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Abstract

In this paper we propose an approximated structured prediction framework for
large scale graphical models and derive message-passing algorithms for learn-
ing their parameters efficiently. We first relate CRFs and structured SVMs and
show that in CRFs a variant of the log-partition function, known as the soft-max,
smoothly approximates the hinge loss function of structured SVMs. We then
propose an intuitive approximation for the structured prediction problem, using
duality, based on a local entropy approximation and derive an efficient message-
passing algorithm that is guaranteed to converge. Unlike existing approaches, this
allows us to learn efficiently graphical models with cycles and very large number
of parameters.

1 Introduction
Unlike standard supervised learning problems which involve simple scalar outputs, structured pre-
diction deals with structured outputs such as sequences, grids, or more general graphs. Ideally,
one would want to make joint predictions on the structured labels instead of simply predicting each
element independently, as this additionally accounts for the statistical correlations between label
elements, as well as between training examples and their labels. These properties make structured
prediction appealing for a wide range of applications such as image segmentation, image denoising,
sequence labeling and natural language parsing.

Several structured prediction models have been recently proposed, including log-likelihood models
such as conditional random fields (CRFs, [10]), and structured support vector machines (structured
SVMs) such as maximum-margin Markov networks (M3Ns [21]). For CRFs, learning is done by
minimizing a convex function composed of a negative log-likelihood loss and a regularization term.
Learning structured SVMs is done by minimizing the convex regularized structured hinge loss.

Despite the convexity of the objective functions, finding the optimal parameters of these models can
be computationally expensive since it involves exponentially many labels. When the label structure
corresponds to a tree, learning can be done efficiently by using belief propagation as a subroutine;
The sum-product algorithm is typically used in CRFs and the max-product algorithm in structured
SVMs. In general, when the label structure corresponds to a general graph, one cannot compute
the objective nor the gradient exactly, except for some special cases in structured SVMs, such as
matching and sub-modular functions [22]. Therefore, one usually resorts to approximate inference
algorithms, cf. [2] for structured SVMs and [20, 12] for CRFs. However, the approximate inference
algorithms are computationally too expensive to be used as a subroutine of the learning algorithm,
therefore they cannot be applied efficiently for large scale structured prediction problems. Also, it is
not clear how to define a stopping criteria for these approaches as the objective does not monotoni-
cally decrease since the objective and the gradient are both approximated. This might result in poor
approximations.

In this paper we propose an approximated structured prediction framework for large scale graphical
models and derive message-passing algorithms for learning their parameters efficiently. We relate
CRFs and structured SVMs, and show that in CRFs a variant of the log-partition function, known as
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soft-max, smoothly approximates the hinge loss function of structured SVMs. We then propose an
intuitive approximation for the structured prediction problem, using duality, based on a local entropy
approximation and derive an efficient message-passing algorithm that is guaranteed to converge.
Unlike existing approaches, this allows us to learn efficiently graphical models with cycles and
very large number of parameters. We demonstrate the effectiveness of our approach in an image
denoising task. This task was previously solved by sharing parameters across cliques. In contrast,
our algorithm is able to efficiently learn large number of parameters resulting in orders of magnitude
better prediction.

In the remaining of the paper, we first relate CRFs and structured SVMs in Section 3, show our
approximate prediction framework in Section 4, derive a message-passing algorithm to solve the
approximated problem efficiently in Section 5, and show our experimental evaluation.

2 Regularized Structured Loss Minimization
Consider a supervised learning setting with objects x ∈ X and labels y ∈ Y . In structured prediction
the labels may be sequences, trees, grids, or other high-dimensional objects with internal structure.
Consider a function Φ : X × Y → Rd that maps (x, y) pairs to feature vectors. Our goal is to
construct a linear prediction rule

yθ(x) = argmax
y∈Y

θ>Φ(x, y)

with parameters θ ∈ Rd, such that yθ(x) is a good approximation to the true label of x. Intuitively
one would like to minimize the loss `(y, yθ) incurred by using θ to predict the label of x, given that
the true label is y. However, since the prediction is norm-insensitive this method can lead to over
fitting. Therefore the parameters θ are typically learned by minimizing the norm-dependent loss∑

(x,y)∈S

¯̀(θ, x, y) +
C

p
‖θ‖pp, (1)

defined over a training set S. The function ¯̀ is a surrogate loss of the true loss `(y, ŷ). In this paper
we focus on structured SVMs and CRFs which are the most common structured prediction models.
The first definition of structured SVMs used the structured hinge loss [21]

¯̀
hinge(θ, x, y) = max

ŷ∈Y

{
`(y, ŷ) + θ>Φ(x, ŷ)− θ>Φ(x, y)

}
The structured hinge loss upper bounds the true loss function, and corresponds to a maximum-
margin approach that explicitly penalizes training examples (x, y) for which θ>Φ(x, y) <

`(y, yθ(x)) + θ>Φ(x, yθ(x)).

The second loss function that we consider is based on log-linear models, and is commonly used in
CRFs [10]. Let the conditional distribution be

p(ŷ|x, y;θ) =
1

Z(x, y)
exp

(
`(y, ŷ) + θ>Φ(x, ŷ)

)
, Z(x, y) =

∑
ŷ∈Y

exp
(
`(y, ŷ) + θ>Φ(x, ŷ)

)
where `(y, ŷ) is a prior distribution and Z(x, y) the partition function. The surrogate loss function
is then the negative log-likelihood under the parameters θ

¯̀
log(θ, x, y) = ln

1

p(ŷ|x, y;θ)
.

In structured SVMs and CRFs a convex loss function and a convex regularization are minimized.

3 One parameter extension of CRFs and Structured SVMs

In CRFs one aims to minimize the regularized negative log-likelihood of the conditional distribution
p(ŷ|x, y;θ) which decomposes into the log-partition and the linear term θ>Φ(x, y). Hence the
problem of minimizing the regularized loss in (1) with the loss function ¯̀

log can be written as

(CRF) min
θ

 ∑
(x,y)∈S

lnZ(x, y)− d>θ +
C

p
‖θ‖pp

 ,
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where (x, y) ∈ S ranges over training pairs and d =
∑

(x,y)∈S Φ(x, y) is the vector of empirical
means.

Structured SVMs aim at minimizing the regularized hinge loss ¯̀
hinge(θ, x, y), which measures the

loss of the label yθ(x) that most violates the training pair (x, y) ∈ S by more than `(y, yθ(x)).
Since yθ(x) is independent of the training label y, the structured SVM program takes the form:

(structured SVM) min
θ

 ∑
(x,y)∈S

max
ŷ∈Y

{
`(y, ŷ) + θ>Φ(x, ŷ)

}
− d>θ +

C

p
‖θ‖pp

 ,

where (x, y) ∈ S ranges over the training pairs, and d is the vector of empirical means.

In the following we deal with both structured prediction tasks (i.e., structured SVMs and CRFs)
as two instances of the same framework, by extending the partition function to norms, namely
Zε(x, y) = ‖ exp

(
`(y, ŷ) + θ>Φ(x, ŷ)

)
‖1/ε, where the norm is computed for the vector rang-

ing over ŷ ∈ Y . Using the norm formulation we move from the partition function, for ε = 1, to the
maximum over the exponential function for ε = 0. Equivalently, we relate the log-partition and the
max-function by the soft-max function

lnZε(x, y) = ε ln
∑
ŷ∈Y

exp

(
`(y, ŷ) + θ>Φ(x, ŷ)

ε

)
(2)

For ε = 1 the soft-max function reduces to the log-partition function, and for ε = 0 it reduces
to the max-function. Moreover, when ε → 0 the soft-max function is a smooth approximation of
the max-function, in the same way the `1/ε-norm is a smooth approximation of the `∞-norm. This
smooth approximation of the max-function is used in different areas of research [8]. We thus define
the structured prediction problem as

(structured-prediction) min
θ

 ∑
(x,y)∈S

lnZε(x, y)− d>θ +
C

p
‖θ‖pp

 , (3)

which is a one-parameter extension of CRFs and structured SVMs, i.e., ε = 1 and ε = 0 respec-
tively. Similarly to CRFs and structured SVMs [11, 16], one can use gradient methods to optimize
structured prediction. The gradient of θr takes the form∑

(x,y)∈S

∑
ŷ

pε(ŷ|x, y;θ)φr(x, ŷ)− dr + |θr|p−1sign(θr), (4)

where
pε(ŷ|x, y;θ) =

1

Zε(x, y)1/ε
exp

(
`(y, ŷ) + θ>Φ(x, ŷ)

ε

)
(5)

is a probability distribution over the possible labels ŷ ∈ Y . When ε→ 0 this probability distribution
gets concentrated around its maximal values, since all its elements are raised to the power of a very
large number (i.e., 1/ε). Therefore for ε = 0 we get a structured SVM subgradient.

In many real-life applications the labels y ∈ Y are n-tuples, y = (y1, ..., yn), hence there are
exponentially many labels in Y . The feature maps usually describe relations between subsets of
label elements yα ⊂ {y1, ..., yn}, and local interactions on single label elements yv , namely

φr(x, ŷ1, ..., ŷn) =
∑
v∈Vr,x

φr,v(x, ŷv) +
∑

α∈Er,x

φr,α(x, ŷα). (6)

Each feature φr(x, ŷ) can be described by its factor graph Gr,x, a bipartite graph with one set of
nodes corresponding to Vr,x and the other set corresponds to Er,x. An edge connects a single label
node v ∈ Vr,x with a subset of label nodes α ∈ Er,x if and only if yv ∈ yα. In the following we
consider the factor graph G = ∪rGr which is the union of all factor graphs. We denote by N(v)
and N(α) the set of neighbors of v and α respectively, in the factor graph G. For clarity in the
presentation we consider fully factorized loss `(y, ŷ) =

∑n
v=1 `v(yv, ŷv), although our derivation

naturally extends to any graphical model representing the interactions `(y, ŷ).
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To compute the soft-max and the marginal probabilities, pε(ŷv|x, y;θ) and pε(ŷα|x, y;θ), expo-
nentially many labels have to be considered. This is in general computationally prohibitive, and
thus one has to rely on inference and message-passing algorithms. When the factor graph has no
cycles inference can be efficiently computed using belief propagation, but in the presence of cycles
inference can only be approximated [25, 26, 7, 5, 13]. There are two main problems when deal-
ing with graphs with cycles and approximate inference: efficiency and accuracy. For graphs with
cycles there are no guarantees on the number of steps the message-passing algorithm requires till
convergence, therefore it is computationally costly to run it as a subroutine. Moreover, as these
message-passing algorithms have no guarantees on the quality of their solution, the gradient and the
objective function can only be approximated, and one cannot know if the update rule decreased or
increased the structured prediction objective. In contrast, in this work we propose to approximate
the structured prediction problem and to efficiently solve the approximated problem exactly using
message-passing. Intuitively, we suggest a principled way to run the approximate inference updates
for few steps, while re-using the messages of previous steps to extract intermediate beliefs. These
beliefs are used to update θr, although the intermediate beliefs may not agree on their marginal
probabilities. This allows us to efficiently learn graphical models with large number of parameters.

4 Approximate Structured Prediction

The structured prediction objective in (3) and its gradients defined in (4) cannot be computed ef-
ficiently for general graphs since both involve computing the soft-max function, lnZε(x, y), and
the marginal probabilities, pε(ŷv|x, y;θ) and pε(ŷα|x, y;θ), which take into account exponentially
many elements ŷ ∈ Y . In the following we suggest an intuitive approximation for structured pre-
diction, based on its dual formulation.

Since the dual of the soft-max is the entropy barrier, it follows that the dual program for structured
prediction is governed by the entropy function of the probabilities px,y(ŷ). The following duality
formulation is known for CRFs when ε = 1 with `22 regularization, and for structured SVM when
ε = 0 with `22 regularization, [11, 21, 1]. Here we derive the dual program for every ε and every `pp
regularization using conjugate duality:

Claim 1 The dual program of the structured prediction program in (3) takes the form

max
px,y(ŷ)∈∆Y

∑
(x,y)∈S

εH(px,y) +
∑
ŷ

px,y(ŷ)`(y, ŷ)

−C1−q

q

∥∥∥∥∥∥
∑

(x,y)∈S

∑
ŷ∈Y

px,y(ŷ)Φ(x, ŷ)− d

∥∥∥∥∥∥
q

q

,

where ∆Y is the probability simplex over Y and H(px,y) = −
∑
ŷ px,y(ŷ) ln px,y(ŷ) is the entropy.

Proof: In [6]

When ε = 1 the CRF dual program reduces to the well-known duality relation between the log-
likelihood and the entropy. When ε = 0 we obtain the dual formulation of structured SVM which
emphasizes the duality relation between the max-function and the probability simplex. In general,
Claim 1 describes the relation between the soft-max function and the entropy barrier over the prob-
ability simplex.

The dual program in Claim 1 considers the probabilities px,y(ŷ) over exponentially many labels
ŷ ∈ Y , as well as their entropies H(px,y). However, when we take into account the graphical
model imposed by the features, Gr,x, we observe that the linear terms in the dual formulation con-
sider the marginals probabilities px,y(ŷv) and px,y(ŷα). We thus propose to replace the marginal
probabilities with their corresponding beliefs, and to replace the entropy term by the local entropies∑
α cαH(bx,y,α) +

∑
v cvH(bx,y,v) over the beliefs. Whenever ε, cv, cα ≥ 0, the approximated

dual is concave and it corresponds to a convex dual program. By deriving its dual we obtain our
approximated structured prediction, for which we construct an efficient algorithm in Section 5.
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Gaussian noise Bimodal noise
I1 I2 I3 I4 I1 I2 I3 I4

LBP-SGD 2.7344 2.4707 3.2275 2.3193 5.2905 4.4751 6.8164 7.2510
LBP-SMD 2.7344 2.4731 3.2324 2.3145 5.2954 4.4678 6.7578 7.2583
LBP-BFGS 2.7417 2.4194 3.1299 2.4023 5.2148 4.3994 6.0278 6.6211
MF-SGD 3.0469 3.0762 4,1382 2.9053 10.0488 41.0718 29.6338 53.6035
MF-SMD 2.9688 3.0640 3.8721 14.4360 – – – –
MF-BFGS 3.0005 2.7783 3.6157 2.4780 5.2661 4.6167 6.4624 7.2510

Ours 0.0488 0.0073 0.1294 0.1318 0.0537 0.0244 0.1221 0.9277

Figure 1: Gaussian and bimodal noise: Comparison of our approach to loopy belief propaga-
tion and mean field approximations when optimizing using BFGS, SGD and SMD. Note that our
approach significantly outperforms all the baselines. MF-SMD did not work for Bimodal noise.

Theorem 1 The approximation of the structured prediction program in (3) takes the form

min
λx,y,v→α,θ

∑
(x,y)∈S,v

εcv ln
∑
ŷv

exp

(
`v(yv, ŷv) +

∑
r:v∈Vr,x θrφr,v(x, ŷv)−

∑
α∈N(v) λx,y,v→α(ŷv)

εcv

)

+
∑

(x,y)∈S,α

εcα ln
∑
ŷα

exp

(∑
r:α∈Er θrφr,α(x, ŷα) +

∑
v∈N(α) λx,y,v→α(ŷv)

εcα

)
− d>θ − C

p
‖θ‖pp

Proof: In [6]

5 Message-Passing Algorithm for Approximated Structured Prediction
In the following we describe a block coordinate descent algorithm for the approximated structured
prediction program of Theorem 1. Coordinate descent methods are appealing as they optimize a
small number of variables while holding the rest fixed, therefore they are efficient and can be easily
parallelized. Since the primal program is lower bounded by the dual program, the primal objective
function is guaranteed to converge. We begin by describing how to find the optimal set of variables
related to a node v in the graphical model, namely λx,y,v→α(ŷv) for every α ∈ N(v), every ŷv and
every (x, y) ∈ S.

Lemma 1 Given a vertex v in the graphical model, the optimal λx,y,v→α(ŷv) for every α ∈
N(v), ŷv ∈ Yv, (x, y) ∈ S in the approximated program of Theorem 1 satisfies

µx,y,α→v(ŷv) = εcα ln

 ∑
ŷα\ŷv

exp

(∑
r:α∈Er,x θrφr,α(x, ŷα) +

∑
u∈N(α)\v λx,y,u→α(ŷu)

εcα

)
λx,y,v→α(ŷv) =

cα
ĉv

`v(yv, ŷv) +
∑

r:v∈Vr,x

θrφr,v(x, ŷv) +
∑

β∈N(v)

µx,y,β→v(ŷv)

− µx,y,α→v(ŷv) + cx,y,v→α

for every constant cx,y,v→α1, where ĉv = cv +
∑
α∈N(v) cα. In particular, if either ε and/or cα

are zero then µx,y,α→v corresponds to the `∞ norm and can be computed by the max-function.
Moreover, if either ε and/or cα are zero in the objective, then the optimal λx,y,v→α can be computed
for any arbitrary cα > 0, and similarly for cv > 0.

Proof: In [6]

It is computationally appealing to find the optimal λx,y,v→α(ŷv). When the optimal value cannot be
found, one usually takes a step in the direction of the negative gradient and the objective function
needs to be computed to ensure that the chosen step size reduces the objective. Obviously, com-
puting the objective function at every iteration significantly slows the algorithm. When the optimal
λx,y,v→α(ŷv) can be found, the block coordinate descent algorithm can be executed efficiently in
distributed manner, since every λx,y,v→α(ŷv) can be computed independently. The only interactions
occur when computing the normalization step cx,y,v→α. This allows for easy computation in GPUs.

We now turn to describe how to change θ in order to improve the approximated structured prediction.
Since we cannot find the optimal θr while holding the rest fixed, we perform a step in the direction

1For numerical stability in our algorithm we set cx,y,v→α such that
∑
ŷv
λx,y,v→α(ŷv) = 0
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of the negative gradient, when ε, cα, ci are positive, or in the direction of the subgradient otherwise.
We choose the step size η to guarantee a descent on the objective.

Lemma 2 The gradient of the approximated structured prediction program in Theorem 1 with re-
spect to θr equals to∑
(x,y)∈S,v∈Vr,x,ŷv

bx,y,v(ŷv)φr,v(x, ŷv) +
∑

(x,y)∈S,α∈Er,x,ŷα

bx,y,α(ŷα)φr,α(x, ŷα)− dr +C · |θr|p−1 · sign(θr),

where

bx,y,v(ŷv) ∝ exp

(
`v(yv, ŷv) +

∑
r:v∈Vr,x θrφr,v(x, ŷv)−

∑
α∈N(v) λx,y,v→α(ŷv)

εcv

)

bx,y,α(ŷα) ∝ exp

(∑
r:α∈Er,x θrφr,α(x, ŷα) +

∑
v∈N(α) λx,y,v→α(ŷv)

εcα

)

However, if either ε and/or cα equal zero, then the beliefs bx,y,α(ŷα) can be taken from the
set of probability distributions over support of the max-beliefs, namely bx,y,α(ŷ∗α) > 0 only if

ŷ∗α ∈ argmaxŷα
{∑

r:α∈Er,x θrφr,α(x, ŷα) +
∑
v∈N(α) λx,y,v→α(ŷα)

}
. Similarly for bx,y,v(ŷ∗v)

whenever ε and/or cv equal zero.

Proof: In [6]

Lemmas 1 and 2 describe the coordinate descent algorithm for the approximated structured predic-
tion in Theorem 1. We refer the reader to [6] for a summary of our algorithm.

The coordinate descent algorithm is guaranteed to converge, as it monotonically decreases the ap-
proximated structured prediction objective in Theorem 1, which is lower bounded by its dual pro-
gram. However, convergence to the global minimum cannot be guaranteed in all cases. In particular,
for ε = 0 the coordinate descent on the approximated structured SVMs is not guaranteed to converge
to its global minimum, unless one uses subgradient methods which are not monotonically decreas-
ing. Moreover, even when we are guaranteed to converge to the global minimum, i.e., ε, cα, cv > 0,
the sequence of variables λx,y,v→α(ŷv) generated by the algorithm is not guaranteed to converge
to an optimal solution, nor to be bounded. As a trivial example, adding an arbitrary constant to the
variables, λx,y,v→α(ŷv) + c, does not change the objective value, hence the algorithm can generate
non-decreasing unbounded sequences. However, the beliefs generated by the algorithm are bounded
and guaranteed to converge to the solution of the dual approximated structured prediction problem.

Claim 2 The block coordinate descent algorithm in lemmas 1 and 2 monotonically reduces the
approximated structured prediction objective in Theorem 1, therefore the value of its objective is
guaranteed to converge. Moreover, if ε, cα, cv > 0, the objective is guaranteed to converge to the
global minimum, and its sequence of beliefs are guaranteed to converge to the unique solution of the
approximated structured prediction dual.

Proof: In [6]

The convergence result has a practical implication, describing the ways we can estimate the con-
vergence of the algorithm, either by the primal objective, the dual objective or the beliefs. The
approximated structured prediction can also be used for non-concave entropy approximations, such
as the Bethe entropy, where cα > 0 and cv < 0. In this case the algorithm is well defined, and its
stationary points correspond to the stationary points of the approximated structured prediction and
its dual. Intuitively, this statement holds since the coordinate descent algorithm iterates over points
λx,y,v→α(ŷv), θr with vanishing gradients. Equivalently the algorithm iterates over saddle points
λx,y,v→α(ŷv), bx,y,v(ŷv), bx,y,α(ŷα) and (θr, zr) of the Lagrangian defined in Theorem 1. When-
ever the dual program is concave these saddle points are optimal points of the convex primal, but for
non-concave dual the algorithm iterates over saddle points. This is summarized in the claim below:

Claim 3 Whenever the approximated structured prediction is non convex, i.e., ε, cα > 0 and cv < 0,
the algorithm in lemmas 1 and 2 is not guaranteed to converge, but whenever it converges it reaches
a stationary point of the primal and dual approximated structured prediction programs.

Proof: In [6]
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Figure 2: Denoising results: Gaussian (left) and Bimodal (right) noise.

6 Experimental evaluation
We performed experiments on 2D grids since they are widely used to represent images, and have
many cycles. We first investigate the role of ε in the accuracy and running time of our algorithm, for
fixed cα, cv = 1. We used a 10 × 10 binary image and randomly generated 10 corrupted samples
flipping every bit with 0.2 probability. We trained the model using CRF, structured-SVM and our
approach for ε = {1, 0.5, 0.01, 0}, ranging from approximated CRFs (ε = 1) to approximated
structured SVM (ε = 0) and its smooth version (ε = 0.01). The runtime for CRF and structured-
SVM is order of magnitudes larger than our method since they require exact inference for every
training example and every iteration of the algorithm. For the approximated structured prediction,
the runtimes are 323, 324, 326, 294 seconds for ε = {1, 0.5, 0.01, 0} respectively. As ε gets smaller
the runtime slightly increases, but it decreases for ε = 0 since the `∞ norm is computed efficiently
using the max function. However, ε = 0 is less accurate than ε = 0.01; When the approximated
structured SVM converges, the gap between the primal and dual objectives was 1.3, and only 10−5

for ε > 0. This is to be expected since the approximated structured SVM is non-smooth (Claim 2),
and we did not used subgradient methods to ensure convergence to the optimal solution.

We generated test images in a similar fashion while using the same ε for training and testing. In
this setting both CRF and structured-SVM performed well, with 2 misclassifications. For the ap-
proximated structured prediction, we obtained 2 misclassifications for ε > 0. We also evaluated the
quality of the solution using different values of ε for training and inference [24]. When predicting
with smaller ε than the one used for learning the results are marginally worse than when predicting
with the same ε. However, when predicting with larger ε, the results get significantly worse, e.g.,
learning with ε = 0.01 and predicting with ε = 1 results in 10 errors, and only 2 when ε = 0.01.

The main advantage of our algorithm is that it can efficiently learn many parameters. We now com-
pared in a 5× 5 dataset a model learned with different parameters for every edge and vertex (≈ 300
parameters) and a model learned with parameters shared among the vertices and edges (2 parameters
for edges and 2 for vertices) [9]. Using large number of parameters increases performance: sharing
parameters resulted in 16 misclassifications, while optimizing over the 300 parameters resulted in 2
errors. Our algorithm avoids overfitting in this case, we conjecture it is due to the regularization.

We now compare our approach to state-of-the-art CRF solvers on the binary image dataset of [9]
that consists of 4 different 64× 64 base images. Each base image was corrupted 50 times with each
type of noise. Following [23], we trained different models to denoise each individual image, using
40 examples for training and 10 for test. We compare our approach to approximating the conditional
likelihood using loopy belief propagation (LBP) and mean field approximation (MF). For each of
these approximations, we use stochastic gradient descent (SGD), stochastic meta-descent (SMD)
and BFGS to learn the parameters. We do not report pseudolikelihood (PL) results since it did not
work. The same behavior of PL was noticed by [23]. To reduce the computational complexity and
the chances of convergence, [9, 23] forced their parameters to be shared across all nodes such that
∀i, θi = θn and ∀i,∀j ∈ N(i), θij = θe. In contrast, since our approach is efficient, we can exploit
the full flexibility of the graph and learn more than 10, 000 parameters. This is computationally
prohibitive with the baselines. We use the pixel values as node potentials and an Ising model with
only bias for the edge potentials, i.e., φi,j = [1,−1;−1, 1]. For all experiments we use ε = 1, and
p = 2. For the baselines, we use the code, features and optimal parameters of [23].

Under the first noise model, each pixel was corrupted via i.i.d. Gaussian noise with mean 0 and stan-
dard deviation of 0.3. Fig. 1 depicts test error in (%) for the different base images (i.e., I1, . . . , I4).
Note that our approach outperforms considerably the loopy belief propagation and mean field ap-
proximations for all optimization criteria (BFGS, SGD, SMD). For example, for the first base image
the error of our approach is 0.0488%, which is equivalent to a 2 pixels error on average. In contrast
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Figure 3: Convergence. Primal and dual train errors for I1.

the best baseline gets 112 pixels wrong on average. Fig. 2 (left) depicts test examples as well as our
denoising results. Note that our approach is able to cope with large amounts of noise.

Under the second noise model, each pixel was corrupted with an independent mixture of Gaussians.
For each class, a mixture of 2 Gaussians with equal mixing weights was used, yielding the Bimodal
noise. The mixture model parameters were (0.08, 0.03) and (0.46, 0.03) for the first class and
(0.55, 0.02) and (0.42, 0.10) for the second class, with (a, b) a Gaussian with mean a and standard
deviation b. Fig. 1 depicts test error in (%) for the different base images. As before, our approach
outperforms all the baselines. We do not report MF-SMD results since it did not work. Denoised
images are shown in Fig. 2 (right). We now show how our algorithm converges in a few iterations.
Fig. 3 depicts the primal and dual training errors as a function of the number of iterations. Note that
our algorithm converges, and the dual and primal values are very tight after a few iterations.

7 Related Work
For the special case of CRFs, the idea of approximating the entropy function with local entropies
appears in [24, 3]. In particular, [24] proved that using a concave entropy approximation gives robust
prediction. [3] optimized the non-concave Bethe entropy cα = 1, cv = 1 − |N(v)|, by repeatedly
maximizing its concave approximation, thus converging in few concave iterations. Our work differs
from these works in two aspects: we derive an efficient algorithm in Section 5 for the concave
approximated program (cα, cv > 0) and our framework and algorithm include structured SVMs, as
well as their smooth approximation when ε→ 0.

Some forms of approximated structured prediction were investigated for the special cases of CRFs.
In [18] a similar program was used, but without the Lagrange multipliers λx,y,v→α(ŷv) and no
regularization, i.e., C = 0. As a result the local log-partition functions are unrelated, and efficient
counting algorithm can be used for learning. In [3] a different approximated program was derived for
cα = 1, cv = 0 which was solved by the BFGS convex solver. Our work is different as it considers
efficient algorithms for approximated structured prediction which take advantage of the graphical
model by sending messages along its edges. We show in the experiments that this significantly
improves the run-time of the algorithm. Also, our approximated structured prediction includes as
special cases approximated CRF, for ε = 1, and approximated structured SVM, for ε = 0. More-
over, we describe how to smoothly approximate the structured SVMs to avoid the shortcomings of
subgradient methods, by simply setting ε→ 0 .

Some forms of approximated structured SVMs were dealt in [19] with the structured SMO algo-
rithm. Independently, [14] presented an approximated structured SVMs program and a message
passing algorithm, which reduce to Theorem 1 and Lemma 1 with ε = 0 and cα = 1, cv = 1.
However, in this algorithm the messages are not guaranteed to be bounded. They main difference of
[14] from our work is that they lack the dual formulation, which we use to prove that the structured
SVM smooth approximation, with ε → 0, is guaranteed to converge to optimum and that the dual
variables, i.e. the beliefs, are guaranteed to converge to the optimal beliefs. The relation between
the margin and the soft-max is similar to the one used in [17]. Independently, [4, 15] described the
connection between structured SVMs loss and CRFs loss. [15] also presented the one-parameter
extension of CRFs and structured SVMs described in (3).

8 Conclusion and Discussion
In this paper we have related CRFs and structured SVMs and shown that the soft-max, a variant of
the log-partition function, approximates smoothly the structured SVM hinge loss. We have also pro-
posed an approximation for structured prediction problems based on local entropy approximations
and derived an efficient message-passing algorithm that is guaranteed to converge, even for general
graphs. We have demonstrated the effectiveness of our approach to learn graphs with large number
of parameters.We plan to investigate other domains of application such as image segmentation.
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