrices whose entries are i.i.d.
random variables with mean zero, variangé and finite fourth moments. lim;_, o =B <1,

thenlim; oo Am (3X; X)) = o%(1 — V/B)>.

This asymptotic limit can be used to calculate, and thus provide a lower bound on the sample

complexity: Let the coordinates df € R be i.i.d. with variancer? and consider a sample of size
m. If d, m are large enough, we have by Theorem 6.1:

A (XX') = do?(1 — /m/d)? = o>(Vd — vm)?
Solvingo?(vVd — | /2m.)? = 2m.v* we getm., ~ 3d/(1 + /o). We can also calculate the
adapted-dimension for this distribution to det~ d/(1 +~?/0?), and conclude tha}k., < m, <
%kv. In this case, then, we are indeed able to relate the sampiplerity lower bound withk., the
same quantity that controls our upper bound. This condiuisi@asy to derive from known results,
however it holds only asymptotically, and only for a highipited set of distributions. Moreover,

since Theorem 6.1 holds asymptotically for each distrdsuseparately, we cannot deduce from it
any finite-sample lower bounds for families of distributon

For our analysis we requirnite-samplebounds for the smallest eigenvalue of a random Gram-
matrix. Rudelson and Vershynin [19, 20] provide such fisiéenaple lower bounds for distributions
with identically distributed sub-Gaussian coordinatesthie following Theorem we generalize re-
sults of Rudelson and Vershynin to encompass also nonitddigtdistributed coordinates. The
proof of Theorem 6.2 can be found in the appendix. Based arttibiorem we conclude with Theo-
rem 6.3, stated below, which constitutes our final sampleptexity lower bound.

Theorem 6.2. Let B > 0. There is a constant > 0 which depends only o, such that for any

0 € (0,1) there exists a numbdr, such that for any independently sub-Gaussian distriloutiith
covariance matriXxs < I and tracéX) > L, if each of its independent sub-Gaussian coordinates
has momenB, then for anym < j - trace(X)

P (X Xy,) =2 m] > 139,
WhereX,, is anm x d matrix whose rows are independent draws frbig.
Theorem 6.3(Lower bound for distributions iD5%). For anyp > 0, there are a constant > 0
and an integerL, such that for anyD such thatDy € Dj%and k. (Dx) > Lo, for any margin
7> 0and anye < ; — £3(D),
m(e,y, D) > pky(Dx).

Proof. The covariance matrix ofDy is clearly diagonal. We assume w.l.o.g. that =

diag\1,...,Aq) whereh; > ... > \; > 0. LetS be an i.i.d. sample of sizex drawn from
D. Let X be them x d matrix whose rows are the unlabeled examples ffrhet § be fixed, and
setg and L as defined in Theorem 6.2 for Assumemn < §(k, — 1).

We would like to use Theorem 6.2 to bound the smallest eideeva X X’ with high probability,
so that we can then apply Theorem 5.4 to get the desired lomendy However, Theorem 6.2
holds only if all the coordinate variances are bounded,tgnd it requires that the moment, and not
the relative moment, be bounded. Thus we divide the probtetwa cases, based on the value of
Ak,+1, and apply Theorem 6.2 separately to each case.

Case |: Assume),, 1 > 72. ThenVi € [k,],\; > 72, LetS; = diag(1/A1,..., 1/ . ,0,...,0).
The random matrixX+/3; is drawn from an independently sub-Gaussian distributsnich that
each of its coordinates has sub-Gaussian momantl covariance matriX - 33, < I4. In addition,
tracgX - X;) = k., > Lo. Therefore Theorem 6.2 holds féf/X;, andP[A,,, (XX, X') > m] >
1 — 4. Clearly, for anyX, A, (55 X X') > A\ (X1 X'). ThusP[\,, (55 X X) > m] > 1 6.
Case Il: Assume), 41 < 7% Then); < 2 foralli € {k, +1,...,d}. LetX; =
diag(0,...,0,1/92,...,1/~%), with k. zeros on the diagonal. Then the random maffix/>
is drawn from an independently sub-Gaussian distributitth @ovariance matrix: - ¥, < I, such
that all its coordinates have sub-Gaussian momerin addition, from the properties df, (see
discussion in Section 2), trae - X,) = 7% Zf:kﬁl Ai > ky,—1> Ly — 1. Thus Theorem 6.2
holds forX /3, and sdP’[)\,,L(W%XX’) >m] > PAn(XE2X') >m] >1—06.
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In both case@[Am(TiXX’) >m| >1—¢foranym < g(k, — 1). By Theorem 5.4, there exists
an algorithmA such that for anyn < 8(k, — 1) — 1, £,,(A,, D) > % — §/2. Therefore, for any
€< §—6/2—1:(D), we havem(e,v,D) > 3(k, — 1). We get the theorem by settidg= ;. [

7 Summary and consequences

Theorem 4.4 and Theorem 6.3 provide an upper bound and a tmued for the sample complexity
of any distributionD whose data distribution is i®;° for some fixedo > 0. We can thus draw the
following bound, which holds for any > 0 ande € (0, ; — £%(D)):

kv(DX)

Q(k’Y(DX>) < m(@’y,D) < O( 2 ) (2)

€

In both sides of the bound, the hidden constants depend onflgeoconstanp. This result shows
that the true sample complexity of learning each of thestilligions is characterized by the
adapted-dimension. An interesting conclusion can be di@svio the influence of the conditional
distribution of labelsDy- x: Since Eq. (2) holds for anpy-| x, the effect of the direction of the best
separator on the sample complexity is bounded, even fohhigin-spherical distributions. We can
use Eq. (2) to easily characterize the sample complexitgwehfor interesting distributions, and
to comparel, margin minimization to learning methods.

Gaps betweenl,; and L, regularization in the presence of irrelevant features Ng [3] considers
learning a single relevant feature in the presence of maejewant features, and compares using
L, regularization and., regularization. When| X ||, < 1, upper bounds on learning with;
regularization guarantee a sample complexity)dfog(d)) for an L-based learning rule [21]. In
order to compare this with the sample complexity/gf regularized learning and establish a gap,
one must use bbwer boundon the L, sample complexity. The argument provided by Ng actually
assumes scale-invariance of the learning rule, and isftirergalid only forunregularizedinear
learning. However, using our results we can easily establlswer bound of2(d) for many specific
distributions with|| X || < 1 andY = X|[1] € {£1}. For instance, when each coordinate is an
independent Bernoulli variable, the distribution is suuGsian withp = 1, andk, = [d/2].

Gaps between generative and discriminative learning for a @ussian mixture. Consider two
classes, each drawn from a unit-variance spherical Gaussia high dimensiorR? and with a
large distancv >> 1 between the class means, such that> v*. ThenPp[X|Y = y] =
N(yv - e1, I), wheree; is a unit vector inR?. For anyv andd, we haveDy € D}°. For large
values ofv, we have extremely low margin error at= v/2, and so we can hope to learn the

classes by looking for a large-margin separator. Indeed;amecalculate:, = [d/(1 + ”4—2)], and

conclude that the sample complexity requiredi&l/v?). Now consider a generative approach:
fitting a spherical Gaussian model for each class. This atsdorestimating each class center as
the empirical average of the points in the class, and clasgibased on the nearest estimated class
center. It is possible to show that for any constant 0, and for large enough andd, O(d/v*)
samples are enough in order to ensure an errer dthis establishes a rather large gapfXif,?)
between the sample complexity of the discriminative apghnaand that of the generative one.

To summarize, we have shown that the true sample complekigrge-margin learning of a rich
family of specific distributions is characterized by thadapted-dimension. This result allows true
comparison between this learning algorithm and other #@lyos, and has various applications, such
as semi-supervised learning and feature construction.ciiaenge of characterizing true sample
complexity extends to any distribution and any learningpetgm. We believe that obtaining an-
swers to these questions is of great importance, both toileatheory and to learning applications.

Acknowledgments

The authors thank Boaz Nadler for many insightful discussiand Karthik Sridharan for pointing
out [14] to us. Sivan Sabato is supported by the Adams FefippaRrogram of the Israel Academy
of Sciences and Humanities. This work was supported by tHEONSfP grant 982480.



References

[1] I. Steinwart and C. Scovel. Fast rates for support vector mashusing Gaussian kernel&nnals of
Statistics 35(2):575-607, 2007.

[2] P. Liang and N. Srebro. On the interaction between norm and dimead&io Multiple regimes in learn-
ing. InICML, 2010.

[3] A.Y. Ng. Feature selectior; vs.Is regularization, and rotational invariance.|@ML, 2004.
[4] A. Antos and G. Lugosi. Strong minimax lower bounds for learniligch. Learn, 30(1):31-56, 1998.

[5] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A gah&wer bound on the number of ex-
amples needed for learning. Rroceedings of the First Anuual Workshop on Computational Learning
Theory pages 139-154, August 1988.

[6] C. Gentile and D.P. Helmbold. Improved lower bounds for learningfnoisy examples: an information-
theoretic approach. I860LT, pages 104-115, 1998.

[7]1 V.N. Vapnik. The Nature of Statistical Learning Theor$pringer, 1995.

[8] Gyora M. Benedek and Alon Itai. Learnability with respect to fixed disiions. Theoretical Computer
Science86(2):377-389, September 1991.

[9] S.Ben-David, T. Lu, and D.&. Does unlabeled data provably help?Pimceedings of the Twenty-First
Annual Conference on Computational Learning Thepgges 33-44, 2008.

[10] N. Vayatis and R. Azencott. Distribution-dependent vapnik-obeenkis bounds. IfEuroCOLT '99
pages 230-240, London, UK, 1999. Springer-Verlag.

[11] D.J.H. Garling.Inequalities: A Journey into Linear Analysi€ambrige University Press, 2007.

[12] V.V. Buldygin and Yu. V. KozachenkoMetric Characterization of Random Variables and Random Pro-
cessesAmerican Mathematical Society, 1998.

[13] P. L. Bartlett and S. Mendelson. Rademacher and Gaussianlexitigs: Risk bounds and structural
results. INCOLT 2001 volume 2111, pages 224—240. Springer, Berlin, 2001.

[14] O. Bousquet. Concentration Inequalities and Empirical Processes Theory Applied tdtiaysis of
Learning Algorithms PhD thesis, Ecole Polytechnique, 2002.

[15] B. Sclolkopf, J. Shawe-Taylor, A. J. Smola, and R.C. Williamson. Genetaizédounds via eigenvalues
of the gram matrix. Technical Report NC2-TR-1999-035, NeuroT&)[1999.

[16] M. Anthony and P. L. BartlettNeural Network Learning: Theoretical Foundatioi@ambridge University
Press, 1999.

[17] N. Christianini and J. Shawe-Taylokn Introduction to Support Vector MachinegSambridge University
Press, 2000.

[18] Z. Bai and J.W. SilversteinSpectral Analysis of Large Dimensional Random Matricgsringer, second
edition edition, 2010.

[19] M. Rudelson and R. Vershynin. The smallest singular value ohdai rectangular matrixCommuni-
cations on Pure and Applied Mathematié®:1707-1739, 2009.

[20] M. Rudelson and R. Vershynin. The littlewoodofford problem anetitibility of random matricesAd-
vances in Mathemati¢c218(2):600—633, 2008.

[21] T. Zhang. Covering number bounds of certain regularized lifigastion classes.Journal of Machine
Learning Researct?:527-550, 2002.

[22] G. Bennett, V. Goodman, and C. M. Newman. Norms of randorrices. Pacific J. Math, 59(2):359—
365, 1975.

[23] F.L. Nazarov and A. Podkorytov. Ball, haagerup, and distriloufimctions.Operator Theory: Advances
and Applications113 (Complex analysis, operators, and related topics):247—26@, 200

[24] R.E.A.C. Paley and A. Zygmund. A note on analytic functions in thi circle. Proceedings of the
Cambridge Philosophical Societ98:266272, 1932.



