Minimum Average Cost Clustering

Kiyohito Nagano Yoshinobu Kawahara
Institute of Industrial Science The Institute of Scientific and Industrial Research
University of Tokyo, Japan Osaka University, Japan

nagano@at.t.u-tokyo.ac.jp kawahar a@r . sanken. osaka-u. ac. | p

Satoru lwata
Research Institute for Mathematical Sciences
Kyoto University, Japan
i wat a@urinms. kyoto-u.ac.jp

Abstract

A number of objective functions in clustering problems candescribed with

submodular functions. In this paper, we introduce the mimmaverage cost
criterion, and show that the theory of intersecting subnferdiunctions can be
used for clustering with submodular objective functionee proposed algorithm
does not require the number of clusters in advance, andlib&itletermined by
the property of a given set of data points. The minimum awe@gt clustering

problem is parameterized with a real variable, and surmlgj we show that all

information about optimal clusterings for all parameteas be computed in poly-
nomial time in total. Additionally, we evaluate the perf@nte of the proposed
algorithm through computational experiments.

1 Introduction

A clustering of a finite set” of data points is a partition of into subsets (called clusters) such
that data points in the same cluster are similar to each.oBesically, a clustering problem asks
for a partition? of V such that the intra-cluster similarity is maximized andfog inter-cluster
similarity is minimized. The clustering of data is one of thest fundamental unsupervised learning
problems. We use a criterion function defined on all parigiof V', and the clustering problem
becomes that of finding a partition &f that minimizes the clustering cost under some constraints.
Suppose that the inhomogeneity of subsets of the data sei@sured by a nonnegative set function
f 2V — Rwith f(0) = 0, where2" denotes the set of all subsetslof and the clustering cost
of a partitionP = {51, Sa, ..., Sk} is defined byf[P] = f(S1) + --- + f(Sk). A number of set
functions that represent the inhomogeneity, includinganttions of graphs and entropy functions,
are known to be submodular [3, 4]. Throughout of this papersuppose that is submodulaythat

is, f(S)+ f(T) > f(SUT)+ f(SNT)forall S, T C V. Asubmodular function is known to be
a discrete counterpart of a convex function, and in receaitsyéts importance has been recognized
in the field of machine learning.

For any given integek with 1 < k < n, wheren is the number of points iV, a partition of

V is called ak-partition if there are exactly: nonempty elements i®, and is called an optimal
k-clustering if P is ak-partition that minimizes the cog{P] among allk-partitions. A problem of
finding an optimalk-clustering is widely studied in combinatorial optimizatiand various fields,
and it is recognized as a natural formulation of a clustepraplem [8, 9, 10]. Even iff is a cut
function of a graph, which is submodular asgmmetricthat is, f(V — S) = f(S) forall S C V,

this problem is known to be NP-hard unlgsgan be regarded as a constant [5]. Zleaal. [17]

and Narasimhaet al. [10] dealt with the case whefiis submodular and symmetric. Zhabal.
[17] gave &(1 —1/k)-approximation algorithm using Queyranne’s symmetriasabular function
minimization algorithm [13]. Narasimhaet al. [10] showed that Queyranne’s algorithm can be used

for clustering problems with some specific natural critefar a general submodular function and
a small constant, constant factor approximation algorithms for optirhatlusterings are designed
in [12, 18]. In addition, balanced clustering problems vgitibomodular costs are studied in [8, 9].

Generally speaking, it is difficult to find an optimidclustering for any givert because the opti-
mization problem is NP-hard even for simple special casesthErmore, the number of clusters
has to be determined in advance, regardless of the profettg data points, or an additional com-
putation is required to find a proper number of clusters viaesonethod like cross-validation. In
this paper, we introduce a new clustering criterion to nesdhe above shortcomings of previous
approaches [10]. In the minimum average cost (MAC) clustggroblem we consider, the objec-
tive function is the average cost of a partitihwhich combines the clustering cogtP] and the
number of cluster§P|. Now the number of clusters is not pre-determined, but itlvéldetermined
automatically by solving the combinatorial optimizaticplem. We argue that the MAC clustering
problem represents a natural clustering criterion. Inphiser, we show that the Dilworth truncation
of an intersecting submodular function [2] (see also Chalptef Fujishige [4] and Chapter 48 of
Schrijver [14]) can be used to solve the clustering probéxactlyand efficiently To the best of
our knowledge, this is the first time that the theory of intetsrg submodular functions is used for
clustering. The MAC clustering problem can be parametdnzith a real-valued parametgr> 0,
and the problem with respect tbasks for a partitiorP of V' that minimizes the average cost under
a constraintP| > . The main contribution of this paper is a polynomial timecaithm that solves
the MAC clustering problem exactly for any given parameéter his result is in stark contrast to the
NP-hardness of the optimatclustering problems. Even more surprisingly, our aldomitcomputes
all information about MAC clusterings for all parametergwlynomial time in total.

In the case wher¢ is a cut function of a graph, there are some related workg.idfa cut function
andg = 1, the optimal value of the MAC clustering problem coincidagwthe strength of a graph
[1]. In addition, the computation of the principal sequené@artitions of a graph [7] is a special
case of the parametrized MAC clustering problem in an iniiphay.

This paper is organized as follows. In Section 2, we forneuthé minimum average cost clustering
problem, and show a structure property of minimum average costerings. In Section 3, we

propose a framework of our algorithm for the minimum avereas clustering problem. In Section

4, we explain the basic results on the theory of intersedignodular functions, and describe the
Dilworth truncation algorithm which is used in Section 3 aulroutine. Finally, we show the result
of computational experiments in Section 5, and give connpdemarks in Section 6.

2 Minimum Average Cost Clustering

In this section, we give a definition of minimum average cdssterings. After that, we show
a structure property of them. Léf be a given set ofi data points, and lef : 2V — R be a
nonnegative submodular function wig{)) = 0, which is not necessarily symmetric. For each
subsetS C V, the valuef(S) represents the inhomogeneity of data point§inFor a partition

P = {Si, ..., Sk}, the clustering cost is defined b§fP] = f(S1) + --- + f(Sk). We will
introduce the minimum average cost criterion in order to enednsideration of both the clustering
cost f[P] and the number of clustef®|.

2.1 Definition

Consider &:-partition? of V with k£ > 1, and comparé with a trivial partition{V'} of V. Then,
the number of clusters has increasediby 1 and the clustering cost has increased/f%] + ¢,
wherec is a constant. Therefore, it is natural to define an averageafd® by f[P]/(|P| — 1).
Suppose thaP* is a partition ofl” that minimizes the average cost among all partitiBref V' with

|P| > 1. Remark that the number of clusters@f is determined not by us, but by the property of
the given data set. Therefore, it may be said fhats a natural clustering.

More generally, using a parametgérc [0, n) = {7 € R : 0 < 7 < n}, we define an extended
average cost by[P]/(|P| — 3). For any paramete? € [0, n), we consider the minimum average
cost (MAC) clustering problem

A(B) = ngn{f[P]/(|P| — () : P is a partition ofV/, |P| > G} . Q)

Let us say that a partitio® is a 3-MAC clustering if P is optimal for the problem (1) with respect
to 8 € [0, n). Naturally, the case where = 1 is fundamental. Furthermore, we can expect finer
clusterings for relatively large parameters. The probléjrafd the optimak-clustering problem
[10] are closely related.

Proposition 1. LetP be a3-MAC clustering for somg € [0, n), and setk := |P|. Then we have
f[P] < f[Q] for any k-partition Q of V. In other wordsP is an optimalk-clustering.

Proof. By definition, we haveé: > g andf[P]/(k — 3) < f[Q]/(k —) for anyk-partitionQ. [

We will show that all information about-MAC clusterings for all parameterscan be computed in
polynomial time in total. Our algorithm requires the helptloé theory of intersecting submodular
functions [4, 14]. Proposition 1 says that if there exist&BIAC clusteringP satisfying|P| = k,
then we obtain an optimai-clustering. Note that this fact is consistent with the NiPelmess of the
optimalk-clustering problem because the information about MACteluisgs just gives a portion of
the information about optimal-clusteringsk =1, ..., n).

2.2 Structure property

We will investigate the structure of gl-MAC clusterings. Denote bR, the set of nonnegative
real values. Let us choose a parameter [0, n). If P is a partition ofV satisfying|P| < 3, we
have—gA < —|P|X < f[P] —|P|Aforall A € R,. Hence the minimum average casi3) defined
in (1) is represented as

A(B) = max{\ € Ry : A < f[P]/(|P| —) for all partitionP of V with |P| > 3}
=max{\ € Ry : =G\ < f[P] — |P|A for all partitionP of V'}

=max{\ e Ry : =X < h(MN)}, @)
whereh : Ry — R is defined by
h(N) = Hgn{f[P] — [P\ : Pis apartition of '} (A > 0). (3)

The functionh does not depend on the parametefFor A > 0, we say that a partitio determines
hat\if f[P] —|P|X = h(\). Apparently, the minimization problem (3) is difficult tolse for any
given A > 0. This point will be discussed in Section 4 in detail.

Let us examine properties of the functibn For each partitiori? of V, define a linear function
hp : Ry — Rashp(N\) = f[P] — |P|A. Sinceh is the minimum of these linear functions,is
a piecewise-linear concave function Bn.. The functionh is illustrated in Figure 1 by the thick
curve. We havé(0) = f(V') becausg [{V'}] < f[P] for any partitionP of V. Moreover, it is easy
to see that the set of singletofisl }, {2}, ..., {n}} determines: at a sufficiently large\. In view
of (2), the minimum average coat3) can be obtained by solving the equatiogA = h(\) (see
also Figure 1). In addition, a-MAC clustering can be characterized as follows.

Lemma 2. Given a parametep? € [0, n), let P be a partition ofVV such that|/P| > 3 and
h(X(B)) = f[P] — |PIA(B). ThenP is a 3-MAC clustering.

Proof. Since—gA(8) = h(A(B)) = f[P] — |PIA(5), we haveX(5) = f[P]/(|P| — §). For

any partitionQ of V with [Q| > 3, we have—BA(8) < f[Q] — [QIA(B), and thusA(8) <
f1Q1/(1Q] — B). ThereforeP is a3-MAC clustering. O
h(\) Ve he(\)=F[PI-PIA h(N 4 pg

(a) (b)
Figure 1: The functiorh Figure 2: The structure df

Now, we will present a structure property of the MAC probleh). (Suppose that the slopes /of
take values-s; > —sy > -+ > —s4. As{sy, sa2, ..., sa} C {1, ..., n}, we haved < n. The

interval R, is split into d subintervalsR; = [0, A1), Ry = [A1, A2), ..., Rq = [Ad—1, +00)

such that, for eacly = 1, ..., d, the functionh is linear and its slope is-s; on R;. Let
Psys Psy, -- -, Ps, be partitions ofV” such that, for each = 1, ..., d, the partitionP,, deter-
minesh at all A € R; (see Figure 2 (a)). In particulas; = n and the last partitiorP;, is the set
of singletons{{1}, {2}, ..., {n}}. Observe that the randeof the minimum average cosigf3) is
I = [X(0),+0o0). Suppose that* is an index such thax(0) € R;-. Letd* = d — j* + 1, and let
Af = Ajyjx—1 ands} = s;; .1 foreachj = 1, ..., d*. Theintervall is split intod" subintervals
I = [X0), A}), Io = [A\], M%), ..., Ig» = [N, +00). Accordingly, the domain of is split
into d* subintervalsB, = (0, 31), Ba = [81, B2), ..., Ba = [Ba=—1, n), whereg; = —h(X\})/\

foreachj =1, ..., d* — 1. Figure 2 (b) illustrates these two sets of subinteryds . .., I;- } and
{B4i, ..., By }. By Lemma 2, we directly obtain the structure property of M®&C problem (1):

Lemma3. Letj € {1, ..., d*}. Foranyg € By, the partitionP,- is a 3-MAC clustering.

Lemma 3 implies that if we can find the collecti¢®;,, Ps,, ..., Ps,}, then the MAC problem
(1) will be completely solved. In the subsequent sectioreswill give an algorithm that computes
the collectior{ P;,, Ps,, ..., Ps,} in polynomial time in total.

3 The clustering algorithm

In this section, we present a framework of a polynomial tifgoathm that finds the collection
{Psy, Psys .., Ps,} defined in§2.2. That is, our algorithm computes all the breakpointshef t
piecewise linear concave functiégndefined in (3). By Lemma 3, we can immediately construct a
polynomial time algorithm that solves the MAC problem (1jgdetely.

The proposed algorithm uses the following proceduredPARTITION, which will be described in
Section 4 precisely.

Procedure FINDPARTITION(A): For any given\ > 0, this procedure computes the value
h(\) and finds a partitiorP of V' that determines at \.

We will useSFM(n) to denote the time required to minimize a general submodutetion defined
on 2V, wheren = |V|. Submodular function minimization can be solved in polymenime
(see [6]). Although the minimization problem (3) is appdhghard, we show that the procedure
FINDPARTITION can be designed to run in polynomial time.

Lemma 4. For any A > 0, the procedurd=INDPARTITION(A) runs inO(n - SFM(n)).

The proof of Lemma 4, which will be given i, utilizes the Dilworth truncation of an intersecting
submodular function [4, 14].

Let us call a partitiorP of V' supportingif there exists\ > 0 such thati(\) = hp(\). By defini-
tion, eachP,; is supporting. In addition, for any > 0, FINDPARTITION(A) returns a supporting
partition of V. SetQ, := {V} andQ,, := {{1}, {2}, ..., {n}}. Q; is a supporting partition of’
becausé.(0) = f[{V}] = ho,(0), andQ,, is also supporting becaugg, = P,,. For a supporting
partition’? of V, if |P| = s, for somej € {1, ..., d}, then we can puP,, = P. For integers
1 <k<{<n,defineR(k,) = {\ € Ry : =k > 0.h(\), andd_h(\) > —{}, whered, h
andd_h are the right and left derivatives &f respectively, and we sét h(0) = 0. Observe that
R(k, ¢) is aninterval inR . All breakpoints ofh are included inR(1, n) = R.

Suppose that we are given two supporting partitighsand Q, such that| Qx| = k, |Q¢| = ¢
andk < ¢. We describe the algorithmpP&IT(Qy, Q,), which computes the information about all
breakpoints of on the intervalR(k, ¢). This algorithm is a recursive one. First of all, the aldunit
SpLIT decides whetherk = s; and/ = s, for somej € {1, ..., d — 1}" or not. Besides, if
the decision is negative, the algorithm finds a supportingtjgm Q,,, such thatQ,,| = m and

k < m < £. If the decision is positive, there is exactly one breakpomthe interior ofR(k, ¢),
which can be given by, andQ,. Now we show how to execute these operations. For two linear

functionsho, () andhg, (), the equalityho, (A) = ho,(\) holds at\ = (£[Q,]— f[Qx])/({—k).
Seth = ho, () = (£f[Qx] — kf[Q:])/(¢ — k). Clearly, we havéi()\) < h. The algorithm $LIT
performs the procedurel® PARTITION (). Consider the case whehkg)\) = h (see Figure 3 (a)).
Then algorithm gives an affirmative answer, retu@sand Q,, and stops. Next, consider the case

whereh()\) < h (see Figure 3 (b)). Then the algorithm gives a negative ansame the partition

P returned by FNDPARTITION is supporting and satisfids < |P| < £. We setm = |P| and
Q,, = P. Finally, the algorithm performsr&.IT(Qy, Q,,) and SLIT(Q,,, Q¢).

h(A) hg,(X) (X, E) hA)t heo, (M) (X, E)

AN S S
1 \ | \K
hg, (N) hg, (\)

@ (b)
Figure 3: Two different situations inF&IT(Qy,, Qy)

The algorithm $LIT can be summarized as follows.

Algorithm SPLIT(Qy, Qy)

Input: Supporting partitions oV, Q, andQ, such that Qx| = &, |Q,| = ¢ andk < /.

Output: The information about all breakpoints bfon the intervalR(k, ¢).

1. Seth:= (f[Q/]— f[Qk])/({—k),and set := ({f[Qx] — kf[Q¢])/(¢— k). By performing
FINDPARTITION()), computeh(\) and a partitior® of V' that determines ().

2. If h(\) = h (positive case), retur@;, andQ,, and stop.

3 If h(\) < h (negative case), set := |P|, Q,, := P, and perform 8LIT(Qy, Q,,) and
SPLIT(Qm, Qo).

By performing the algorithm &L1T(Q;, Q,,), whereQ, := {V}andQ, := {{1}, {2}, ..., {n}},

the information of all breakpoints df is obtained. Therefore, the collecti¢®;,, Ps,, ..., Ps,}
defined ing2.2 can be obtained. Let us show that this algorithm runs iyngaonial time.
Theorem 5. The collection{P;,, Ps,, ..., Ps,} can be computed i®(n? - SFM(n)) time. In

other words, the information of all breakpoints/otan be computed i (n? - SFM(n)) time.

Proof. By Lemma 4, it suffices to show that the number of calls of ttecpdure FNDPARTITION
in the execution of 8BLIT(Q;, 9,) is O(n). In the algorithm, after one call ofiIRDPARTITION,
(i) we can obtain the information about one breakpoink pbr (i) a new supporting partitio®,,,
can be obtained. Clearly, the number of breakpoints of at mostn. Throughout the execution
of SPLIT(Q;, Q,), the algorithm computes a supportikgpartition at most once for each €
{1, ..., n}. Therefore, INDPARTITION is called at mos2n times in total. O

The main theorem of this paper directly follows from Lemman8 &heorem 5.

Theorem 6. All information of optimal solutions to the minimum averaggest clustering problem
(1) for all parameters? € [0, n) can be computed i®(n? - SFM(n)) time in total.

4 Finding a partition

In the clustering algorithm of Section 3, we iterativelyldak procedure RDPARTITION, which
computesh(A) defined in (3) and a partitio® that determine&(\) for any given\ > 0. In this
section, we will see that the procedureNBPARTITION can be implemented to run in polynomial
time with the aid of the Dilworth truncation of an intersectisubmodular function [2], and give a
proof of Lemma 4. The Dilworth truncation algorithm is sketd in the proof of Theorem 48.4 of
Schrijver [14], and the algorithm describeds#.2 is based on that algorithm.

4.1 The Dilworth truncation of an intersecting submodular function

We start with definitions of an intersecting submodular fiorcand the Dilworth truncation. Subsets
S, T C V areintersectingf SNT # 0, S\ T # 0, andT \ S # 0. A set functiong : 2V — R
is intersecting submodulaf ¢(S) + g(T) > g(SUT) 4+ g(S N T) for all intersecting subsets
S, T C V. Clearly, thefully submodular functiohf is also intersecting submodular. For ang 0,

To emphasize the difference between submodular and intersectin@dulamfunctions, in what follows
we refer to a submodular function asudly submodular function.

definefy : 2V — Ras follows: £ (S) = 0if S = 0, andf\(S) = f(S) — A otherwise. Itis easy to
see thatf, is an intersecting submodular function.

For a fully submodular functiogf with f(f) = 0, consider a polyhedroR(f) = {x € R™ : 2(S) <
f(8), 0 # VS C V}, wherex(S) = > . gx;. The polyhedrorP(f) is called asubmodular
polyhedron In the same manner, for an intersecting submodular fumgtiwith ¢()) = 0, define
P(g) = {x € R" : z(S) < g(5), 0 # VS C V}. As for P(f), for each nonempty subsgtC V,
there exists a vectar € P(f) such thatz(S) = f(S) by the validity of the greedy algorithm of
Edmonds [3]. On the other hand, the polyhedRyg) does not necessarily satisfy such a property.
Alternatively, the following property is known.

Theorem 7 (Refer to Theorems 2.5, 2.6 of [4])Given an intersecting submodular functign:
2V — R with g(()) = 0, there exists a fully submodular functign 2" — R such thatj(()) = 0
andP(g) = P(g). Furthermore, the functiof can be represented as

g(S) = min{} ¢.p g(S) : P is a partition of S}. 4)

The functiong in Theorem 7 is called thBilworth truncationof g. If g is fully submodular, for
eachS C V, {S} is an optimal solution to the RHS of (4) and we hag\&) = ¢(S). For a general
intersecting submodular functign however, the computation gf.S) is a nontrivial task.

Let us see a small example. Suppose that a fully submodutatifun f : 2{:2} — R satisfies
F(@) =0, f{1}) =12, f({2}) = 8,andf({1, 2}) = 19. Set\ = 2. There is no vectar € P(f))

such thate({1, 2}) = fa({1, 2}). The Dilworth truncationf, : 2V — R defined by (4) satisfies
IA(8) = fa(8) for S € {0, {1}, {2}}, and A ({1, 2}) = fa({1}) + fA({2}) = 16. Observe that

~

fx is fully submodular andP() = P(f\). Figure 4 illustrates these polyhedra.

Figure 4: Polyhedr®(f), P(f), andP(fy) Figure 5: The greedy algorithm [3]

4.2 Algorithm that finds a partition

Let us fixA > 0, and describe INRDPARTITION(A). In view of equations (3), (4) and the definition
of f\, we obtaink(\) = f\(V) using the Dilworth truncation ofy. We ask for a partitiorP of V/
satisfying fA(V') = fa[P] (= > _rcp [A(T)) because such a partitigh of V determines at \.

We know thatf, : 2V — R is submodular, bufy(S) = min{ f,[P] : P is a partition ofS} cannot
be obtained directly for each C V. To evaIuatefA(V), we will use the greedy algorithm of
Edmonds [3]. Denote the set of all extreme pointsP()ﬂ) C R™ by ex(P(fAA)). In the example
of §4.1, we haveex(P(fy)) = {(10, 6)}. We setz® € R" in such a way that® < y for all
y € ex(P(f)). For example, set? := — M for eachi € V, whereM = X + Yievilf DI+
lf(V)— f(V —{4})|}. Foreach € V, lete; denote the-th unit vector inR™.

Let L = (i1, ..., i,) be any ordering o¥/, and letV* = {i, ..., 4,} foreach/ = 1, ..., n.
Now we describe the framework of the greedy algorithm [3]tHa/-th iteration ¢ = 1, ..., n),
we computer’ := max{a : #’~! + o - e;, € P(fx)} and setr’ := z’~! + of - ¢;,. Finally, the
algorithm returns: := x". Figure 5 illustrates this process. By the following prdpewe can use
the greedy algorithm to evaluate the vah(@) =]?A(V).

Theorem 8([3]). Foreachl = 1, ..., n, we havef(V¥) = 2/ (V) = (V).

Let us see that the greedy algorithm w'yfh can be implemgnted to run in polynomial time. We
discuss how to compute’ in each iteration. Since‘~! € P(f,) andP(f,) = P(f.), we have
of =max{a:x" ' +a-e;, € P(f1)} = max{a: z71(S) + a < £r(S), ir €VS C V}
=min{f(S) —z*"1(S) - \:i, e VS CV}
= min{f(S) — 271(S) = X:i, € VS C V*}, (5)
where the last equality holds because of the choice of thialimectorz? (remark that:: ! = 29 for

alli € V — V*). Hence, the value‘ can be computed by minimizing a fully submodular function.
It follows from Theorem 8 that the valug \) = f, (V') can be computed i®(n - SFM(n)) time.

In addition to the valué(\), a partition of V' such thatf[P] — A\|P| = h(\) is also required. For
this purpose, we modify the above greedy algorithm, andiolth& procedure RDPARTITION.

Procedure FIND PARTITION(A)
Input: A nonnegative real valug > 0.
Output: Areal valueh, and a partitioriP?,, of V.

1. SetP?:= 0.
2. ForeackW =1, ..., n,do:
Computen! = min{f(S) —z~1(S) = X :i, € VS C V*};
Find a subseT™ such that, € 7° C V* andf(T*%) — 2~ 1(T*) — X\ = o;
Setx’ .=z +af-e;,,setU" =T U[U{S:S Pt T'NS # ()}, and set
Pl={UYU{S:SeP~ T'nS =0}
3. Returnhy := z(V) andP) := P".

Basically, this procedure IRDPARTITION()) is the

same algorithm as the above greedy algorithm. Butle_*) (e

now, we computéP’ in each iteration. Figure 6 shows (o) (o]

the computation o’ in the /-th iteration of the pro- OI0) ()

cedure FNDPARTITION(A). Foreachd = 1, ..., n, pl-1

P! is a partition of V! = {4y, ..., i,}. Thus,P, is a . .
partition of V. Figure 6: Computation gP*

Let x be a vector irP(f)). We say that a subsét C V is x-tight (with respect tof,) if f,(5) =
z(S). By the intersecting submodularity ¢}, if S andT are intersecting and botsi and 7" are
a-tight, thenS U T is alsoz-tight. Using this property, we obtain the following proper

Lemma 9. For each? = 1, ..., n, we havef (V) = z/(V*) = fA[PY].

Proof. (Sketch) For eachi = 1, ..., n, observe thaf* is x’-tight. Thus, we can show by induc-
tion that any cluster irP* is @‘-tight for each? = 1, ..., n. Thus, fA[P] = Y gcpe /1(S) =

Sgepe (S) = 2! (V). Moreover, the equality, (V*) = 2/ (V) follows from Theorem 8. [J

The procedure INDPARTITION()) returnsh, € RandP,. By Theorem 8, we haviey, = h(\), and

by Lemma 9, we havg, (V) = f, [P,], and thus the partitiof?, of V' determines:()\). Clearly,
the procedure runs i®(n - SFM(n)) time. So, in the end, we completed the proof of Lemma 4.

5 Experimental results

5.1 lllustrative example

We firstillustrate the proposed algorithm using two artificiatasets depicted in Figure 7. The above
dataset is generated from four Gaussians with unit variGmbese centers are located at (3,3), (3,-
3), (-3,3) and (-3,-3), respectively), and the below onesggin of three cycles with different radii
with a line. The numbers of samples in these examples are AO@B*0, respectively. Figure 7
shows the typical examples of partitions calculated thhoAtgorithm SPLIT given in Section 3.
Now the functionf is a cut function of a complete graph and the weight of eacle efighat graph

is determined by the Gaussian similarity function [15]. Madues of\ above the figures are the

o +* -
° @ %% 0 @ %% o @ %%
& % BOgh K % Bogh g o *rg8
e LLE 2 g5b) L
Ve . e . VN .
A * A *y A *y
B pap® | e 8 pag® | = L
A * A * A *
A= 0.87 A=3.22 A=4.90
c5@§ﬂ@oom Oo%% i 03 Mom Oo%% - 0 #»#HMJr - +++++++
(§) ’** wwﬁw . % - 02 + #H—M—%»#w# 02 * #mw . %
HE

01 F* 1 01 o <

(En (En (@
* +

il R e S MER 4 : ey

02 %%MW*?M - 02 M 02 MW*M

03 o%@p@ 1 0s %c@pd@ - 03

%mw

Figure 7: lllustrative examples with datasets from four &aans (above) and three circles (below).

ones identified as breakpoints. Note several partitionsrdlian shown in the figures were obtained
through one execution of AlgorithmP&IT. As can be seen, the algorithm produced several different
sizes of clusters with inclusive relations.

5.2 Empirical comparison

Next, in this subsection, we empirically compare the penfmmce of the algorithm with the ex-
isting algorithms using several synthetic and real worlthskts from the UCI repository. The
compared algorithms are k-means method, spectral-cingterethod with normalized-cut [11] and
maximum-margin clustering [16], and we used cut functianthe objective functions for the MAC
clustering algorithm. The three UCI datasets used in thigement are 'Glass’, 'Iris’ and 'Libras’
which respectively consist of 214, 150 and 360 samplesertsply. For the existing algorithms,
the number of clusters was selected through 5-fold crobdateon (again note that our algorithm
needs no such hyper-parameter tuning). Table 1 shows tetedhg accuracy when applying the
algorithms to two artificial (stated in Subsection 5.1 aneé¢hUCI datasets. For our algorithm, the
results with the best performance between among sevet#lges are shown. As can be seen, our
algorithm seems to be competitive with the existing leadilggrithms for these datasets.

Gaussian| Circle | Iris | Libras | Glass
k-means 1.0 0.88 | 0.79] 0.85 0.93
normalized cut 0.88 0.86 | 0.84] 0.87 0.93
maximum margin 0.99 1.0 0.96 | 0.90 0.97
minimum average] 0.99 1.0 0.99 | 0.97 0.97

Table 1: Clustering accuracy for the proposed and existiggrishms.

6 Concluding remarks

We have introduced the new concept, the minimum averagekstering problem. We have shown
that the set of minimum average cost clusterings has a camgaresentation, and if the clustering
cost is given by a submodular function, we have proposedyapaoiial time algorithm that compute
all information about minimum average cost clusteringsisTasult contrasts sharply with the NP-
hardness of the optimal-clustering problem [5]. The present paper reinforced thpadrtance of
the theory of intersecting submodular functions from trewgoint of clustering.

Acknowledgments

This work is supported in part by JSPS Global COE program “@aationism as a Foundation for
the Sciences”, KAKENHI (20310088, 22700007, and 2270014y JST PRESTO program. We
would also like to thank Takuro Fukunaga for his helpful coemts.

References

[1] W. H. Cunningham: Optimal attack and reinforcement ofetwork. Journal of the ACM32
(1985), pp. 549-561.

[2] R. P. Dilworth: Dependence relations in a semimodul#ide. Duke Mathematical Journal
11(1944), pp. 575-587.

[3] J. Edmonds: Submodular functions, matroids, and aepalyhedraCombinatorial Structures
and Their ApplicationsR. Guy, H. Hanani, N. Sauer, and J. 8oheim, eds., Gordon and
Breach, 1970, pp. 69-87.

[4] S. Fujishige:Submodular Functions and Optimizati@®econd Edition). Elsevier, Amsterdam,
2005.

[5] O. Goldschmidt and D. S. Hochbaum: A polynomial algamitfor thek-cut problem for fixed
k, Mathematics of Operations Researd® (1994), pp. 24-37.

[6] S. Iwata: Submodular function minimizatioMathematical Programmingl12 (2008), pp.
45-64.

[7] V. Kolmogorov: A faster algorithm for computing the pdipal sequence of partitions of a
graph.Algorithmica56, pp. 394-412.

[8] Y. Kawahara, K. Nagano, and Y. Okamoto: Submodular foeaetl programming for balanced
clustering. Pattern Recognition Letters, to appear.

[9] M. Narasimhan and J. Bilmes: Local search for balancduarsadular clusterings. IRroceed-
ings of the 12th International Joint Conference on Atrtifidiatelligence (IJCAI 2007), pp.
981-986.

[10] M. Narasimhan, N. Jojic, and J. Bilmes: Q-clustering.Advances in Neural Information
Processing Systemt3 (2006), pp. 979-986. Cambridge, MA: MIT Press.

[11] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustgri Analysis and an algorithm.
Advances in neural information processing syste2rs49—-856, 2002.

[12] K. Okumoto, T. Fukunaga, and H. Nagamochi: Divide-aodigquer algorithms for partitioning
hypergraphs and submodular system$ioceedings of the 20th International Symposium on
Algorithms and ComputatioiSAAC 2009), LNCS 5878, 2009, pp. 55-64.

[13] M. Queyranne: Minimizing symmetric submodular fucts, Mathematical Programming3?2
(1998), pp. 3-12.

[14] A. Schrijver: Combinatorial Optimization — Polyhedra and Efficien8pringer-Verlag, 2003.

[15] U.von Luxburg: Tutorial on spectral clusterir§tatistics and Computintj7 (2007), pp. 395—
416.

[16] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximuargin clustering Advances in
neural information processing system3:1537-1544, 2005.

[17] L. Zhao, H. Nagamochi, and T. Ibaraki: Approximating tminimumk-way cut in a graph via
minimum 3-way cutsJournal of Combinatorial Optimizatigrs (2001), pp. 397-410.

[18] L. Zhao, H. Nagamochi, and T. Ibaraki: A unified framewdor approximating multiway
partition problems. IfProceedings of the 12th International Symposium on Algorgé and
Computation(ISAAC 2001), LNCS 2223, 2001, pp. 682—694.

