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Abstract

A number of objective functions in clustering problems can be described with
submodular functions. In this paper, we introduce the minimum average cost
criterion, and show that the theory of intersecting submodular functions can be
used for clustering with submodular objective functions. The proposed algorithm
does not require the number of clusters in advance, and it will be determined by
the property of a given set of data points. The minimum average cost clustering
problem is parameterized with a real variable, and surprisingly, we show that all
information about optimal clusterings for all parameters can be computed in poly-
nomial time in total. Additionally, we evaluate the performance of the proposed
algorithm through computational experiments.

1 Introduction

A clustering of a finite setV of data points is a partition ofV into subsets (called clusters) such
that data points in the same cluster are similar to each other. Basically, a clustering problem asks
for a partitionP of V such that the intra-cluster similarity is maximized and/orthe inter-cluster
similarity is minimized. The clustering of data is one of themost fundamental unsupervised learning
problems. We use a criterion function defined on all partitions of V , and the clustering problem
becomes that of finding a partition ofV that minimizes the clustering cost under some constraints.
Suppose that the inhomogeneity of subsets of the data set is measured by a nonnegative set function
f : 2V → R with f(∅) = 0, where2V denotes the set of all subsets ofV , and the clustering cost
of a partitionP = {S1, S2, . . . , Sk} is defined byf [P] = f(S1) + · · · + f(Sk). A number of set
functions that represent the inhomogeneity, including cutfunctions of graphs and entropy functions,
are known to be submodular [3, 4]. Throughout of this paper, we suppose thatf is submodular, that
is, f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for all S, T ⊆ V . A submodular function is known to be
a discrete counterpart of a convex function, and in recent years, its importance has been recognized
in the field of machine learning.

For any given integerk with 1 ≤ k ≤ n, wheren is the number of points inV , a partitionP of
V is called ak-partition if there are exactlyk nonempty elements inP, and is called an optimal
k-clustering ifP is ak-partition that minimizes the costf [P] among allk-partitions. A problem of
finding an optimalk-clustering is widely studied in combinatorial optimization and various fields,
and it is recognized as a natural formulation of a clusteringproblem [8, 9, 10]. Even iff is a cut
function of a graph, which is submodular andsymmetric, that is,f(V − S) = f(S) for all S ⊆ V ,
this problem is known to be NP-hard unlessk can be regarded as a constant [5]. Zhaoet al. [17]
and Narasimhanet al. [10] dealt with the case whenf is submodular and symmetric. Zhaoet al.
[17] gave a2(1−1/k)-approximation algorithm using Queyranne’s symmetric submodular function
minimization algorithm [13]. Narasimhanet al. [10] showed that Queyranne’s algorithm can be used
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for clustering problems with some specific natural criteria. For a general submodular function and
a small constantk, constant factor approximation algorithms for optimalk-clusterings are designed
in [12, 18]. In addition, balanced clustering problems withsubmodular costs are studied in [8, 9].

Generally speaking, it is difficult to find an optimalk-clustering for any givenk because the opti-
mization problem is NP-hard even for simple special cases. Furthermore, the number of clusters
has to be determined in advance, regardless of the property of the data points, or an additional com-
putation is required to find a proper number of clusters via some method like cross-validation. In
this paper, we introduce a new clustering criterion to resolve the above shortcomings of previous
approaches [10]. In the minimum average cost (MAC) clustering problem we consider, the objec-
tive function is the average cost of a partitionP which combines the clustering costf [P] and the
number of clusters|P|. Now the number of clusters is not pre-determined, but it will be determined
automatically by solving the combinatorial optimization problem. We argue that the MAC clustering
problem represents a natural clustering criterion. In thispaper, we show that the Dilworth truncation
of an intersecting submodular function [2] (see also Chapter II of Fujishige [4] and Chapter 48 of
Schrijver [14]) can be used to solve the clustering problemexactlyandefficiently. To the best of
our knowledge, this is the first time that the theory of intersecting submodular functions is used for
clustering. The MAC clustering problem can be parameterized with a real-valued parameterβ ≥ 0,
and the problem with respect toβ asks for a partitionP of V that minimizes the average cost under
a constraint|P| > β. The main contribution of this paper is a polynomial time algorithm that solves
the MAC clustering problem exactly for any given parameterβ. This result is in stark contrast to the
NP-hardness of the optimalk-clustering problems. Even more surprisingly, our algorithm computes
all information about MAC clusterings for all parameters inpolynomial time in total.

In the case wheref is a cut function of a graph, there are some related works. Iff is a cut function
andβ = 1, the optimal value of the MAC clustering problem coincides with the strength of a graph
[1]. In addition, the computation of the principal sequenceof partitions of a graph [7] is a special
case of the parametrized MAC clustering problem in an implicit way.

This paper is organized as follows. In Section 2, we formulate the minimum average cost clustering
problem, and show a structure property of minimum average cost clusterings. In Section 3, we
propose a framework of our algorithm for the minimum averagecost clustering problem. In Section
4, we explain the basic results on the theory of intersectingsubmodular functions, and describe the
Dilworth truncation algorithm which is used in Section 3 as asubroutine. Finally, we show the result
of computational experiments in Section 5, and give concluding remarks in Section 6.

2 Minimum Average Cost Clustering

In this section, we give a definition of minimum average cost clusterings. After that, we show
a structure property of them. LetV be a given set ofn data points, and letf : 2V → R be a
nonnegative submodular function withf(∅) = 0, which is not necessarily symmetric. For each
subsetS ⊆ V , the valuef(S) represents the inhomogeneity of data points inS. For a partition
P = {S1, . . . , Sk}, the clustering cost is defined byf [P] = f(S1) + · · · + f(Sk). We will
introduce the minimum average cost criterion in order to make consideration of both the clustering
costf [P] and the number of clusters|P|.

2.1 Definition

Consider ak-partitionP of V with k > 1, and compareP with a trivial partition{V } of V . Then,
the number of clusters has increased byk − 1 and the clustering cost has increased byf [P] + c,
wherec is a constant. Therefore, it is natural to define an average cost of P by f [P]/(|P| − 1).
Suppose thatP∗ is a partition ofV that minimizes the average cost among all partitionsP of V with
|P| > 1. Remark that the number of clusters ofP∗ is determined not by us, but by the property of
the given data set. Therefore, it may be said thatP∗ is a natural clustering.

More generally, using a parameterβ ∈ [0, n) = {τ ∈ R : 0 ≤ τ < n}, we define an extended
average cost byf [P]/(|P| − β). For any parameterβ ∈ [0, n), we consider the minimum average
cost (MAC) clustering problem

λ(β) := min
P

{f [P]/(|P| − β) : P is a partition ofV , |P| > β} . (1)
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Let us say that a partitionP is aβ-MAC clustering ifP is optimal for the problem (1) with respect
to β ∈ [0, n). Naturally, the case whereβ = 1 is fundamental. Furthermore, we can expect finer
clusterings for relatively large parameters. The problem (1) and the optimalk-clustering problem
[10] are closely related.

Proposition 1. LetP be aβ-MAC clustering for someβ ∈ [0, n), and setk := |P|. Then we have
f [P] ≤ f [Q] for anyk-partitionQ of V . In other words,P is an optimalk-clustering.

Proof. By definition, we havek > β andf [P]/(k − β) ≤ f [Q]/(k − β) for anyk-partitionQ.

We will show that all information aboutβ-MAC clusterings for all parametersβ can be computed in
polynomial time in total. Our algorithm requires the help ofthe theory of intersecting submodular
functions [4, 14]. Proposition 1 says that if there exists aβ-MAC clusteringP satisfying|P| = k,
then we obtain an optimalk-clustering. Note that this fact is consistent with the NP-hardness of the
optimalk-clustering problem because the information about MAC clusterings just gives a portion of
the information about optimalk-clusterings (k = 1, . . . , n).

2.2 Structure property

We will investigate the structure of allβ-MAC clusterings. Denote byR+ the set of nonnegative
real values. Let us choose a parameterβ ∈ [0, n). If P is a partition ofV satisfying|P| ≤ β, we
have−βλ ≤ −|P|λ ≤ f [P]− |P|λ for all λ ∈ R+. Hence the minimum average costλ(β) defined
in (1) is represented as

λ(β) = max{λ ∈ R+ : λ ≤ f [P]/(|P| − β) for all partitionP of V with |P| > β}

= max{λ ∈ R+ : −βλ ≤ f [P] − |P|λ for all partitionP of V }

= max{λ ∈ R+ : −βλ ≤ h(λ)}, (2)

whereh : R+ → R is defined by

h(λ) = min
P

{f [P] − |P|λ : P is a partition ofV } (λ ≥ 0). (3)

The functionh does not depend on the parameterβ. Forλ ≥ 0, we say that a partitionP determines
h at λ if f [P]− |P|λ = h(λ). Apparently, the minimization problem (3) is difficult to solve for any
givenλ ≥ 0. This point will be discussed in Section 4 in detail.

Let us examine properties of the functionh. For each partitionP of V , define a linear function
hP : R+ → R ashP(λ) = f [P] − |P|λ. Sinceh is the minimum of these linear functions,h is
a piecewise-linear concave function onR+. The functionh is illustrated in Figure 1 by the thick
curve. We haveh(0) = f(V ) becausef [{V }] ≤ f [P] for any partitionP of V . Moreover, it is easy
to see that the set of singletons{{1}, {2}, . . . , {n}} determinesh at a sufficiently largeλ. In view
of (2), the minimum average costλ(β) can be obtained by solving the equation−βλ = h(λ) (see
also Figure 1). In addition, aβ-MAC clustering can be characterized as follows.

Lemma 2. Given a parameterβ ∈ [0, n), let P be a partition ofV such that|P| > β and
h(λ(β)) = f [P] − |P|λ(β). ThenP is aβ-MAC clustering.

Proof. Since−βλ(β) = h(λ(β)) = f [P] − |P|λ(β), we haveλ(β) = f [P]/(|P| − β). For
any partitionQ of V with |Q| > β, we have−βλ(β) ≤ f [Q] − |Q|λ(β), and thusλ(β) ≤
f [Q]/(|Q| − β). Therefore,P is aβ-MAC clustering.

0

λ  ( β )

h (λ)

λ

− β λ  

hP (λ) = f [P]  - |P| λ 

f (V )

Figure 1: The functionh
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Figure 2: The structure ofh

Now, we will present a structure property of the MAC problem (1). Suppose that the slopes ofh
take values−s1 > −s2 > · · · > −sd. As {s1, s2, . . . , sd} ⊆ {1, . . . , n}, we haved ≤ n. The
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interval R+ is split into d subintervalsR1 = [0, λ1), R2 = [λ1, λ2), . . . , Rd = [λd−1, +∞)
such that, for eachj = 1, . . . , d, the functionh is linear and its slope is−sj on Rj . Let
Ps1

, Ps2
, . . . , Psd

be partitions ofV such that, for eachj = 1, . . . , d, the partitionPsj
deter-

minesh at all λ ∈ Rj (see Figure 2 (a)). In particular,sd = n and the last partitionPsd
is the set

of singletons{{1}, {2}, . . . , {n}}. Observe that the rangeI of the minimum average costsλ(β) is
I = [λ(0),+∞). Suppose thatj∗ is an index such thatλ(0) ∈ Rj∗ . Let d∗ = d − j∗ + 1, and let
λ∗

j = λj+j∗−1 ands∗j = sj+j∗−1 for eachj = 1, . . . , d∗. The intervalI is split intod∗ subintervals
I1 = [λ(0), λ∗

1), I2 = [λ∗
1, λ∗

2), . . . , Id∗ = [λ∗
d∗−1

, +∞). Accordingly, the domain ofβ is split
into d∗ subintervalsB1 = [0, β1), B2 = [β1, β2), . . . , Bd = [βd∗−1, n), whereβj = −h(λ∗

j )/λ∗
j

for eachj = 1, . . . , d∗−1. Figure 2 (b) illustrates these two sets of subintervals{I1, . . . , Id∗} and
{B1, . . . , Bd∗}. By Lemma 2, we directly obtain the structure property of theMAC problem (1):

Lemma 3. Let j ∈ {1, . . . , d∗}. For anyβ ∈ Bj , the partitionPs∗
j

is aβ-MAC clustering.

Lemma 3 implies that if we can find the collection{Ps1
, Ps2

, . . . , Psd
}, then the MAC problem

(1) will be completely solved. In the subsequent sections, we will give an algorithm that computes
the collection{Ps1

, Ps2
, . . . , Psd

} in polynomial time in total.

3 The clustering algorithm

In this section, we present a framework of a polynomial time algorithm that finds the collection
{Ps1

, Ps2
, . . . , Psd

} defined in§2.2. That is, our algorithm computes all the breakpoints of the
piecewise linear concave functionh defined in (3). By Lemma 3, we can immediately construct a
polynomial time algorithm that solves the MAC problem (1) completely.

The proposed algorithm uses the following procedure FINDPARTITION, which will be described in
Section 4 precisely.

ProcedureFINDPARTITION(λ): For any givenλ ≥ 0, this procedure computes the value
h(λ) and finds a partitionP of V that determinesh atλ.

We will useSFM(n) to denote the time required to minimize a general submodularfunction defined
on 2V , wheren = |V |. Submodular function minimization can be solved in polynomial time
(see [6]). Although the minimization problem (3) is apparently hard, we show that the procedure
FINDPARTITION can be designed to run in polynomial time.

Lemma 4. For anyλ ≥ 0, the procedureFINDPARTITION(λ) runs inO(n · SFM(n)).

The proof of Lemma 4, which will be given in§4, utilizes the Dilworth truncation of an intersecting
submodular function [4, 14].

Let us call a partitionP of V supportingif there existsλ ≥ 0 such thath(λ) = hP(λ). By defini-
tion, eachPsj

is supporting. In addition, for anyλ ≥ 0, FINDPARTITION(λ) returns a supporting
partition ofV . SetQ1 := {V } andQn := {{1}, {2}, . . . , {n}}. Q1 is a supporting partition ofV
becauseh(0) = f [{V }] = hQ1

(0), andQn is also supporting becauseQn = Psd
. For a supporting

partitionP of V , if |P| = sj for somej ∈ {1, . . . , d}, then we can putPsj
= P. For integers

1 ≤ k < ℓ ≤ n, defineR(k, ℓ) = {λ ∈ R+ : −k ≥ ∂+h(λ), and∂−h(λ) ≥ −ℓ}, where∂+h
and∂−h are the right and left derivatives ofh, respectively, and we set∂−h(0) = 0. Observe that
R(k, ℓ) is an interval inR+. All breakpoints ofh are included inR(1, n) = R+.

Suppose that we are given two supporting partitionsQk andQℓ such that|Qk| = k, |Qℓ| = ℓ
andk < ℓ. We describe the algorithm SPLIT(Qk, Qℓ), which computes the information about all
breakpoints ofh on the intervalR(k, ℓ). This algorithm is a recursive one. First of all, the algorithm
SPLIT decides whether “k = sj andℓ = sj+1 for somej ∈ {1, . . . , d − 1}” or not. Besides, if
the decision is negative, the algorithm finds a supporting partition Qm such that|Qm| = m and
k < m < ℓ. If the decision is positive, there is exactly one breakpoint on the interior ofR(k, ℓ),
which can be given byQk andQℓ. Now we show how to execute these operations. For two linear
functionshQk

(λ) andhQℓ
(λ), the equalityhQk

(λ) = hQℓ
(λ) holds atλ = (f [Qℓ]−f [Qk])/(ℓ−k).

Seth = hQk
(λ) = (ℓf [Qk] − kf [Qℓ])/(ℓ − k). Clearly, we haveh(λ) ≤ h. The algorithm SPLIT

performs the procedure FINDPARTITION(λ). Consider the case whereh(λ) = h (see Figure 3 (a)).
Then algorithm gives an affirmative answer, returnsQk andQℓ, and stops. Next, consider the case
whereh(λ) < h (see Figure 3 (b)). Then the algorithm gives a negative answer, and the partition
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P returned by FINDPARTITION is supporting and satisfiesk < |P| < ℓ. We setm = |P| and
Qm = P. Finally, the algorithm performs SPLIT(Qk, Qm) and SPLIT(Qm, Qℓ).

0

h (λ)

λ
0

h (λ)

λ

(a) (b)

(λ, h)(λ, h)

hQk
(λ)hQk

(λ)

hQℓ
(λ)hQℓ

(λ)

Figure 3: Two different situations in SPLIT(Qk, Qℓ)

The algorithm SPLIT can be summarized as follows.

Algorithm SPLIT(Qk, Qℓ)
Input : Supporting partitions ofV , Qk andQℓ such that|Qk| = k, |Qℓ| = ℓ andk < ℓ.
Output : The information about all breakpoints ofh on the intervalR(k, ℓ).

1: Setλ := (f [Qℓ]−f [Qk])/(ℓ−k), and seth := (ℓf [Qk]−kf [Qℓ])/(ℓ−k). By performing
FINDPARTITION(λ), computeh(λ) and a partitionP of V that determinesh(λ).

2: If h(λ) = h (positive case), returnQk andQℓ, and stop.
3: If h(λ) < h (negative case), setm := |P|, Qm := P, and perform SPLIT(Qk, Qm) and

SPLIT(Qm, Qℓ).

By performing the algorithm SPLIT(Q1, Qn), whereQ1 := {V } andQn := {{1}, {2}, . . . , {n}},
the information of all breakpoints ofh is obtained. Therefore, the collection{Ps1

, Ps2
, . . . , Psd

}
defined in§2.2 can be obtained. Let us show that this algorithm runs in polynomial time.

Theorem 5. The collection{Ps1
, Ps2

, . . . , Psd
} can be computed inO(n2 · SFM(n)) time. In

other words, the information of all breakpoints ofh can be computed inO(n2 · SFM(n)) time.

Proof. By Lemma 4, it suffices to show that the number of calls of the procedure FINDPARTITION
in the execution of SPLIT(Q1, Qn) is O(n). In the algorithm, after one call of FINDPARTITION,
(i) we can obtain the information about one breakpoint ofh, or (ii) a new supporting partitionQm

can be obtained. Clearly, the number of breakpoints ofh is at mostn. Throughout the execution
of SPLIT(Q1, Qn), the algorithm computes a supportingk-partition at most once for eachk ∈
{1, . . . , n}. Therefore, FINDPARTITION is called at most2n times in total.

The main theorem of this paper directly follows from Lemma 3 and Theorem 5.

Theorem 6. All information of optimal solutions to the minimum averagecost clustering problem
(1) for all parametersβ ∈ [0, n) can be computed inO(n2 · SFM(n)) time in total.

4 Finding a partition

In the clustering algorithm of Section 3, we iteratively call the procedure FINDPARTITION, which
computesh(λ) defined in (3) and a partitionP that determinesh(λ) for any givenλ ≥ 0. In this
section, we will see that the procedure FINDPARTITION can be implemented to run in polynomial
time with the aid of the Dilworth truncation of an intersecting submodular function [2], and give a
proof of Lemma 4. The Dilworth truncation algorithm is sketched in the proof of Theorem 48.4 of
Schrijver [14], and the algorithm described in§4.2 is based on that algorithm.

4.1 The Dilworth truncation of an intersecting submodular function

We start with definitions of an intersecting submodular function and the Dilworth truncation. Subsets
S, T ⊆ V areintersectingif S ∩ T 6= ∅, S \ T 6= ∅, andT \ S 6= ∅. A set functiong : 2V → R

is intersecting submodularif g(S) + g(T ) ≥ g(S ∪ T ) + g(S ∩ T ) for all intersecting subsets
S, T ⊆ V . Clearly, thefully submodular function1 f is also intersecting submodular. For anyλ ≥ 0,

1To emphasize the difference between submodular and intersecting submodular functions, in what follows
we refer to a submodular function as afully submodular function.
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definefλ : 2V → R as follows:fλ(S) = 0 if S = ∅, andfλ(S) = f(S)− λ otherwise. It is easy to
see thatfλ is an intersecting submodular function.

For a fully submodular functionf with f(∅) = 0, consider a polyhedronP(f) = {x ∈ R
n : x(S) ≤

f(S), ∅ 6= ∀S ⊆ V }, wherex(S) =
∑

i∈S xi. The polyhedronP(f) is called asubmodular
polyhedron. In the same manner, for an intersecting submodular function g with g(∅) = 0, define
P(g) = {x ∈ R

n : x(S) ≤ g(S), ∅ 6= ∀S ⊆ V }. As for P(f), for each nonempty subsetS ⊆ V ,
there exists a vectorx ∈ P(f) such thatx(S) = f(S) by the validity of the greedy algorithm of
Edmonds [3]. On the other hand, the polyhedronP(g) does not necessarily satisfy such a property.
Alternatively, the following property is known.

Theorem 7 (Refer to Theorems 2.5, 2.6 of [4]). Given an intersecting submodular functiong :
2V → R with g(∅) = 0, there exists a fully submodular function̂g : 2V → R such that̂g(∅) = 0
andP(ĝ) = P(g). Furthermore, the function̂g can be represented as

ĝ(S) = min{
∑

S∈P g(S) : P is a partition ofS}. (4)

The functionĝ in Theorem 7 is called theDilworth truncationof g. If g is fully submodular, for
eachS ⊆ V , {S} is an optimal solution to the RHS of (4) and we haveĝ(S) = g(S). For a general
intersecting submodular functiong, however, the computation of̂g(S) is a nontrivial task.

Let us see a small example. Suppose that a fully submodular function f : 2{1, 2} → R satisfies
f(∅) = 0, f({1}) = 12, f({2}) = 8, andf({1, 2}) = 19. Setλ = 2. There is no vectorx ∈ P(fλ)

such thatx({1, 2}) = fλ({1, 2}). The Dilworth truncationf̂λ : 2V → R defined by (4) satisfies
f̂λ(S) = fλ(S) for S ∈ {∅, {1}, {2}}, andf̂λ({1, 2}) = fλ({1}) + fλ({2}) = 16. Observe that
f̂λ is fully submodular andP(f̂λ) = P(fλ). Figure 4 illustrates these polyhedra.

12 10 10
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19

0

6

17

0

6

16

0x1

x2

x1

x2

x1

x2

P(f) P(fλ) P( bfλ)

Figure 4: PolyhedraP(f), P(fλ), andP(f̂λ)
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Figure 5: The greedy algorithm [3]

4.2 Algorithm that finds a partition

Let us fixλ ≥ 0, and describe FINDPARTITION(λ). In view of equations (3), (4) and the definition
of f̂λ, we obtainh(λ) = f̂λ(V ) using the Dilworth truncation offλ. We ask for a partitionP of V

satisfyingf̂λ(V ) = fλ[P] (=
∑

T∈P fλ(T )) because such a partitionP of V determinesh atλ.

We know thatf̂λ : 2V → R is submodular, but̂fλ(S) = min{fλ[P] : P is a partition ofS} cannot
be obtained directly for eachS ⊆ V . To evaluatef̂λ(V ), we will use the greedy algorithm of
Edmonds [3]. Denote the set of all extreme points ofP(f̂λ) ⊆ R

n by ex(P(f̂λ)). In the example
of §4.1, we haveex(P(f̂λ)) = {(10, 6)}. We setx0 ∈ R

n in such a way thatx0 ≤ y for all
y ∈ ex(P(f̂λ)). For example, setx0

i := −M for eachi ∈ V , whereM = λ +
∑

j∈V {|f({j})| +

|f(V ) − f(V − {j})|}. For eachi ∈ V , let ei denote thei-th unit vector inR
n.

Let L = (i1, . . . , in) be any ordering ofV , and letV ℓ = {i1, . . . , iℓ} for eachℓ = 1, . . . , n.
Now we describe the framework of the greedy algorithm [3]. Inthe ℓ-th iteration (ℓ = 1, . . . , n),
we computeαℓ := max{α : x

ℓ−1 + α · eiℓ
∈ P(f̂λ)} and setxℓ := x

ℓ−1 + αℓ · eiℓ
. Finally, the

algorithm returnsz := x
n. Figure 5 illustrates this process. By the following property, we can use

the greedy algorithm to evaluate the valueh(λ) = f̂λ(V ).

Theorem 8([3]). For eachℓ = 1, . . . , n, we havef̂λ(V ℓ) = xℓ(V ℓ) = z(V ℓ).
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Let us see that the greedy algorithm witĥfλ can be implemented to run in polynomial time. We
discuss how to computeαℓ in each iteration. Sincexℓ−1 ∈ P(f̂λ) andP(f̂λ) = P(fλ), we have

αℓ = max{α : x
ℓ−1 + α · eiℓ

∈ P(fλ)} = max{α : xℓ−1(S) + α ≤ fλ(S), iℓ ∈ ∀S ⊆ V }

= min{f(S) − xℓ−1(S) − λ : iℓ ∈ ∀S ⊆ V }

= min{f(S) − xℓ−1(S) − λ : iℓ ∈ ∀S ⊆ V ℓ}, (5)

where the last equality holds because of the choice of the initial vectorx0 (remark thatxℓ−1

i = x0
i for

all i ∈ V − V ℓ). Hence, the valueαℓ can be computed by minimizing a fully submodular function.
It follows from Theorem 8 that the valueh(λ) = f̂λ(V ) can be computed inO(n · SFM(n)) time.

In addition to the valueh(λ), a partitionP of V such thatf [P]− λ|P| = h(λ) is also required. For
this purpose, we modify the above greedy algorithm, and obtain the procedure FINDPARTITION.

ProcedureFINDPARTITION(λ)
Input : A nonnegative real valueλ ≥ 0.
Output : A real valuehλ and a partitionPλ of V .

1: SetP0 := ∅.
2: For eachℓ = 1, . . . , n, do:

Computeαℓ = min{f(S) − xℓ−1(S) − λ : iℓ ∈ ∀S ⊆ V ℓ};
Find a subsetT ℓ such thatiℓ ∈ T ℓ ⊆ V ℓ andf(T ℓ) − xℓ−1(T ℓ) − λ = αℓ;
Setxℓ := x

ℓ−1 + αℓ · eiℓ
, setU ℓ := T ℓ ∪ [∪{S : S ∈ Pℓ−1, T ℓ ∩ S 6= ∅}], and set

Pℓ := {U ℓ} ∪ {S : S ∈ Pℓ−1, T ℓ ∩ S = ∅}.
3: Returnhλ := z(V ) andPλ := Pn.

Basically, this procedure FINDPARTITION(λ) is the
same algorithm as the above greedy algorithm. But
now, we computePℓ in each iteration. Figure 6 shows
the computation ofPℓ in the ℓ-th iteration of the pro-
cedure FINDPARTITION(λ). For eachℓ = 1, . . . , n,
Pℓ is a partition ofV ℓ = {i1, . . . , iℓ}. Thus,Pλ is a
partition ofV .

iℓ

P
ℓ−1

P
ℓT ℓ

U ℓ

Figure 6: Computation ofPℓ

Let x be a vector inP(fλ). We say that a subsetS ⊆ V is x-tight (with respect tofλ) if fλ(S) =
x(S). By the intersecting submodularity offλ, if S andT are intersecting and bothS andT are
x-tight, thenS ∪ T is alsox-tight. Using this property, we obtain the following property.

Lemma 9. For eachℓ = 1, . . . , n, we havef̂λ(V ℓ) = xℓ(V ℓ) = fλ[Pℓ].

Proof. (Sketch) For eachℓ = 1, . . . , n, observe thatT ℓ is x
ℓ-tight. Thus, we can show by induc-

tion that any cluster inPℓ is x
ℓ-tight for eachℓ = 1, . . . , n. Thus,fλ[Pℓ] =

∑
S∈Pℓ fλ(S) =

∑
S∈Pℓ xℓ(S) = xℓ(V ℓ). Moreover, the equalitŷfλ(V ℓ) = xℓ(V ℓ) follows from Theorem 8.

The procedure FINDPARTITION(λ) returnshλ ∈ R andPλ. By Theorem 8, we havehλ = h(λ), and
by Lemma 9, we havêfλ(V ) = fλ[Pλ], and thus the partitionPλ of V determinesh(λ). Clearly,
the procedure runs inO(n · SFM(n)) time. So, in the end, we completed the proof of Lemma 4.

5 Experimental results

5.1 Illustrative example

We first illustrate the proposed algorithm using two artificial datasets depicted in Figure 7. The above
dataset is generated from four Gaussians with unit variance(whose centers are located at (3,3), (3,-
3), (-3,3) and (-3,-3), respectively), and the below one consists of three cycles with different radii
with a line. The numbers of samples in these examples are 100 and 310, respectively. Figure 7
shows the typical examples of partitions calculated through Algorithm SPLIT given in Section 3.
Now the functionf is a cut function of a complete graph and the weight of each edge of that graph
is determined by the Gaussian similarity function [15]. Thevalues ofλ above the figures are the
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λ = 0.19 λ = 0.54 λ = 5.21

λ = 0.87 λ = 3.22 λ = 4.90

Figure 7: Illustrative examples with datasets from four Gaussians (above) and three circles (below).

ones identified as breakpoints. Note several partitions other than shown in the figures were obtained
through one execution of Algorithm SPLIT. As can be seen, the algorithm produced several different
sizes of clusters with inclusive relations.

5.2 Empirical comparison

Next, in this subsection, we empirically compare the performance of the algorithm with the ex-
isting algorithms using several synthetic and real world datasets from the UCI repository. The
compared algorithms are k-means method, spectral-clustering method with normalized-cut [11] and
maximum-margin clustering [16], and we used cut functions as the objective functions for the MAC
clustering algorithm. The three UCI datasets used in this experiment are ’Glass’, ’Iris’ and ’Libras’
which respectively consist of 214, 150 and 360 samples, respectively. For the existing algorithms,
the number of clusters was selected through 5-fold cross-validation (again note that our algorithm
needs no such hyper-parameter tuning). Table 1 shows the clustering accuracy when applying the
algorithms to two artificial (stated in Subsection 5.1 and three UCI datasets. For our algorithm, the
results with the best performance between among several partitions are shown. As can be seen, our
algorithm seems to be competitive with the existing leadingalgorithms for these datasets.

Gaussian Circle Iris Libras Glass
k-means 1.0 0.88 0.79 0.85 0.93
normalized cut 0.88 0.86 0.84 0.87 0.93
maximum margin 0.99 1.0 0.96 0.90 0.97
minimum average 0.99 1.0 0.99 0.97 0.97

Table 1: Clustering accuracy for the proposed and existing algorithms.

6 Concluding remarks

We have introduced the new concept, the minimum average costclustering problem. We have shown
that the set of minimum average cost clusterings has a compact representation, and if the clustering
cost is given by a submodular function, we have proposed a polynomial time algorithm that compute
all information about minimum average cost clusterings. This result contrasts sharply with the NP-
hardness of the optimalk-clustering problem [5]. The present paper reinforced the importance of
the theory of intersecting submodular functions from the viewpoint of clustering.
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