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Abstract 

Functional segregation and integration are fundamental characteristics of the 
human brain. Studying the connectivity among segregated regions and the 
dynamics of integrated brain networks has drawn increasing interest . A very 
controversial, yet fundamental issue in these studies is how to determine the 
best functional brain regions or ROIs (regions of interests) for individuals. 
Essentially, the computed connectivity patterns and dynamics of brain 
networks are very sensitive to the locations, sizes, and shapes of the ROIs. 
This paper presents a novel methodology to optimize the locations of an 
individual's ROIs in the working memory system. Our strategy is to formulate 
the individual ROI optimization as a group variance minimization problem, 
in which group-wise functional and structural connectivity patterns, and 
anatomic profiles are defined as optimization constraints. The optimization 
problem is solved via the simulated annealing approach. Our experimental 
results show that the optimized ROIs have significantly improved 
consistency in structural and functional profiles across subjects, and have 
more reasonable localizations and more consistent morphological and 
anatomic profiles. 

1 Introduction 

The human brain’s function is segregated into distinct regions and integrated via axonal fibers 
[1]. Studying the connectivity among these regions and modeling their dynamics and 
interactions has drawn increasing interest and effort from the brain imaging and neuroscience 
communities [2-6]. For example, recently, the Human Connectome Project [7] and the 1000 
Functional Connectomes Project [8] have embarked to elucidate large-scale connectivity 
patterns in the human brain. For traditional connectivity analysis, a variety of models 
including DCM (dynamics causal modeling), GCM (Granger causality modeling) and MVA 
(multivariate autoregressive modeling) are proposed [6, 9-10] to model the interactions of the 
ROIs. A fundamental issue in these studies is how to accurately identify the ROIs, which are 
the structural substrates for measuring connectivity. Currently, this is still an open, urgent, yet 
challenging problem in many brain imaging applications. From our perspective, the major 
challenges come from uncertainties in ROI boundary definition, the tremendous variability 
across individuals, and high nonlinearities within and around ROIs.  

Current approaches for identifying brain ROIs can be broadly classified into four categories. 
The first is manual labeling by experts using their domain knowledge. The second is a 
data-driven clustering of ROIs from the brain image itself. For instance, the ReHo (regional 
homogeneity) algorithm [11] has been used to identify regional homogeneous regions as ROIs. 
The third is to predefine ROIs in a template brain, and warp them back to the individual space 
using image registration [12]. Lastly, ROIs can be defined from the activated regions observed 
during a task-based fMRI paradigm. While fruitful results have been achieved using these 
approaches, there are various limitations. For instance, manual labeling is difficult to 
implement for large datasets and may be vulnerable to inter-subject and intra-subject variation; 



it is difficult to build correspondence across subjects using data-driven clustering methods; 
warping template ROIs back to individual space is subject to the accuracy of warping 
techniques and the anatomical variability across subjects. 

Even identifying ROIs using task-based fMRI paradigms, which is regarded as the standard 
approach for ROI identification, is still an open question. It was reported in [13] that many 
imaging-related variables including scanner vender, RF coil characteristics (phase array vs. 
volume coil), k-space acquisition trajectory, reconstruction algorithms, susceptibility -induced 
signal dropout, as well as field strength differences, contribute to variations in ROI 
identification. Other researchers reported that spatial smoothing, a common preprocessing 
technique in fMRI analysis to enhance SNR, may introduce artificial localization shift s (up to 
12.1mm for Gaussian kernel volumetric smoothing) [14] or generate overly smoothed 
activation maps that may obscure important details [15]. For example, as shown in Fig.1a, the 
local maximum of the ROI was shifted by 4mm due to the spatial smoothing process. 
Additionally, its structural profile (Fig.1b) was significantly altered. Furthermore, 
group-based activation maps may show different patterns from an individual's activation map; 
Fig.1c depicts such differences. The top panel is the group activation map from a working 
memory study, while the bottom panel is the activation map of one subject in the study. As we 
can see from the highlighted boxes, the subject has less activated regions than the group 
analysis result. In conclusion, standard analysis of task-based fMRI paradigm data is 
inadequate to accurately localize ROIs for each individual.    

 

Fig.1. (a): Local activation map maxima (marked by the cross) shift of one ROI due to spatial 
volumetric smoothing. The top one was detected using unsmoothed data while the bottom one 
used smoothed data (FWHM: 6.875mm). (b): The corresponding fibers for the ROIs in (a). The 
ROIs are presented using a sphere (radius: 5mm). (c): Activation map differences between the 
group (top) and one subject (bottom). The highlighted boxes show two of the missing activated 
ROIs found from the group analysis.  

Without accurate and reliable individualized ROIs, the validity of brain connectivity analysis, 
and computational modeling of dynamics and interactions among brain networks , would be 
questionable. In response to this fundamental issue, this paper presents a novel computational 
methodology to optimize the locations of an individual's ROIs initialized from task-based 
fMRI. We use the ROIs identified in a block-based working memory paradigm as a test bed 
application to develop and evaluate our methodology. The optimization of ROI locations was 
formulated as an energy minimization problem, with the goal of jointly maximizing the 
group-wise consistency of functional and structural connectivity patterns and anatomic 
profiles. The optimization problem is solved via the well-established simulated annealing 
approach. Our experimental results show that the optimized ROIs achieved our optimization 
objectives and demonstrated promising results.               

2 Materials  and Methods  

2 .1  Data  acquis i t ion  and  preprocess ing  



 
Fig.3. ROIs optimization scheme.  

 

Twenty-five university students were recruited to participate in 
this study. Each participant performed an fMRI modified version 
of the OSPAN task (3 block types: OSPAN, Arithmetic, and 
Baseline) while fMRI data was acquired. DTI scans were also 
acquired for each participant. FMRI and DTI scans were 
acquired on a 3T GE Signa scanner. Acquisition parameters were 
as follows : fMRI: 64x64 matrix, 4mm slice thickness, 220mm 
FOV, 30 slices, TR=1.5s, TE=25ms, ASSET=2; DTI: 128x128 
matrix, 2mm slice thickness, 256mm FOV, 60 slices, 
TR=15100ms, TE= variable, ASSET=2, 3 B0 images, 30 
optimized gradient directions, b-value=1000). Each participant’s 
fMRI data was analyzed using FSL. Individual activation map 
reflecting the OSPAN (OSPAN > Baseline) contrast was used. In 
total, we identified the 16 highest activated ROIs, including left 
and right insula, left and right medial frontal gyrus, left and right 
precentral gyrus, left and right paracingulate gyrus, left and right 
dorsolateral prefrontal cortex, left and right inferior parietal lobule, left occipital pole, right 
frontal pole, right lateral occipital gyrus, and left and right precuneus. Fig.2 shows the 16 ROIs 
mapped onto a WM(white matter)/GM(gray matter) cortical surface. For some individuals, 
there may be missing ROIs on their activation maps. Under such condition, we adapted the 
group activation map as a guide to find these ROIs using linear registration.  

DTI pre-processing consisted of skull removal, motion correction, and eddy current correction. 
After the pre-processing, fiber tracking was performed using MEDINRIA (FA threshold: 0.2; 
minimum fiber length: 20). Fibers were extended along their tangent directions to reach into 
the gray matter when necessary. Brain tissue segmentation was conducted on DTI data by the 
method in [16] and the cortical surface was reconstructed from the tissue maps using the 
marching cubes algorithm. The cortical surface was parcellated into anatomical regions using 
the HAMMER tool [17]. DTI space was used as the standard space from which to generate the 
GM (gray matter) segmentation and from which to report the ROI locations on the cortical 
surface. Since the fMRI and DTI sequences are both EPI (echo planar imaging) sequences, 
their distortions tend to be similar and the misalignment between DTI and fMRI images is 
much less than that between T1 and fMRI images [18]. Co-registration between DTI and fMRI 
data was performed using FSL FLIRT [12]. The activated ROIs and tracked fibers were then 
mapped onto the cortical surface for joint modeling. 

2 .2  Jo in t  mode l ing  o f  anatomica l ,  s tructura l  and  funct iona l  prof i l e s  

Despite the high degree of variability across subjects, there are several aspects of regularity on 
which we base the proposed solution. Firstly, across subjects, the functional ROIs should have 
similar anatomical locations, e.g., similar locations in the atlas space. Secondly, these ROIs 
should have similar structural connectivity profiles across subjects. In other words, fibers 
penetrating the same functional ROIs should have at least similar target regions across subjects. 
Lastly, individual networks identified by task-based paradigms, like the working memory 
network we adapted as a test bed in this paper, should have similar functional connectivity 
pattern across subjects. The neuroscience bases of the above premises include: 1) structural 
and functional brain connectivity are closely related [19], and cortical gyrification and 
axongenesis processes are closely coupled [20]; Hence, it is reasonable to put these three types 
of information in a joint modeling framework. 2) 
Extensive studies have already demonstrated the 
existence of a common structural and functional 
architecture of the human brain [21, 22], and it 
makes sense to assume that the working memory 
network has similar structural and functional 
connectivity patterns across individuals.   

Based on these premises, we proposed to 
optimize the locations of individual functional 
ROIs by jointly modeling anatomic profiles, 
structural connectivity patterns, and functional 
connectivity patterns, as illustrated in Fig 3. The 

 
Fig.2. working memory 
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goal was to minimize the group-wise variance (or maximize group-wise consistency) of these 
jointly modeled profiles. Mathematically, we modeled the group-wise variance as energy E  as 
follows. A ROI from fMRI analysis was mapped onto the surface, and is represented by a 
center vertex and its neighborhood. Suppose 𝑅𝑖𝑗  is the ROI region j  on the cortical surface of 

subject i  identified in Section 2.1; we find a corresponding surface ROI region 𝑆𝑖𝑗 so that the 

energy E (contains energy from n  subjects, each with m  ROIs) is minimized:  

𝐸 = 𝐸𝑎 (𝜆
𝐸𝑐−𝑀𝐸𝑐

𝜎𝐸𝑐

+ (1 − 𝜆)
𝐸𝑓−𝑀𝐸𝑓

𝜎𝐸𝑓

)                                           (1) 

where aE is the anatomical constraint; cE  is the structural connectivity constraint, 
cEM and 

cE are the mean and standard deviation of 
cE in the searching space;  

fE is the functional 

connectivity constraint, 
fEM and 

fE are the mean and standard deviation of 
fE respectively; 

and  is a weighting parameter between 0 and 1. If not specified, n is the number of subjects, 

and m is the number of ROIs in this paper. The details of these 

energy terms are provided in the following sections.   

 

2 .2 .1  Anatomica l  cons tra in t  energy  

Anatomical constraint energy
aE is defined to ensure that the 

optimized ROIs have similar anatomical locations in the atlas 
space (Fig.4 shows an example of ROIs of 15 randomly 
selected subjects in the atlas space). We model the locations for 
all ROIs in the atlas space using a Gaussian model (mean: 

𝑀𝑋𝑗
,and standard deviation: 

jX for ROI j ). The model 

parameters were estimated using the initial locations obtained 
from Section 2.1. Let 

ijX be the center coordinate of region 
ijS  

in the atlas space, then aE is expressed as  

       𝐸𝑎 = {
1

𝑒𝑑𝑚𝑎𝑥−1    (𝑑𝑚𝑎𝑥≤1)
(𝑑𝑚𝑎𝑥>1)

                                               (2) 

where 

𝑑𝑚𝑎𝑥 = 𝑀𝑎𝑥 {  ‖
𝑋𝑖𝑗−𝑀𝑋𝑗

3𝜎𝑋𝑗

‖ , 1 ≤ 𝑖 ≤ 𝑛;  1 ≤ 𝑗 ≤ 𝑚. }                   (3) 

Under the above definition, if any
ij

X is within the range of 3
j

X
s from the distribution model 

center
j

X
M , the anatomical constraint energy will always be one; if not, there will be an 

exponential increase of the energy which punishes the possible involvement of outliers.  In 

other words, this energy factor will ensure the optimized ROIs will not significantly deviate 

away from the original ROIs.  

 

2 .2 .2  S tructura l  connect iv i ty  cons tra in t  energy  

Structural connectivity constraint energy
cE  is defined to ensure the group has similar 

structural connectivity profiles for each functional ROI, since similar functional regions 
should have the similar structural connectivity patterns [19],  

1

1 1

( ) ( )
j j

n m
T

c ij C i j C

i j

E C M Covc C M

 

                            (4) 

where ijC  is the connectivity pattern vector for ROI j of subject i , 
jCM is the group mean 

for ROI j , and 
1Covc

is the inverse of the covariance matrix.  

The connectivity pattern vector ijC  is a fiber target region distribution histogram. To obtain 

this histogram, we first parcellate all the cortical surfaces into nine regions (as shown in Fig.5a, 

four lobes for each hemisphere, and the subcortical region) using the HAMMER algorithm 

 
Fig.4. ROI distributions 

in Atlas space.  

 



[17]. A finer parcellation is available but not used due to the relatively lower parcellation 

accuracy, which might render the histogram too sensitive to the parcellation result . Then, we 

extract fibers penetrating region 
ijS , and calculate the distribution of the fibers’ target cortical 

regions. Fig.5 illustrates the ideas.  

 

 

Fig.5. Structural connectivity pattern descriptor. (a): Cortical surface parcellation using 
HAMMER [17]; (b): Joint visualization of the cortical surface, two ROIs (blue and green 
spheres), and fibers penetrating the ROIs (in red and yellow, respectively); (c): Corresponding 
target region distribution histogram of ROIs in Fig.5b. There are nine bins corresponding to the 
nine cortical regions. Each bin contains the number of fibers that penetrate the ROI and are 
connected to the corresponding cortical region. Fiber numbers are normalized across subjects. 

2 .2 .3  Funct iona l  connect iv i ty  cons tra in t  energy  

Functional connectivity constraint energy 
fE is defined to ensure each individual has similar 

functional connectivity patterns for the working memory system, assuming the human brain 
has similar functional architecture across individuals [21].    

𝐸𝑓 = ∑ ‖𝐹𝑖 − 𝑀𝐹‖𝑛
𝑖=1                                                   (5) 

Here, iF  is the functional connectivity matrix for subject i , and FM is the group mean of the 

dataset. The connectivity between each pair of ROIs is defined using the Pearson correlation. 

The matrix distance used here is the Frobenius norm. 

2 .3  Energy  min imizat ion  so lu t ion  

The minimization of the energy defined in Section 2.2 is known as a combinatorial 
optimization problem. Traditional optimization methods may not fit this problem, since there 
are two noticeable characteristics in this application. First, we do not  know how the energy 
changes with the varying locations of ROIs. Therefore, techniques like Newton’s method 
cannot be used.  Second, the structure of search space is not smooth, which may lead to 
multiple local minima during optimization. To address this problem, we adopt the simulated 
annealing (SA) algorithm [23] for the energy minimization. The idea of the SA algorithm is 
based on random walk through the space for lower energies. In these random walks, the 
probability of taking a step is determined by the Boltzmann distribution, 

1
( )/ ( )

i i
E E KT

p e +
- -

=                                                     (6) 

if
1i iE E  , and 1p   when 

1i iE E  . Here, 𝐸𝑖 and 𝐸𝑖+1 are the system energies at solution 

configuration 𝑖 and 𝑖 + 1 respectively; 𝐾 is the Boltzmann constant; and 𝑇  is the system 

temperature. In other words, a step will be taken when a lower energy is found. A step will also 

be taken with probability p if a higher energy is found. This helps avoid the local minima in 

the search space.  

 3 Results  

Compared to structural and functional connectivity patterns, anatomical profiles are more 



easily affected by variability across individuals. Therefore, the anatomical constraint energy is 
designed to provide constraint only to ROIs that are obviously far away from reasonableness.  
The reasonable range was statistically modeled by the localizations of ROIs warped into the 
atlas space in Section 2.2.1. Our focus in this paper is the structural and functional profiles.  

3 .1  Opt imizat ion  us ing  anatomica l  and  s t ructura l  connect iv i ty  prof i l e s  

In this section, we use only anatomical and structural connectivity profiles to optimize the 

locations of ROIs. The goal is to check whether the structural constraint energy 
cE  works as 

expected. Fig.6 shows the fibers penetrating the right precuneus for eight subjects before (top 
panel) and after optimization (bottom panel). The ROI is highlighted in a red sphere for each 
subject. As we can see from the figure (please refer to the highlighted yellow arrows), after 

optimization, the third and sixth subjects have significantly improved consistency with the rest 
of the group than before optimization, which proves the validity of the energy function Eq.(4).  

 

Fig.6. Comparison of structural profiles before and after optimization. Each column shows the 
corresponding before-optimization (top) and after-optimization (bottom) fibers of one subject. 
The ROI (right precuneus) is presented by the red sphere.  

3 .2  Opt imizat ion  us ing  anatomica l  and  funct iona l  connect iv i ty  prof i l e s  

In this section, we optimize the locations of ROIs using anatomical and functional profiles, 
aiming to validate the definition of functional connectivity constraint energy

fE . If this energy 

constraint worked well, the functional connectivity variance of the working memory system 
across subjects would decrease. Fig.7 shows the comparison of the standard derivation for 
functional connectivity before (left) and after (right) optimization. As we can see, the variance 
is significantly reduced after optimization. This demonstrated the effectiveness of the defined 
functional connectivity constraint energy.  

 

Fig.7. Comparison of the standard derivation for functional connectivity before and after the 
optimization.   Lower values mean more consistent connectivity pattern cross subjects.   



3 .3  Cons i s t ency  be tween  opt imizat ion  o f  f unct iona l  prof i l e s  and  
s t ructura l  prof i l e s  

 

 

Fig.8. Optimization consistency between functional and structural profiles. Top: Functional 
profile energy drop along with structural profile optimization; Bottom: Structural profile 
energy drop along with functional profile optimization. Each experiment was repeated 15 
times with random initial ROI locations that met the anatomical constraint.  

The relationship between structure and function has been extensively studied [24], and it is 
widely believed that they are closely related. In this section, we study the relationship between 
functional profiles and structural profiles by looking at how the energy for one of them changes 
while the energy of the other decreases. The optimization processes in Section 3.1 and 3.2 were 
repeated 15 times respectively with random initial ROI locations that met the anatomical 
constraint. As shown in Fig.8, in general, the functional profile energies and structural profile 
energies are closely related in such a way that the functional profile energies tend to decrease 
along with the structural profile optimization process, while the structural profile energies also 
tend to decrease as the functional profile is optimized. This positively correlated decrease of 
functional profile energy and structural profile energy not only proves the close relationship 
between functional and structural profiles, but also demonstrates the consistency between 
functional and structural optimization, laying down the foundation of the joint optimiza tion, 
whose results are detailed in the following section.  

3 .4  Opt imizat ion  us ing  anatomica l ,  s t ructura l  and funct iona l  

connect iv i ty  prof i l e s  

In this section, we used all the constraints in Eq. (1) to optimize the individual locations of all 
ROIs in the working memory system. Ten runs of the optimization were performed using 
random initial ROI locations that met the anatomical constraint. Weighting parameter   

equaled 0.5 for all these runs. Starting and ending temperatures for the simulated annealing 
algorithm are 8 and 0.05; Boltzmann constant 1K  . As we can see from Fig.9, most runs 
started to converge at step 24, and the convergence energy is quite close for all runs. This 
indicates that the simulated annealing algorithm provides a valid solution  to our problem.  

By visual inspection, most of the ROIs move to more reasonable and consistent locations after 
the joint optimization.  As an example, Fig.10 depicts the location movements of the ROI in 
Fig. 6 for eight subjects.  As we can see, the ROIs for these subjects share a similar anatomical 



landmark, which appears to be the tip of the upper bank of the parieto-occipital sulcus. If the 
initial ROI was not at this landmark, it moved to the landmark after the optimization, which 
was the case for subjects 1, 4 and 7. The structural profiles of these ROIs are very similar to 
Fig.6. The results in Fig. 10 indicate the significant improvement of ROI locations achieved by 
the joint optimization procedure.   

 

Fig.9.  Convergence performance of the simulated annealing . Each run has 28 temperature 
conditions.  

 

Fig.10. The movement of right precuneus before (in red sphere) and after (in green sphere) 
optimization for eight subjects. The "C"-shaped red dash curve for each subject depicts a 
similar anatomical landmark across these subjects.  The yellow arrows in subject 1, 4 and 7 
visualized the movement direction after optimization.  
 

4 Conclusion 
This paper presented a novel computational approach to optimize the locations of ROIs 

identified from task-based fMRI. The group-wise consistency of functional and structural 

connectivity patterns, and anatomical locations are jointly modeled and formulated in an 

energy function, which is minimized by the simulated annealing optimization algorithm. 

Experimental results demonstrate the optimized ROIs have more reasonable localizations, and 

have significantly improved the consistency of structural and functional connectivity profiles 

and morphological and anatomic profiles across subjects. Our future work includes extending 

this framework to optimize other parameters of ROIs such as size and shape, and applying and 

evaluating this methodology to the optimization of ROIs identified in other brain systems such 

as the visual, auditory, language, attention, and emotion networks.    
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