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Abstract 

Applications of Brain-Machine-Interfaces typically estimate user intent 
based on biological signals that are under voluntary control. For example, 
we might want to estimate how a patient with a paralyzed arm wants to 
move based on residual muscle activity. To solve such problems it is 
necessary to integrate obtained information over time. To do so, state of the 
art approaches typically use a probabilistic model of how the state, e.g. 
position and velocity of the arm, evolves over time – a so-called trajectory 
model. We wanted to further develop this approach using two intuitive 
insights: (1) At any given point of time there may be a small set of likely 
movement targets, potentially identified by the location of objects in the 
workspace or by gaze information from the user. (2) The user may want to  
produce movements at varying speeds. We thus use a generative model with 
a trajectory model incorporating these insights. Approximate inference on 
that generative model is implemented using a mixture of extended Kalman 
filters. We find that the resulting algorithm allows us to decode arm 
movements dramatically better than when we use a trajectory model with 
linear dynamics. 

 

1 Introduction  

When patients have lost a limb or the ability to communicate with the outside world, brain 

machine interfaces (BMIs) are often used to enable robotic prostheses or restore 

communication. To achieve this, the user's intended state of the device must be decoded 

from biological signals. In the context of Bayesian statistics, two aspects are important for 

the design of an estimator of a temporally evolving state: the observation model, which 

describes how measured variables relate to the system’s state and the trajectory model which 

describes how the state changes over time in a probabilistic manner. Following this logic 

many recent BMI applications have relied on Bayesian estimation for a wide range of 

problems including the decoding of intended human [1]  and animal [2] movements. In the 

context of BMIs, Bayesian approaches offer a principled way of formalizing the uncertainty 

about signals and thus often result in improvements over other signal processing techniques 

[1]-[3]. 

Most work on state estimation in dynamical systems has assumed linear dynamics and 

Gaussian noise. Under these circumstances, efficient algorithms result from belief 

propagation. The most frequent application uses the Kalman filter (KF), which recursively 

combines noisy state observations with the probabilistic evolution of state defined by the 

trajectory model to estimate the marginal distribution over states [4]. Such approaches have 

been used widely for applications including upper [1] and lower [5]  extremity prosthetic 
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devices, functional electric stimulation [6] and human computer interactions [7]. As these 

algorithms are so commonly used, it seems promising to develop extensions to nonlinear 

trajectory models that may better describe the probabilistic distribution of movements in 

everyday life. 

One salient departure from the standard assumptions is that people tend to produce both slow 

and fast movements, depending on the situation. Models with linear dynamics only allow 

such deviation through the noise term, which makes these models poor at describing the 

natural variation of movement speeds during real world tasks. Explicitly incorporating 

movement speed into the trajectory model should lead to better movement estimates.  

Knowledge of the target position should also strongly affect trajectory models. After all , we 

tend to accelerate our arm early during movement and slow down later on. Target 

information can be linearly incorporated into the trajectory model, and this has greatly 

improved predictions [8]-[12]. Alternatively, if there are a small number of potential targets 

then a mixture of trajectory models approach [13] can be used. Here we are interested in the 

case where available data provide a prior over potential targets but where movement targets 

may be anywhere. We want to incorporate target uncertainty and allow generalization to 

novel targets. 

Prior information about potential targets could come from a number of sources but would 

generally be noisy. For example, activity in the dorsal premotor cortex provides information 

about intended target location prior to movement and may be used where such recordings are 

available [14]. Target information may also be found noninvasively by tracking eye 

movements. However, such data will generally provide non-zero priors for a number of 

possible target locations as the subject saccades over the scene. While subjects almost 

always look at a target before reaching for it [15], there may be a delay of up to a second 

between looking at the target and the reach – a time interval over which up to 3 saccades are 

typically made. Each of these fixations could be the target. Hence, a probabilistic 

distribution of targets is appropriate when using either neural recordings or eye tracking to 

estimate potential reach targets 

Here we present an algorithm that uses a mixture of extended Kalman Filters (EKFs) to 
combine our insights related to the variation of movement speed and the availability of 
probabilistic target knowledge. Each of the mixture components allows the speed of the 
movement to vary continuously over time. We tested how well we could use EMGs and eye 
movements to decode hand position of humans performing a three-dimensional large 
workspace reaching task. We find that using a trajectory model that allows for probabilistic 
target information and variation of speed leads to dramatic improvements in decoding 
quality. 

 

2 General  Decoding Setting  

We wanted to test how well different decoding algorithms can decode human movement, 
over a wide range of dynamics. While many recent studies have looked at more restrictive, 
two-dimensional movements, a system to restore arm function should produce a wide range 
of 3D trajectories. We recorded arm kinematics and EMGs of healthy subjects during  
unconstrained 3D reaches to targets over a large workspace. Two healthy subjects were 
asked to reach at slow, normal and fast speeds, as they would in everyday life. Subjects were 
seated as they reached towards 16 LEDs in blocks of 150s, which were located on two 
planes positioned such that all targets were just reachable (Fig 1A). The target LED was lit 
for one second prior to an auditory go cue, at which time the subject would reach to the 
target at the appropriate speed. Slow, normal and fast reaches were allotted 3 s, 1.5s and 1s  
respectively; however, subjects determined the speed. An approximate total of 450 reaches 
were performed per subject. The subjects provided informed consent, and the protocol was 
approved by the Northwestern University Institutional Review Board. EMG signals were 
measured from the pectoralis major, and the three deltoid muscles of the shoulder. This 
represents a small subset of the muscles involved in reaching, and approximates those 
muscles retaining some voluntary control following mid-level cervical spinal cord injuries. 
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The EMG signals were band-pass filtered between 10 and 1,000 Hz, and subsequently anti -
aliased filtered. Hand, wrist, shoulder and head positions were tracked using an Optotrak 
motion analysis system. We simultaneously recorded eye movements with an ASL 
EYETRAC-6 head mounted eye tracker.  

Approximately 25% of the reaches were assigned to the test set, and the rest were used for 
training. Reaches for which either the motion capture data was incomplete, or there was 
visible motion artifact on the EMG were removed. As the state we used hand positions and 
joint angles (3 shoulder, 2 elbow, position, velocity and acceleration, 24 dimensions). Joint 
angles were calculated from the shoulder and wrist marker data using digitized bony 
landmarks which defined a coordinate system for the upper limb as detailed by Wu et al. 
[16]. As the motion data were sampled at 60Hz, the mean absolute value of the EMG in the 
corresponding 16.7ms windows was used as an observation of the state at each time-step. 
Algorithm accuracy was quantified by normalizing the root-mean-squared error by the 
straight line distance between the first and final position of the endpoint for each reach. We 
compared the algorithms statistically using repeated measures ANOVAs with Tukey post -hoc 
tests, treating reach and subject as random effects.  

 In the rest of the paper we will ask how well these reaching movements can be decoded 
from EMG and eye-tracking data. 

 

 

Figure 1: A Experimental setup and B sample kinematics and processed EMGs for one reach 

 

3 Kalman Fi l ters  with Target information  

All models that we consider in this paper assume linear observations with Gaussian noise:  

             (1) 

where x is the state, y is the observation and v is the measurement noise with p(v) ~ N(0,R), 
and R is the observation covariance matrix. The model fitted the measured EMGs with an 
average r

2
 of 0.55. This highlights the need to integrate information over time. 

The standard approach also assumes linear dynamics and Gaussian process noise: 

                  
             (2) 

where, xt     represents the hand and joint angle positions, w is the process noise with p(w) 
~ N(0,Q), and Q is the state covariance matrix. The Kalman filter does optimal inference for 
this generative model. 

This model can effectively capture the dynamics of stereotypical reaches to a single target by 
appropriately tuning its parameters. However, when used to describe reaches to multiple 
targets, the model cannot describe target dependent aspects of reaching but boils down to a 
random drift model. Fast velocities are underestimated as they are unlikely under the 
trajectory model and there is excessive drift close to the target (Fig. 2A).  
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In many decoding applications we may know the subject’s target. A range of recent studies have 

addressed the issue of incorporating this information into the trajectory model [8, 13], and we 

might assume the effect of the target on the dynamics to be linear. This naturally suggests adding 

the target to the state space, which works well in practice [9, 12].  By appending the target to the 

state vector (KFT), the simple linear format of the KF may be retained:  

                      
             (3) 

where  xTt    is the vector of target positions, with dimensionality less than or equal to that of 

xt. This trajectory model thus allows describing both the rapid acceleration that characterizes the 

beginning of a reach and the stabilization towards its end. 

We compared the accuracy of the KF and the KFT to the Single Target Model (STM), a KF 

trained only on reaches to the target being tested (Fig. 2). The STM represents the best possible 

prediction that could be obtained with a Kalman filter. Assuming the target is perfectly known, we 

implemented the KFT by correctly initializing the target state xT at the beginning of the reach. We 

will relax this assumption below. The initial hand and joint angle positions were also assumed to 

be known. 

 

 

Figure 2: A Sample reach and predictions and B average accuracies with standard errors for KFT, 

KF and MTM. 

 

Consistent with the recent literature, both methods that incorporated target information produced 

higher prediction accuracy than the standard KF (both p<0.0001). Interestingly, there was no 

significant difference between the KFT and the STM (p=0.9). It seems that when we have 

knowledge of the target, we do not lose much by training a single model over the whole 

workspace rather than modeling the targets individually. This is encouraging, as we desire a BMI 

system that can generalize to any target within the workspace, not just specifically to those that are 

available in the training data.  

Clearly, adding the target to the state space allows the dynamics of  typical movements to be 

modeled effectively, resulting in dramatic increases in decoding performance. 

 

4  Time Warping  

4 .1  I mple ment ing  a  t i me -w a rped  t ra jecto ry  mo de l  

While the KFT above can capture the general reach trajectory profile, it does not allow for 
natural variability in the speed of movements. Depending on our task objectives, which 
would not directly be observed by a BMI, we might lazily reach toward a target or move a t 
maximal speed. We aim to change the trajectory model to explicitly incorporate a warping 
factor by which the average movement speed is scaled, allowing for such variability. As the 
movement speed will be positive in all practical cases, we model the logarithm of this factor, 



5 

 

and append it to the state vector: 

                         
                             

    (4) 

We create a time-warped trajectory model by noting that if the average rate of a trajectory is 
to be scaled by a factor S, the position at time t will equal that of the original trajectory at 
time St. Differentiating, the velocity will be multiplied by S, and the acceleration by S

2
. For 

simplicity, the trajectory noise is assumed to be additive and Gaussian, and the model is 
assumed to be stationary: 
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where Ip is the p-dimensional identity matrix and      is a p p matrix of zeros. Only the   

terms used to predict the acceleration states need to be estimated to build the state transition 
matrix, and they are scaled as a nonlinear function of xs.  

After adding the variable movement speed to the state space the system is no longer linear. 
Therefore we need a different solution strategy. Instead of the typical KFT we use the 
Extended Kalman Filter (EKFT) to implement a nonlinear trajectory model by linearizing 
the dynamics around the best estimate at each time-step [17]. With this approach we add only 
small computational overhead to the KFT recursions. 

 

4 . 2  Tra in ing  the  t i me  w a rping  mo de l  

The filter parameters were trained using a variant of the Expectation Maximization (EM) 
algorithm [18]. For extended Kalman filter learning the initialization for the variables may 
matter. S was initialized with the ground truth average reach speeds for each movement relative to 
the average speed across all movements. The state transition parameters   were estimated using 
nonlinear least squares regression, while C, Q and R were estimated linearly for the new 
system, using the maximum likelihood solution [18] (M-step). For the E-step we used a 
standard extended Kalman smoother. We thus found the expected values for the states given 
the current filter parameters. For this computation,  and later when testing the algorithm, xs 
was initialized to its average value across all reaches while the remaining states were 
initialized to their true values. The smoothed estimate for xs was then used, along with the true 
values for the other states, to re-estimate the filter parameters in the M-step as before. We 
alternated between the E and M steps until the log likelihood converged (which it did in all cases). 
Following the training procedure, the diagonal of the state covariance matrix Q corresponding to 
xs was set to the variance of the smoothed xs over all reaches, according to how much this state 
should be allowed to change during prediction. This allowed the estimate of xs to develop over the 
course of the reach due to the evidence provided by the observations, better capturing the 
dynamics of reaches at different speeds. 

 

4 . 3  Per fo r ma nce  o f  the  t ime -w a rped  EKFT  

Incorporating time warping explicitly into the trajectory model produced a noticeable 
increase in decoding performance over the KFT. As the speed state xs is estimated 
throughout the course of the reach, based on the evidence provided by the observations, the 
trajectory model has the flexibility to follow the dynamics of the reach more accurately (Fig. 
3). While at the normal self-selected speed the difference between the algorithms is small, 
for the slow and fast speeds, where the dynamics deviate from average, there i s a clear 
advantage to the time warping model. 
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Figure 3: Hand positions and predictions of the KFT and EKFT for sample reaches at A slow, 
B normal and C fast speeds. Note the different time scales between reaches.  

 
The models were first trained using data from all speeds (Fig. 4A). The EKFT was 1.8% 
more accurate on average (p<0.01), and the effect was significant at the slow (1.9%, p<0.05) 
and the fast (2.8%, p<0.01), but not at the normal (p=0.3) speed. We also trained the models 
from data using only reaches at the self-selected normal speed, as we wanted to see if there 
was enough variation to effectively train the EKFT (Fig. 4B). Interestingly, the performance 
of the EKFT was reduced by only 0.6%, and the KFT by 1.1%. The difference in 
performance between the EKFT and KFT was even more pronounced on average (2.3%, 
p<0.001), and for the slow and fast speeds (3.6 and 4.1%, both p< 0.0001). At the normal 
speed, the algorithms again were not statistically different (p=0.6). This result demonstrates 
that the EKFT is a practical option for a real BMI system, as it is not necessary to greatly 
vary the speeds while collecting training data for the model to be effective  over a wide range 
of intended speeds. 

Explicitly incorporating speed information into the trajectory model helps decoding, by 
modeling the natural variation in volitional speed.  

 

 

Figure 4: Mean and standard error of EKFT and KFT accuracy at the different subject-
selected speeds. Models were trained on reaches at A all speeds and B just normal speed 
reaches. Asterisks indicate statistically significant differences between the algorithms. 

 

5 Mixtures of  Targets  

So far, we have assumed that the targets of our reaches are perfectly known. In a real-world 
system, there will be uncertainty about the intended target of the reach. However, in typical 
applications there are a small number of possible objectives.  Here we address this situation. 
Drawing on the recent literature, we use a mixture model to consider each of the possible 
targets [11, 13]. We condition the posterior probability for the state on the N possible targets, 
T: 

 

                             

  

    

          

 

(6) 
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Using Bayes' Rule, this equation becomes: 

 

                           
                 

       

  

    

 

(7) 

As we are dealing with a mixture model, we perform the Kalman filter recursion for each 
possible target, xT, and our solution is a weighted sum of the outputs. The weights are 
proportional to the prior for that target,       , and the likelihood of the model given that 
target            .         is independent of the target and does not need to be calculated. 

We tested mixtures of both algorithms, the mKFT and mEKFT, with real uncertain priors 
obtained from eye-tracking in the one-second period preceding movement. As the targets 
were situated on two planes, the three-dimensional location of the eye gaze was found by 
projecting its direction onto those planes. The first, middle and last eye samples were 
selected, and all other samples were assigned to a group according to which of the three was 
closest. The mean and variance of these three groups were used to initialize three Kalman 
filters in the mixture model. The priors of the three groups were assigned proportional to the 
number of samples in them. If the subject looks at multiple positions prior to reaching, this 
method ensures with a high probability that the correct target was accounted for in one of the 
filters in the mixture.  

We also compared the MTM approach of Yu et al. [13], where a different KF model was 
generated for each target, and a mixture is performed over these models. This approach 
explicitly captures the dynamics of stereotypical reaches to specific targets. Given perfect 
target information, it would reduce to the STM described above. Priors for the MTM were 
found by assigning each valid eye sample to its closest two targets, and weighting the 
models proportional to the number of samples assigned to the corresponding target, divided 
by its distance from the mean of those samples. We tried other ways of assigning priors and 
the one presented gave the best results. 

We calculated the reduction in decoding quality when instead of perfect priors we provide 
eye-movement based noisy priors (Fig. 5). The accuracies of the mEKFT, the mKFT and the 
MTM were only degraded by 0.8, 1.9 and 2.1% respectively, compared to the perfect prior 
situation. The mEKFT was still close to 10% better than the KF. The mixture model 
framework is effective in accounting for uncertain priors.  

 

 

Figure 5: Mean and standard errors of accuracy for algorithms with perfect priors, and 
uncertain priors with full and partial training set. The asterisk indicates a statistically 

significant effects between the two training types, where real priors are used. 

 

Here, only reaches at normal speed were used to train the models, as this is a more realistic 
training set for a BMI application. This accounts for the degraded performance of the  MTM 
with perfect priors relative to the STM from above (Fig. 2). With even more stereotyped 
training data for each target, the MTM doesn't generalize as well to new speeds. 
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We also wanted to know if the algorithms could generalize to new targets. In a real 
application, the available training data will generally not span the entire useable worksp ace. 
We compared the algorithms where reaches to all targets except the one being tested had 
been used to train the models. The performance of the MTM was  significantly degraded 
unsurprisingly, as it was designed for reaches to a set of known targets. Performance of the 
mKFT and mEKFT degraded by about 1%, but not significantly (both p>0.7), demonstrating 
that the continuous approach to target information is preferable when the target could be 
anywhere in space, not just at locations for which training data is available.  

 

6 Discussion and conclusions  

The goal of this work was to design a trajectory model that would improve decoding for 

BMIs with an application to reaching. We incorporated two features that prominently 

influence the dynamics of natural reach: the movement speed and the target location. Our 

approach is appropriate where uncertain target information is available. The model 

generalizes well to new regions of the workspace for which there is no training data, and 

across a broad range of reaching dynamics to widely spaced targets in three dimensions.  

The advantages over linear models in decoding precision we report here could be equally 

obtained using mixtures over many targets and speeds. While mixture models [11, 13] could 

allow for slow versus fast movements and any number of potential targets, this strategy will 

generally require many mixture components. Such an approach would require a lot more 

training data, as we have shown that it does not generalize well. It would also be run-time 

intensive which is problematic for prosthetic devices that rely on low power controllers.  In 

contrast, the algorithm introduced here only takes a small amount of additional run-time in 

comparison to the standard KF approach. The EKF is only marginally slower than the 

standard KF and the algorithm will not generally need to consider more than 3 mixture 

components assuming the subject fixates the target within the second preceding the reach. 

In this paper we assumed that subjects always would fixate a reach target – along with other 

non-targets. While this is close to the way humans usually coordinate eyes and reaches [15], 

there might be cases where people do not fixate a reach target. Our approach could be easily 

extended to deal with such situations by adding a dummy mixture component that all ows the 

description of movements to any target. 

As an alternative to mixture approaches, a system can explicitly estimate the target position 

in the state vector [9]. This approach, however, would not straightforwardly allow for the 

rich target information available; we look at the target but also at other locations, strongly 

suggesting mixture distributions. A combination of the two approaches could further 

improve decoding quality. We could both estimate speed and target position for the EKFT in 

a continuous manner while retaining the mixture over target priors.  

We believe that the issues that we have addressed here are almost universal. Virtually all 
types of movements are executed at varying speed. A probabilistic distribution for a small 
number of action candidates may also be expected in most BMI applications – after all there 
are usually only a small number of actions that make sense in a given environment. While 
this work is presented in the context of decoding human reaching, it may be applied to a 
wide range of BMI applications including lower limb prosthetic devices and human 
computer interactions, as well as different signal sources such as electrode grid recordings 
and electroencephalograms. The increased user control in conveying their intended 
movements would significantly improve the functionality of a neuroprosthetic device.  
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