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Abstract

Multi-instance learning (MIL) considers input as bags aftances, in which la-
bels are assigned to the bags. MIL is useful in many realehaypblications. For
example, in image categorization semantic meanings @abéhan image mostly
arise from its regions (instances) instead of the entirgyar(@ag). Existing MIL
methods typically build their models using tBag-to-Bag (B2B)distance, which
are often computationally expensive and may not truly reflee semantic sim-
ilarities. To tackle this, in this paper we approach MIL pgeybs from a new
perspective using th€lass-to-Bag (C2B)distance, which directly assesses the
relationships between the classes and the bags. Takingdotmnt the two ma-
jor challenges in MIL, high heterogeneity on data and weakllassociation, we
propose a novel Maximum Margin Multi-Instance Learning*(Mapproach to
parameterize the C2B distance by introducing the classfgpdistance metrics
and the locally adaptive significance coefficients. We ajpplynew approach to
the automatic image categorization tasks on three (onéesliabel and two multi-
label) benchmark data sets. Extensive experiments haverts#rated promising
results that validate the proposed method.

1 Introduction

Traditional image categorization methods usually consatl@mage as one indiscrete entity, which,
however, neglects an important fact that the semantic mgar{iabels) of an image mostly arise
from its constituent regions, but not the entire image. Fanaple, the labels “person” and “car”
associated with the query image in Figure 1 are only chaiiaetéby the regions in two bounding
boxes, respectively, rather than the whole image. Thezefoodeling the relationships between la-
bels and regions (instead of the entire image) could patnteduce the noise in the corresponding
feature space, and the learned semantic models could beacmreate.

In recent years, image representation techniques usinglseat, or patch-based, features, such as
SIFT, have demonstrated some of the best performance ineimegeval and object recognition
applications. These algorithms choose a set of patches image, and for each patch compute
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Figure 1: Diagram of the proposedepproach. Our task is to learn class specific distance met-

rics M;, and significance coefficienis;, from the training data, with which we compute the C2B
distances from the classes to a query imagfor classification.
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a fixed-length feature vector. This gives a set of vectorsimpeage, where the size of the set can
vary from image to image. Armed with these patch-based fegatimage categorization is recently
formulated as anulti-instance learningMIL) task [1-6]. Under the framework of MIL, an image

is viewed as d&ag, which contains a number afstancesorresponding to the regions in the image.
If any of these instances is related to a semantic conceptimage will be associated with the

corresponding label. The goal of MIL is to construct a leatneclassify unseen image bags.

1.1 Learning Class-to-Bag (C2B) distance for multi-instane data

In MIL data objects are represented as bags of instancasftie the distance between the objects
is a set-to-set distance. Compared to traditional singdéance data that use vector distance such as
Euclidean distance, estimating tBag-to-Bag (B2B)distance in MIL is more challenging [7, 8]. In
addition, the B2B distances often do not truly reflect theaatic similarities [9]. For example, two
images containing one common object may also have otheallysimcompatible objects, which
makes these two images less similar in terms of the B2B distafherefore, instead of measuring
the similarities between bags, in this paper we approach fvtiin a new perspective using the
Class-to-Bag (C2BXistance, which assesses the relationships between gsesland the bags.

Measuring the distance between images (bags) and classefirstantroduced in [9] for object
recognition, which used thBag-to-Class (B2C) distandestead of the C2B distance. Given a
triplet constraint(i, p, n) that imagei is more relevant to class than it is to class:, the C2B
distance formulates this d3,; < D,;, while the B2C distance formulates this Bs, < D;,. It
seems these two formulations are similar, however, theyiffierent when learning parameterized
distance, the main goal of this paper. To be more specificthiIC2B distance we only need to
parameterize training instances, which are availablendutie training phase. In contrast, for the
B2C distance, parameterizing instances in query imagesohbs involved, which is not always
feasible because we typically do not know them beforeharfis difference will become more
clear shortly when we mathematically define the C2B distance

1.2 Challenges and opportunities of MIL

Multi-instance data are different from traditional singhstance data, which bring new opportunities
to improve the classification performance, though togethity more challenges. We first explore
these challenges, as well as to find opportunities to enhtherc€2B distance introduced above.

Learning class specific distance metricsDue to the well-known semantic gap between low-level
visual features and high-level semantic concepts [10]pstmy an appropriate distance metric plays
an important role in establishing an effective image categtion system, as well as other general
MIL models. Existing metric learning methods [5, 6] for nittistance data only learned one global
metric for an entire data set. However, multi-instance 8gtaature are highly heterogeneous, thus
a homogeneous distance metric may not suffice to charaetdifierent classes of objects in a same
data set. For example, in Figure 1 the shape and color clesiations of a person are definitely
different from those of a car. To this end, we consider to@anltiple distance metrics, one for each
class, for a multi-instance data set to capture the commelamong the features within each object
category. The metrics are learned simultaneously by fagraimaximum margin optimization prob-
lem with the constraints that the C2B distances from theembmrlasses of an training object to it
should be less than the distances from other classes to itargin.
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(a) SCsw.r.t. class “person” (left) and “horse” (right). (b) SCs w.r.t. class “person” (left) and “car” (right).

Figure 2: The learned SCs of the instances in a same imagetivagserve as training samples for
different classes. For example, in Figure 2(a) the SC of thieéhinstance in class “person” is 0.175,
whereas its SC in class “horse” is 2.861. As a result, theehiastance contributes a lot in the C2B
distance from class “horse” to a query image, while havinglmless impact in the C2B distance
from class “person” to a query image.

Learning locally adaptive C2B distance.Different from the classification problems for traditional
single-instance data, in MIL the classes are weakly asteatia the bagg,e., a label is assigned
to a bag as long as one of its instance belongs to the classréssith, although a bag is associated
with a class, some, or even most, of its instances may notiberélated to the class. For example,
in the query image in Figure 1, the instance in the left bongdtiox does not contribute to the label
“person”. Intuitively, the instances in a super-bag of &slshould not contribute equally in predict-
ing labels for a query image. Instead, they should be prgpezighted. With this recognition, we
formulate another maximum margin optimization problemearh multiple weights for a training
instance, one for each of its labeled classes. The resubahtweflects the relative importance of
the training instance with respect to a class, which we clignificance Coefficient (SC)deally,

the SC of an instance with respect to its true belonging dhesild be large, whereas its SC with
respect other classes should be small. In Figure 2, we shewe#iined SCs for the instances in
some images when they serve as training samples for theileldlrlasses. Because the image in
Figure 2(a) has two labels, this image, thereby its two imsta, serves as a training sample for both
class “person” (left) and “horse” (right). Although the taad SC of the horse instance is very low
when it is in the super-bag of “person” (0.175) as in the lefg@l of Figure 2(a), its SC (2.861) is
relatively high when it is in the super-bag of “horse”, itadrbelonging class, as in right panel of
Figure 2(a). The same observations can also be seen in thexasaples, which are perfectly in
accordance with our expectations.

With the above two enhancements to C2B distance, the clasfispnetrics and SCs, the two diffi-
culties in MIL are addressed. Because these two componetite proposed approach are learned
from two maximum margin optimization problems, we call thegosed approach as Maximum
Margin Multi-Instance Learning (M) approach, which is schematically illustrated in Figure 1

2 Learning C2B distance for multi-instance data via M’| approach

In this section, we first briefly formalize the MIL problem attd C2B distance for a multi-instance
data set, where we provide the notations used in this papen We gradually develop the proposed
M3l approach to incorporate the class specific distance rsetrid the locally adaptive SCs into the
C2B distance, together with its learning algorithms.

Problem formalization of MIL. Given a multi-instance data set witki classes andV training
bags, we denote the training setBy= {(X,,y,)}~,. EachX; = {x!,...,x["} is a bag ofn
instances, where] € R? is a vector ofp dimensions. The class assignment indicgtoe {0, 1}%

is a binary vector, witty; (k) = 1 indicating that bagX; belongs to the:-th class and; (k) = 0
otherwise. We writ&” = [y, ... ,yN]T. If Zszl Yirx = 1, i.e., each bag belongs to exactly one
class, the data set is a single-label data s@ﬁzl Y > 1,i.e., each bag may be associated with
more than one class label, the data set is a multi-label éafd $-14]. In the setting of MIL, we
assume that (I) bag is assigned to thé-th class<=- at least one instance of belongs to the

k-th class; and (1) bad is not assigned to thieth class<=- no instance ofX belongs to thé:-th
class. Our task is to learn frofa a classifier that is able to predict labels for a new query bag.



For convenience, we denofe(X;) as the classes that bag belongs to (positive classes), and
N (X;) as the classes that; does not belong to (negative classes).

C2B distance in MIL. In order to compute the C2B distance, we represent everg alas super-
bag,i.e., a set consisting of all the instances in every bag belangima class:

Sk:{s,lc,...,szlk :{szfik:l}, (1)

wheresf; is an instance of}, that comes from one of the training bags belonging toktltle class,
andmy = Z{imk:l} n; is the total number of the instancesSf. Note that, in single-label data

where each bag belongs to only one class, we tfaver S, = @ (Vk #1) and Zszl my =
Zf.vzl n;. In multi-label data where each bag (thereby each instaneg)belong to more than one
class [11-14], we hav€, NS, £ @ (V k £ 1) andeK:1 mi > Zfil n;, i.e., different super-bags
may overlap and ongf may appear in multiple super-bags.

The elementary distance from an instance in a super-bagdg slefined as the distance between
this instance and its nearest neighbor instance in the bag:

o (stox:) = -5t @

wheres? is the nearest neighbor instancesgfin X;.

Then we compute the C2B distance from a super-fatp a data bad(; as following:

D (S X zd(sk, )=3

J &l
Sk — Sk

®3)

2.1 Parameterized C2B distance of the M approach

Because the C2B distance defined in Eq. (3) does not takedntwat the challenging properties of
multi-instance data as discussed in Section 1.2, we fudieglop it in the rest of this subsection.

Class specific distance metricsThe C2B distance defined in Eqg. (3) is a Euclidean distancihwh

is independent of the input data. In order to capture thersbooder statistics of the input data that
could potentially improve the subsequent classificatiqié]5we consider to use the Mahalanobis
distance with an appropriate distance metric. With thegait@n of the high heterogeneity in multi-
instance data, instead of learning a global distance merin existing works [5, 6], we propose to
learn K different class specific distance metri@:Mk}kK:1 C RP*P, one for each class. Note that,
using class specific distance metrics is only feasible withdistance between classes and bags
(either C2B or B2C distance), because we are only conceritbdnira-class distances. In contrast,
traditional B2B distance needs to compute the distancegdest bags belonging to different classes
involving inter-class distance metrics, which inevitabbmplicates the problem.

Specifically, instead of using Eq. (3), we compute C2B distamsing the Mahalanobis distance as:
D (S, X Z [(s,C - sfc) M;, (sk — sk)} . 4)

Locally adaptive C2B distance. Now we further develop the C2B distance defined in Eq. (4) to
address the labeling ambiguity in multi-instance scemarid/e propose a locally adaptive C2B
distance by weighting the instances in a super-bag uponréideivance to the corresponding class.

Due to the weak association between the instances and tHali®lg, not every instance in a super-
bag of a class truly characterizes the corresponding sé@orticept. For example, in Figure 2(a)
the region for the horse object is in the super-bag of “perstass, because the entire image is
labeled with both “person” and “horse”. As a result, inttly, we should give a smaller, or even
no, weight to the horse instance when determining whethassign “person” label to a query



image; and give it a higher weight when deciding “horse” lae be more precise, Iebi be the
weight associated witly , we wish to learn the C2B distance as following:

D (S, X;) = % [w-,i (si _ éi)T M, (s-,i — S;C)} : (5)
j=1

Becausew], reflects the relative importance of instangewhen determining the label for theth
class, we call it as the “Significance Coefficient (SC)’s{f

2.2 Procedures to learn)M;, and wi

Given the parameterized C2B distance defined in Eq. (5) fouliinstance data set, our learning
objects are the two sets of variables, andwi. Motivated by metric learning from relative compar-
isons [15-17], we learM}, andw,i by constraining that the C2B distances from the true belongi
classes of bag(; to it are smaller than the distances from any other classiébyca margin:
where¢;,, is a slack variable because the constraints usually canencbimpletely satisfied in real

world data. Therefore;,, measures the deviation from the strict constraint for tiettr (7, p, n).
In the following, we formulate two maximum margin optimizat problems to learn the two sets of

target variableg/y, andwi, one for each of them.

Optimizing My Firstwe fini to optimizeM},. To avoid over-fitting, as in support vector machine
(SVM), we minimize the overall C2B distances frak)'s associated classes to itself and the total
amount of slack. Specifically, we solve the following conegtimization problem:

min Z D (Sp, Xz) + C Z gipna

My,.... Mk

i, peP(X;), i, peP(Xi), neN(X;) (7)
s.t. Vp S P (Xz) ,n (S N(Xl) . gipn Z O, D (Snsz) - D (Sp, Xl) Z 1-— gipny
Vk:M, =0,

whereC is a trade-off parameter, acting same as in SVM. The optitioiagroblem in Eq. (7) is a
semi-definite programming (SDP) problem, which can be sbibyestandard SDP solvers. However,
standard SDP solvers are computationally expensive. Tdrereve use the gradient descent SDP
solver introduced in [18] to solve the problem.

Optimizing wy,. Then we fix)M}, to optimizewy,. Letdy, (S?w Xl-) = (sfC - §f€) M, (sfC - §§C)
we denotedy; = [das (i, Xi),....dy (SZ“C,XZ-)}T. Letwy = [wy,... ,wk’”k]T, by the defini-
tion in Eq. (5) we rewrite Eq. (6) as following:

Wlidp —wldy > 1= &, VpEP(Xy),neN(X). (8)

In order to make use of the standard large-margin classdicdtamework and simplify our deriva-

tion, following [17] we expand our notations. Let = [wf, e ,w};}T, which is the concate-
nation of the class-specific weight vectarg. Thus, each class-specific weight vector corre-
sponds a subrange ef. Similarly, we expand the distance vectors anddgf, be a vector of
the same length a®, such that all its entries are 0 except the subranges comdsp to clas®
and class:, which are set to be-d,; andd,,; respectively. It is straightforward to to verify that

w, dpi —wldy = w’dgp,. Thus Eq. (8) becomes:
wWldip, > 1—Eipn, VpeP(Xy),neN(X;) . 9)

Following the standard soft-margin SVM framework, we mirgeithe cumulative deviation over all
triplet constraintgi, p, n) and imposé,-norm regularization omv as following:

min l||w ~ w24 C Z Eipn

Wi Eipn 2 i,pEP(X,),nEN (X;)
st. Vi, peP (X)), n €N (X)) &ipn >0, widipn, > 1 — &,
Vi w(j) >0,

(10)
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whereC' controls the tradeoff between the loss and regularizagomg. The positivity constraint
on the elements ofv is due to the fact that our goal is to define a distance funatibith, by
definition, is a positive definite operator. In addition, weoeenforce a prior weight vectav(?) in

the objective. In standard SVM, all the entriesmofire set as 0 as default. In our objective, however,
we set all its entries to be 1, because we think all the insace equally important if we have no
prior training knowledge.

We solve Eg. (10) using the solver introduced in [17], whiolves the dual problem by an accel-
erated iterative method. Upon solution, we obtainwhich can be decomposed into the expected

instance Weighta;i for every instance with respect to its labeled classes.

2.3 Label prediction using C2B distance

Solving the optimization problems in Eq. (7) and Eq. (10)darinput multi-instance data sBt we
obtain the learned class specific distance mefvigs(1 < k < K) and the significance coefficients
w, (1 <k<K,1<j<my). Givenaquerybag, upon the learned/; andw,, we can compute
the parameterized C2B distande$Sx, X) (1 < k < K) from all the classes to the query bag using
Eq. (5). SortingD (S, X ), we can easily assign labels to the query bag.

For single-label multi-instance data, in which each bagigs$ to one and only one class, we assign
X to the class with the minimum C2B distance,, I (X) = argmin, D (Sk, X).

For multi-label multi-instance data, in which one bag cambsociated with more than one class
label, we need a threshold to make prediction. For evergcles learn a threshold from the training

data ay, = SN | Vir D (Sk, Xi) / S2%, Yir, which is the average of the C2B distances from the
k-th class to all its training bags. Then we determine thesal@ambership foX using the following
rule: assignX to thek-th class ifD (Sy, X ) < bg, and not otherwise.

3 Related works

Learning B2C distance.Due to the unsatisfactory performance and high computaltzmmplexity

of machine vision models using B2B distance, a new perspetti compute B2C distance was
presented in [9]. This non-parametric model does not irerdlgining process. Though simple, it
achieved promising results in object recognition. Howgtlds method heavily relies on the large
number of local features in the training and testing set. ddress this, Wanet al. [18] further

developed this method by introducing distance metricschieswe better results with a small amount
of training. However, as discussed earlier in Section 12C Blistance is hard to parameterize in
may real world applications. To tackle this, we propose ®Q2B distance for multi-instance data.

Learning distance metric for MIL. As demonstrated in literature [5, 6], learning a distancéime
from training data to maintain class information is benefiéor MIL. However, existing methods
[5, 6] learned only one global metric for a multi-instancéadset, which is insufficient because the
objects in multi-instance data by nature are highly hetenegus. Recognizing this, we propose to
learn multiple distance metrics, one for each class. [18§ Bosame perspective as us, though it does
not clearly formalize image classification as a MIL task.

Learning locally adaptive distance Due to the weak label association in MIL, instead of consid-
ering all the instance equally important, we assign locatlgptive SCs to every instance in training
data. Locally adaptive distance was first introduced in 17 for B2B distance. Compared to it,
the proposed C2B distance is more advantageous. First, @2&8hde measures the relevance be-
tween a class and a bag, hence label prediction can be raturade upon the resulted distance,
whereas an additional classification step [16] or transétion [17] is required when B2B distance
is used. Second, C2B distance directly assesses the naléiidween semantic concepts and image
regions, hence it could narrow the gap between high-levabhs¢ic concepts and low-level visual
features. Last, but not least, our C2B distance requiresfiigntly less computation. Specifically,
the triplet constraints used in C2B model are constructédden classes and bags whose number
isO (NKZ), while those used in B2B model [16, 17] are constructed betviegs with number of

o (N3). As N (bag number) is typically much larger thah(class number), our approach is much
more computationally efficient. Indeed, a constraint salacstep was involved in [16,17].



Table 1: Performance comparison Table 2: Performance comparison on Corel5K data set.
on Object Recognition data set. ~ycihods

Hamming One-error Coverage Rankloss Avg. prec.

Methods Accuracy loss| 1 1 + )

DD 0.676 + 0.074 MIMLBoost  0.282 0.584 5.974 0.281 0.467
DD-SVM 0.754 £ 0.054 MIMLSVM 0.271 0.581 5.993 0.289 0.472

MIMLBoost 0.793 + 0.033 DM 0.243 0.575 5512 0.236 0.541
MIMLSVM 0.796 + 0.042 MildML 0.238 0.560 5.107 0.233 0.554

B2C 0.672 £ 0.013 B2C 0.275 0.580 5.823 0.283 0.470
B2GO-M 0.715 £ 0.032 B2C-M 0.270 0.562 5.675 0.241 0.493
c2B 0.797 + 0.015 c2B 0.224 0.545 5.032 0.229 0.565
CoB-M 0.815 £ 0.026 C2B-M 0.216 0.538 4.912 0.218 0.572
CoB-SC 0.820 + 0.031 C2B-SC 0.211 0.527 4.903 0.213 0.580
M3 0.832 + 0.029 M3 0.207 0.512 4.760 0.209 0.593

4 Experimental results

In this section, we experimentally evaluate the proposédayproach in image categorization tasks
on three benchmark data sets: Object Recognition data]seh[eh is a single-label image data set;
and Corel5K data set [19] and PASCAL2010 data set [20] whielaulti-label data sets.

4.1 Classification on single-label image data

Because the proposed®Mapproach comprises two components, class specific memidsignifi-
cant coefficients, we implement four versions of our appihaatd evaluate their performances: (1)
the simplest C2B distance, denoted as “C2B”, computed by&an which no learning is involved;
(2) C2B distance with class specific metrics, denoted as “@PBcomputed by Eq. (4); (3) C2B
distance with SCs, denoted as “C2B-SC” by Eq. (5) andMgt= I; and (4) the C2B distance
computed by proposed WMapproach using Eqg. (5). We compare our methods againsbtiosv
ing established MIL algorithms including (A) Diversity Dgity (DD) method [1], (B) DD-SVM
method [2], (C) MIMLBoost method [3] and (D) MIMLSVM metho®]. We also compare our
method to the two related method., (E) B2C method [9] and (F) B2C-M method [18]. These
two methods are not MIL methods, therefore we consider ezstarnce as an image descriptor fol-
lowing [9, 18]. We implement these methods following thegoral papers. The parameters of DD
and DD-SVM are set according to the settings that resultédtkibest performance [1,2]. The boost-
ing rounds for MIMLBoost is set to 25 and for MIMLSVM we set= 0.2, which are same as in
the experimental settings in [3]. For MIMLBoost and MIMLSV,Ithe top ranked class is regarded
as the single-label prediction as in [3].

The classification accuracy is employed to measure themesfoce of the compared methods. Stan-
dard 5-fold cross-validation is performed and the clas#ifim accuracies averaged over all the 20
categories by the compared methods are presented in Talleele the means and standard devi-
ations of the results in the 5 trials are reported and the fpe$brmances are bolded. The results
in Table 1 show that the proposed®*Mmethod clearly outperforms all other compared methods,
which demonstrate the effectiveness of our method in sifaddel classification. Moreover, our
method is always better than its simplified versions, whighficms the usefulness of class specific
metrics and SCs in MIL.

4.2 Classification on multi-label image data

Multi-label data refers to data sets in which an image carsbe@ated with more than one semantic
concept, which is more challenging but closer to real woppli@ations than single-label data [21].
Thus, we evaluate the proposed method in multi-label imagggorization tasks.

Experimental settings.We compare our approach to the following most recent MIMIssification
methods. (1) MIMLBoost method [3] and (2) MIMLSVM method [8}e designed for MIML
classification, though they can also work with single-labelti-instance data as in last subsection.
(3) Distance metric (DM) method [5] and (4) MildML method [Barn a global distance metric
from multi-instance data to compute B2B distances, theeefm additional classification step is



Table 3: Classification performance of comparison on PAS®AIC 2010 data.

Methods Hamming los$ One-error) Coveragel Rank loss| Average precisiort
MIMLBoost 0.183 + 0.020 0.346 + 0.034 1.034 £ 0.075 0.189 + 0.016 0.472 + 0.023
MIMLSVM 0.180 + 0.018 0.349 + 0.029 1.064 £+ 0.084 0.181 + 0.014 0.479 + 0.026
DM 0.146 + 0.012 0.307 + 0.024 0.942 + 0.064 0.167 + 0.013 0.501 + 0.031
MildML 0.139 + 0.011 0.308 + 0.022 0.951 + 0.058 0.162 + 0.011 0.504 + 0.029
B2C 0.180 + 0.013 0.343 + 0.020 1.052 £ 0.050 0.148 + 0.023 0.469 + 0.019
B2C-M 0.177 + 0.010 0.332 + 0.022 0.993 + 0.049 0.177 + 0.019 0.502 + 0.023
C2B 0.176 + 0.017 0.326 + 0.027 0.979 + 0.051 0.168 + 0.020 0.513 + 0.021
C2B-M 0.145 + 0.014 0.301 + 0.020 0.966 + 0.046 0.160 + 0.024 0.509 + 0.026
C2B-SC 0.137 + 0.010 0.297 £+ 0.019 0.925 + 0.035 0.150 + 0.017 0.527 £+ 0.016
M3 0.119 + 0.009 0.275 1+ 0.018 0.843 + 0.013 0.141 + 0.010 0.548 + 0.032

required. Following [5], we use citatioA-NN [22] algorithm for classification, whose parameters
are set af? = 20 andC = 20 as in [5]. We implement these method following their oridivarks.

Corel5K data set has already been split into training settesidset, thus we train the compared
methods using the 4500 training images and classify the &80itnages. We run 5-fold cross-
validation on PASCAL VOC 2010 data set and report the “metdifserformance over the 5 trails.

Experimental results. Because the two data sets used in our experiments are watdti-data sets,
we measure the classification performances of the compagttbihs using five widely used multi-
label evaluation metrics, as shown in Table 2 to 3, whefarfdicates “the small the better” while
“1” indicates “the bigger the better”. Details of these evirametrics can be found in [5, 23].

From Table 2 and 3, we can see that the proposédnvethod consistently outperforms the other
methods, sometimes very significantly. Moreover, it is glsvbetter than its simplified versions.

Finally, we study the locally adaptive SCs learned for tlaning instances. In Figure 2, we show
the SCs for several images in PASCAL VOC 2010 data set whengbeve as training images.
From the figures we can see that, a same object has differanivB€h it is in different super-bags.
For example, the instance of the person in the inner bourtgimgpf the image in Figure 2(b) has
comparably higher SC than the car instance in the outer bogrbx when considering “person”
class. In contrast, when it is in the super-bag of “car”, i&iS lower than that of the car instance.
These observations are consistent with our intuitions aedretical analysis, because the person
instance contribute considerably large in characteritiegperson” concept, whereas it contributes
much less, or even possibly harmful, in characterizing tea™ concept. The same observations
can also be seen on almost all the training images, whicharshown due to space limit. These
interesting results provide concrete evidences to supperproposed M method’s capability in
revealing the semantic insight of a multi-instance imaga dat.

5 Conclusions

In this paper, we proposed a novel Maximum Margin Multi-arste Learning (M) method, which,
instead of using the B2B distance as in many existing methaqgsroached MIL from a new per-
spective using the C2B distance to directly assess theamtevbetween classes and bags. More-
over, taking into account the two challenging propertiemofti-instance data, high heterogeneity
and weak label association, we further developed the C2®rie by introducing class specific
distance metrics and locally adaptive SCs, which are leHbgesolving two convex maximum mar-
gin optimization problems. We applied the proposedl Miethod in image categorization tasks
on three benchmark data sets, one for single-label clestificand two for multi-label classifica-
tion. Encouraging experimental results by comparing ouhobto state-of-the-art MIL algorithms
demonstrated its effectiveness.
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