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Abstract

We derive a plausible learning rule for feedforward, feedback and lateral connec-
tions in a recurrent network of spiking neurons. Operating in the context of a
generative model for distributions of spike sequences, the learning mechanism is
derived from variational inference principles. The synaptic plasticity rules found
are interesting in that they are strongly reminiscent of experimental Spike Time
Dependent Plasticity, and in that they differ for excitatory and inhibitory neurons.
A simulation confirms the method’s applicability to learning both stationary and
temporal spike patterns.

1 Introduction

This study considers whether recurrent networks of spiking neurons can be seen as a generative
model not only of stationary patterns but also of temporal sequences. More precisely, we derive a
model that learns to adapt its spontaneously spike sequences to conform as closely as possible to the
empirical distribution of actual spike sequences caused by inputs impinging upon the sensory layer
of the network.

A generative model is a model of the joint distribution of percepts and hidden causes in the world.
Since the world has complex temporal relationships, we need a model that is able to both recognize
and predict temporal patterns. Behavioural studies (e.g., [1]) support the assumption that the brain is
performing approximate Bayesian inference. More recently, evidence for this hypothesis was found
in electro-physiological work as well [2]. Various abstract Bayesian models have been proposed
to account for this phenomenon [3, 4, 5, 6, 7]. However, it remains an open question whether
optimization in abstract Bayesian models can be translated into plausible learning rules for synapses
in networks of spiking neurons.

In this paper, we show that the derivation of spike-based plasticity rules from statistical learning
principles yields learning dynamics for a generative spiking network model which are akin to those



Figure 1: A network of spiking neurons, divided into observed and latent pools of neurons.

of Spike-Time Dependent Plasticity (STDP) [8]. Our learning rule is derived from a variational
optimization process. Typically, optimization in recurrent Bayesian networks involves both forward
and backward propagation steps. We propose a plasticity rule that approximates backward steps by
the introduction of delayed updates in the synaptic weights and dynamics. The theory is supported
by simulations in which we demonstrate that the learning mechanism is able to capture the hidden
causes behind the observed spiking patterns.

We use the Spike Response Model (SRM) [9, 10], in which spikes are generated stochastically de-
pending on the neuronal membrane potential. The SRM is an example of a generalized linear model
(GLM). It is closely related to the integrate-and-fire model, and has been successfully used to ex-
plain neuronal spike trains [11, 12]. In this model, the membrane potential of a neuron i at time ¢,
expressed as u;(¢) is given by

Tui(t) = —ui(t) + b+ > Wi X;(t), (1)
J

where b; is a bias which represents a constant external input to the neuron, and X () is the spike
train of the jth neuron defined by X (¢) = Zt;.”e{t;,...,tf’} ot — t;-c), where {t},...,t}V} is the set
of spike timings. The diagonal elements of the synaptic matrix are kept fixed to a negative value
Wi = —no with 9 = 1.0, which implements a reset of the membrane potential after each spike
and is a simple way to take into account neuronal refractoriness [9, 13]. The time constant is taken
to be 7 = 10ms as in [13]. The spike generation process is stochastic with time-dependent firing
intensity p;(t) which depends on the membrane potential u;(t):

pi(t) = poexp (ui(t)). 2
An exponential dependence of the firing intensity upon the membrane potential agrees with exper-

imental results [12]. The set of equations (2) and (1) captures the simplified dynamics of a spiking
neuron with stochastic spike timing.

In the following sections, we will introduce the theoretical framework and the approximations used
in this paper. The basic learning mechanism is introduced and derived, followed by a simulation
illustrating that our proposed learning rule is able to learn spatio-temporal features in the input spike
trains and reproduce them in its spontaneous activity.

2 Principled Framework

We consider a network consisting of two distinct sets of neurons, observed neurons ( also called
visible neurons or V) and latent neurons ( also called hidden or H), as illustrated in Figure 1. The
activities of the observed neurons represent the quantity of interest to be modelled, while the latent
neurons fulfill a mediating role representing the hidden causes of the observed spike train.

Learning in the context of this neuronal network consists of changing the synaptic strengths between
neurons. We postulate that the underlying principle behind learning relies on learning distributions
of spike trains evoked by either sensory inputs or more complicated sequences of cognitive events.
In statistics, learning distributions involves minimizing a measure of distance between the model
(that is, our neuronal network) and a target distribution (e.g. observations). A principled measure of
distance between two distributions p and pempirical 1S the Kullback-Leibler divergence [14] defined as

Pempirical (X )

KL(pempirical | ‘p) = /DXpempiﬁcal(X) log p(X)

3)



where individual X represent entire spike trains. DX is a measure of integration over spike trains.

Our learning mechanism tries to minimize the KL divergence between the distribution defined by
our network p(X') and the observed spike timings distribution pempiricar that is evoked by an unknown
external process. Note that minimizing the KL divergence entails maximizing the likelihood that the
observed spike trains X, could have been generated by the model.

In order to derive the learning dynamics of our model in the next section, we need to evaluate the
gradient of the likelihood (3) with respect to the free parameters of our model, i.e. the synaptic
efficacies W; ; and biases b;.

The joint likelihood of a particular spike train of both the observed Xy, and the latent neurons X
under our neuronal model can be written as [13]

log p(Xv, X3) = Y / dr [log pi(7) X(7) — ps(7)] )
i€VUH
Since we have a neuronal network including latent units (that is, neurons not receiving external
inputs), the actual observation likelihood is an effective quantity obtained by integrating over all
possible latent spike trains X3,

p(X) = [ DXup(CX, X, )
The gradient of (5) is given by an expectation conditioned on the observed neurons’ history:
Vlegp(Xy) = Vlog / DXyp(X) = (Vlogp(X))p(xs)x0)

where (f(X)), = [ DX f(z)p(z). This is difficult to evaluate since it conditions an entire latent
spike train on an entire observed spike train. In other words, the posterior distribution of spike-
timings of the latent neurons depends on both past and future of the observed neurons’ spike train.

2.1 Weak Coupling Approximation

In order to render the model more tractable, we introduce an approximation on the dynamics based
on the weak coupling approximation [15], which amounts to replacing (1) by

Tui(t) = —wi(t) + b+ Y Wiipi(t) + z(t), (6)
J

where z;(t) is a Gaussian process with mean zero and inverse variance ! \;(¢) given by
)\;1 =0y + Z Wz2jpj (7)

where o is intrinsic noise which we have added to regulanze the simulations (we assume oo = 0.1).
Note that A, (t) is a function of both the network state and synaptic efficacies. Our network model
defines a joint distribution between observed input spike trains and membrane potentials given by

ogp(X,0) = 3 [t 0u) - e - X [ a0 - 102 ®

% i€VUH

where terms not depending on the model parameters and latent states have been dropped out as they
do not contribute to the gradients we are interested in and f;(¢) is the drift of the Gaussian process
of the membrane potentials and can be read from equation (6). It is given by

filt) = % —u;(t) + b; + Z Wi ;ip;(t) )

J

'The variance of % due to the external input can be obtained by noting that u; (t+dt) = w;(t) exp(—dt/7)+
ftert dsexp((s —t —dt)/7)(bi + 3°; Wi ;X;(t))/7. Thus, in the weak coupling regime

t4dt 5 dt 5
Var(u(t + dt)|u(t) Z / dsexp(2(s — L= db)/m)(ps (1)/7° = 3 D Wisps (1)



The weak coupling approximation amounts to replacing spikes of the latent neurons by intensities
plus Gaussian noise. Note that in this approximated model, the latent variables are non longer
the latent spike trains, but the membrane potentials. However, we emphasize that in the end the
intensities can be substituted by spikes as we will see below.

2.2 Variational Approximation of the Posterior Membrane Potential p(u|Xy)

The variational approach in statistics is a method to approximate some complex distribution p by a
family of simpler distributions ¢ . Variational methods have been applied to spiking neural networks
in many different contexts, such as in connectivity or external source inference [20, 21]. In the
following, we try to interpret the neural activity and plasticity together as an approximate form of
variational learning.

We approximate the posterior p(u|Xy ) by the Gaussian process
log q(u Z/dt — hi(t))* + ¢ (10)

where the h;(t) are variational parameters representing the drift of the i¢h membrane potential at
time ¢ in the posterior process and c is a normalization constant. Note that the parameters \;(t) of
the posterior process are taken to be the same as the network dynamics noise in (6). This is necessary
in order to have a finite KL-divergence between the prior and the posterior processes [22].

Finding a good approximation for the variational parameters h;(¢) amounts to minimizing the quan-
tity K L(q(u) || p(Xv, w)), which is given by

KL(g | p) = /dt<—Z[X¢(t)ui(t) — po exp(u;(t))]

i€y
+ Z — i)=Y /\iQ(t)(m(t)—hi(t))2> (11)

1€EVUH i€EVUH

q(u)
Although (11) can be written analytically in terms of the instantaneous mean and covariance of the
posterior process, we adopt a simpler mean-field approximation, i.e. {(F(u;(t))) = F({u;(t))). We
write the mean (u;(t)) = u;(t) as

u;(t) = u;(0) + /Ot dsh;(s) (12)
where the h; plays the role of the ’drift’ or the derivative of u;. Note that ;,Z i((tt,)) = O(t —t')d ;.
where ©(z) is the Heaviside step function. As a result, the KL-divergence becomes

Kiglp) =[S { - - meseae + 25200 ~ 1007 | 09
The drifts h;(t) of the variational approximation can be updated using gradient descent
(Sh;f(t’) KL = —/dt [Xk(t) — po exp(ax(t)] Ot —t')dev
) (1) /dtZA - hOFE
+ 5 Z/dtéh i(t) = fi(1))?, (14)
where
;h{zg’)) = % (=0ik + Wikpr(t) Ot —t) (15)
f,jk((f)) - —A (OWEkpr(DO(t — 1) (16)
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Figure 2: Posterior firing intensity for two simple networks: (a) A network with 4 neurons, simulated with
mean field approximation. (b) From top to bottom: the observed spike train, the firing intensity for the three
latent neurons and the posterior inverse variance. The green neuron has a direct connection to the observed
neuron, and as such has a much stronger modulation of its firing rate than the other two latent neurons. (c¢) A
network with two pools of 20 neurons, the observed and the latent pools. (d) Simulation results. From top to
bottom: observed spike trains, spike trains in the latent pool and mean firing intensities of the latent neurons
over different realizations of the network. The rate of the latent pool increases just before the spikes of the
observed neurons. Note that the spiking implementation of the model has the same rates as the mathematical
rate model.

There are few key points to note regarding (14). First, in the absence of observations, the best
approximating h;(t) is simply given by f;(t), that is the posterior and the prior processes become
equal. Second, the first, third and fourth terms in (14) are backward terms, that is, they correspond
to corrections in the “belief” about the past states generated by new inputs. This implies that in
order to estimate the drift h;(¢) of the posterior membrane potential of neuron i at time ¢, we need to
know the observations X (¢') at time ¢’ > ¢. Third, the fourth term in equation (14) is a contribution
to the gradient that comes from the fact that the inverse variance \;(¢) defined in equation (7) is also
a function of the network state. This is an important feature of the model, since it implies that the
amount of noise in the dynamics is also being adapted to better explain the observed spike trains.

2.3 Towards Spike-time Dependent Plasticity

We learn the parameters of our network, that is, the synaptic weights and the neural ‘biases’ by
gradient descent with learning rate 7:

aby = =gt [ a0 - ) )
i T
Ak (1)
AW, = - KL = — dt————=(hy(t) — t t
= g KL= [ a2 )~ )
1 i (t) 5

- dt hi(t) — f: ()2, 18
RPN R A CORE) (18)
where ‘;’V\{/l(fl) = —2;12)\22(1?)Wi,l p1(t)d0) ;. Note that once the posterior drift h;(t) is known, the

computation of Ab and AW can be done purely locally.



A long ‘backward window’ would, of course, be biologically implausible. However, on-line ap-
proximations to the backward terms provide a reasonable approximation by taking small backwards
filters of up to 50ms. Mechanistically, applications of AW can operate with a small delay, which
is required to calculate the backwards correction term. In biology such delays indeed exist, as the
weights are switched to a new value only some time after the stimulation that induces the change
[23, 24]

More precisely, using a small backward window amounts to approximating the gradient of the pos-

terior drift h;(¢) by cutting off the time integrals using a finite time horizon, i.e., in equation (14)

we replace integral f dt by f VAT dt where AT is the size of the “backward window” used to

approximate the gradient. The expression (14) can now be written as a delayed update equation

Ohp(t — AT) —/t o ds [ Xy(s) — po exp(ux(s))] dkey

+ AR(t — AT (hi(t — AT) — fu(t — AT))

t (5f1<8)
- /t—AT dSZA ~Jils ))5hk(t—AT)

T2 Z/ Mkt%( () = ()7, (19)

The resulting update for the variable hy is used in the learning equation 18.

The simulation shown in Figure 2 provides a conceptual illustration of how the posterior firing
intensity p;(¢) propagates information backward from observed into latent neurons, a process that is
essential for learning temporal patterns. Note that p; is the firing rate of the presynaptic neuron [ and
as such it is information that is not directly available at the site of the synapse which has only access
to spike arrivals (but not the underlying firing rate). However, spike arrivals do provide a reasonable
estimate of the rate. Indeed Figure 2c and d show that a simulation of a network of pools of spiking
neurons where updates are only based on spike times (rather than rates) gives qualitatively the same
information as the rate formula derived above. In equations (20,15) we could therefore replace
the pre-synaptic firing intensity p;(¢) by temporally filtered spike trains which constitute a good
approximation to p;(t).

2.4 STDP Window

From our learning equation for the synaptic weight (18), we can extract an STDP-like learning
window by rewriting the plasticity rules as AW; ; = [ dtAW; ;(t), where

MO 00y~ s+ 2 3 2y - iz 0

AW, (t) =

AW; ;(t) is the expected change in AW ; at time ¢ under the posterior. As before, we replace the
firing intensity p; in a given trial by the spikes. Assuming a spike of the observed neuron at ¢t = 0,
we have evaluated h(t) and f(t) and plot the weight change A, (¢')(hi(t') — fi(t)) that would
occur if the latent neuron fires at ¢’ cf. equation (18). We show the resulting Spike-time Dependent
Plasticity for a simple network of two neurons in Figure 3.

Note that the shape of AW, ;(¢) is remarkably reminiscent of the experimentally found measure-
ments for STDP [8]. In particular, the shape of the STDP curve depends on the type of neuron
and is different for connections from excitatory to excitatory than from excitatory to inhibitory or
inhibitory to inhibitory neurons (Figure 3).

3 Simulations

In order to demonstrate the method’s ability to capture both stationary and temporal patterns, we
performed simulations on two tasks. The first one involves the formation of a temporal chain, while
the second one involves a stationary pattern generator. Both simulations were done using a discrete-
time (Euler method) version of the equations (14, 17, 18 and 19) with dt = 1ms. The backward
window size was taken to be AT = 50ms, and a learning rate of 0.02 was used.
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Figure 3: Spike-time Dependent Plasticity in a simple network composed of two neurons. Weight change
AW, ;(t) (vertical axis) as a function of spike timing of the neuron at the top (the latent neuron), given that the
bottom (observed) neuron produces a spike at £ = 0 (horizontal axis). Shown are all permutations of excitatory
(e) and inhibitory (i) neuron types, with the left and right learning windows next to each network corresponding
to the downward and upward synapses, respectively.

The first task consisted of learning a periodic chain, in which three pools of observed neurons were
successively activated as shown in Figure 4a. A time lag was introduced between the third and
the first pattern so as to force the network to form femporal hidden cause representations that are
capable of capturing time dependencies without obvious observable instantaneous clues — during
a blank moment, the only way a network can tell which pattern comes next is by actively using
the latent neurons. After learning, the spontaneously patterns in the observable neurons developed a
clear resemblance to the patterns provided during training, although a slightly larger amount of noise
was present, as shown in Figure 4b. If the noise level of the model network is reduced, a noise-free
“cleared-up concept” of the observed patterns is generated (Figure 4d) which clearly demonstrates
that the recurrent network has indeed learned the task.

The way learning has configured the network in the sequence task can be understood if we study the
connectivity pattern of the latent neurons. The latent neuron are active during the whole sequence
(Figure 4c). We have reordered the labels of the neurons so that the structure of the connectivity
matrix becomes as visble. There are subsets of latent neurons that are particularly active during each
of the three ’subpatterns’ in the sequence task, and other latent neurons that become active while the
observable units are quiescent (Figure 4i). The lateral connectivity between the latent neurons has
an asymmetry in the forward direction of the chain.

The second task aimed at learning to randomly generate one of three statinonary patterns every
10ms. Successfull learning of this task requires both the learning of the stationary patterns and the
stochastic transitions between them. Figure 4d—g shows the results on this task.

4 Discussion

Some models have recently been proposed where STDP-like learning rules derive from ‘first princi-
ples’ (e.g., [25, 26, 13]). However, these models have either difficulty dealing with recurrent latent
dynamics, or they do not account for non-factorial latent representations. In this work, we have pro-
posed a plausible derivation for synaptic plasticity in a network consisting of spiking neurons, which
can both capture time dependencies in observed spike trains and process combinatorial features. Us-
ing a generative model comprising both latent and observed neurons, the mechanism utilizes implicit
(that is, short-term delayed) backward iterations that arise naturally from variational inference. A
plasticity mechanism emerges that closely resembles that of the familiar STDP mechanism found
in experimental studies. In our simulations we show that the plasticity rules are capable of learning
both a temporal and a stationary pattern generator. Future work will attempt to further elucidate
the possible biological plausibility of the approach, and its connection to Spike-Time Dependent
Plasticity.
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Figure 4: Simulation results. Sequence task a—d, i: a 20ms-periodic sequence with a network of 30 observed
neurons and 15 latent neurons having 50% of inhibitory neurons (chosen randomly). The connections between
the observed neurons have been set to zero in order to illustrate the use of latent-to-latent recurrent connections.
(a) A sample of the periodic input pattern. Note the long waiting time after each sequence 1 —2 — 3 (1 — 2 —
3—wait—1—-2—-3—...). (b) Simulations from the network with the first 20ms clamped to the data. (c) Latent
neurons sample. (d) Sample simulation of the network with the same parameters but with less noise, in order
to better show the underlying dynamics. This is achieved by the transformation p;(t) — p;(t)? with g = 2.
Random jump task e-h: learning to produce one of three patterns (4ms long) every 10ms. (e) A sample input
pattern (f) One realization from the network with first the 20ms clamped to the data. (g) Sample latent pattern.
(h) Sample simulation of the network with the same parameters but with less noise. Note that decreasing the
level of noise is actually an impairment in performance for this task. (i) The learned synaptic matrix for the
first task; the latent neurons have been re-ordered in order show the role of the latent-to-latent synapses in the
dynamics as well as the role of the latent-to-observed synapses which represent the pattern features.
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