
Linearized Alternating Direction Method with
Adaptive Penalty for Low-Rank Representation

Zhouchen Lin
Visual Computing Group
Microsoft Research Asia

Risheng Liu Zhixun Su
School of Mathematical Sciences
Dalian University of Technology

Abstract

Many machine learning and signal processing problems can be formulated as lin-
early constrained convex programs, which could be efficiently solved by the alter-
nating direction method (ADM). However, usually the subproblems in ADM are
easily solvable only when the linear mappings in the constraints are identities. To
address this issue, we propose a linearized ADM (LADM) method by linearizing
the quadratic penalty term and adding a proximal term when solving the sub-
problems. For fast convergence, we also allow the penalty to change adaptively
according a novel update rule. We prove the global convergence of LADM with
adaptive penalty (LADMAP). As an example, we apply LADMAP to solve low-
rank representation (LRR), which is an important subspace clustering technique
yet suffers from high computation cost. By combining LADMAP with a skinny
SVD representation technique, we are able to reduce the complexity O(n3) of
the original ADM based method to O(rn2), where r and n are the rank and size
of the representation matrix, respectively, hence making LRR possible for large
scale applications. Numerical experiments verify that for LRR our LADMAP
based methods are much faster than state-of-the-art algorithms.

1 Introduction

Recently, compressive sensing [5] and sparse representation [19] have been hot research topics and
also have found abundant applications in signal processing and machine learning. Many of the
problems in these fields can be formulated as the following linearly constrained convex programs:

min
x,y

f(x) + g(y), s.t. A(x) + B(y) = c, (1)

where x, y and c could be either vectors or matrices, f and g are convex functions (e.g., the nuclear
norm ∥ · ∥∗ [2], Frobenius norm ∥ · ∥, l2,1 norm ∥ · ∥2,1 [13], and l1 norm ∥ · ∥1), and A and B are
linear mappings.

Although the interior point method can be used to solve many convex programs, it may suffer from
unbearably high computation cost when handling large scale problems. For example, when using
CVX, an interior point based toolbox, to solve nuclear norm minimization (namely, f(X) = ∥X∥∗
in (1)) problems, such as matrix completion [4], robust principal component analysis [18] and their
combination [3], the complexity of each iteration is O(n6), where n× n is the matrix size. To over-
come this issue, first-order methods are often preferred. The accelerated proximal gradient (APG)
algorithm [16] is a popular technique due to its guaranteed O(k−2) convergence rate, where k is
the iteration number. The alternating direction method (ADM) has also regained a lot of atten-
tion [11, 15]. It updates the variables alternately by minimizing the augmented Lagrangian function
with respect to the variables in a Gauss-Seidel manner. While APG has to convert (1) into an approx-
imate unconstrained problem by adding the linear constraints to the objective function as a penalty,
hence only producing an approximate solution to (1), ADM can solve (1) exactly. However, when

1



A or B is not the identity mapping, the subproblems in ADM may not have closed form solutions.
So solving them is cumbersome.

In this paper, we propose a linearized version of ADM (LADM) to overcome the difficulty in solving
subproblems. It is to replace the quadratic penalty term by linearizing the penalty term and adding
a proximal term. We also allow the penalty parameter to change adaptively and propose a novel
and simple rule to update it. Linearization makes the auxiliary variables unnecessary, hence saving
memory and waiving the expensive matrix inversions to update the auxiliary variables. Moreover,
without the extra constraints introduced by the auxiliary variables, the convergence is also faster.
Using a variable penalty parameter further speeds up the convergence. The global convergence of
LADM with adaptive penalty (LADMAP) is also proven.

As an example, we apply our LADMAP to solve the low-rank representation (LRR) problem [12]1:

min
Z,E
∥Z∥∗ + µ∥E∥2,1, s.t.X = XZ+E, (2)

where X is the data matrix. LRR is an important robust subspace clustering technique and has
found wide applications in machine learning and computer vision, e.g., motion segmentation, face
clustering, and temporal segmentation [12, 14, 6]. However, the existing LRR solver [12] is based on
ADM, which suffers from O(n3) computation complexity due to the matrix-matrix multiplications
and matrix inversions. Moreover, introducing auxiliary variables also slows down the convergence,
as there are more variables and constraints. Such a heavy computation load prevents LRR from large
scale applications. It is LRR that motivated us to develop LADMAP. We show that LADMAP can be
successfully applied to LRR, obtaining faster convergence speed than the original solver. By further
representing Z as its skinny SVD and utilizing an advanced functionality of the PROPACK [9]
package, the complexity of solving LRR by LADMAP becomes only O(rn2), as there is no full
sized matrix-matrix multiplications, where r is the rank of the optimal Z. Numerical experiments
show the great speed advantage of our LADMAP based methods for solving LRR.

Our work is inspired by Yang et al. [20]. Nonetheless, the difference of our work from theirs is
distinct. First, they only proved the convergence of LADM for a specific problem, namely nuclear
norm regularization. Their proof utilized some special properties of the nuclear norm, while we
prove the convergence of LADM for general problems in (1). Second, they only proved in the case of
fixed penalty, while we prove in the case of variable penalty. Although they mentioned the dynamic
updating rule proposed in [8], their proof cannot be straightforwardly applied to the case of variable
penalty. Moreover, that rule is for ADM only. Third, the convergence speed of LADM heavily
depends on the choice of penalty. So it is difficult to choose an optimal fixed penalty that fits for
different problems and problem sizes, while our novel updating rule for the penalty, although simple,
is effective for different problems and problem sizes. The linearization technique has also been used
in other optimization methods. For example, Yin [22] applied this technique to the Bregman iteration
for solving compressive sensing problems and proved that the linearized Bregman method converges
to an exact solution conditionally. In comparison, LADM (and LADMAP) always converges to an
exact solution.

2 Linearized Alternating Direction Method with Adaptive Penalty

2.1 The Alternating Direction Method

ADM is now very popular in solving large scale machine learning problems [1]. When solving (1)
by ADM, one operates on the following augmented Lagrangian function:

L(x,y, λ) = f(x) + g(y) + ⟨λ,A(x) + B(y)− c⟩+ β

2
∥A(x) + B(y)− c∥2, (3)

where λ is the Lagrange multiplier, ⟨·, ·⟩ is the inner product, and β > 0 is the penalty parameter.
The usual augmented Lagrange multiplier method is to minimize L w.r.t. x and y simultaneously.
This is usually difficult and does not exploit the fact that the objective function is separable. To
remedy this issue, ADM decomposes the minimization of L w.r.t. (x,y) into two subproblems that

1Here we switch to bold capital letters in order to emphasize that the variables are matrices.

2



minimize w.r.t. x and y, respectively. More specifically, the iterations of ADM go as follows:

xk+1 = argmin
x

L(x,yk, λk)

= argmin
x

f(x) +
β

2
∥A(x) + B(yk)− c+ λk/β∥2, (4)

yk+1 = argmin
y

L(xk+1,y, λk)

= argmin
y

g(y) +
β

2
∥B(y) +A(xk+1)− c+ λk/β∥2, (5)

λk+1 = λk + β[A(xk+1) + B(yk+1)− c]. (6)

In many machine learning problems, as f and g are matrix or vector norms, the subproblems (4)
and (5) usually have closed form solutions when A and B are identities [2, 12, 21]. In this case,
ADM is appealing. However, in many problems A and B are not identities. For example, in matrix
completionA can be a selection matrix, and in LRR and 1D sparse representationA can be a general
matrix. In this case, there are no closed form solutions to (4) and (5). Then (4) and (5) have to be
solved iteratively. To overcome this difficulty, a common strategy is to introduce auxiliary variables
[12, 1] u and v and reformulate problem (1) into an equivalent one:

min
x,y,u,v

f(x) + g(y), s.t. A(u) + B(v) = c,x = u,y = v, (7)

and the corresponding ADM iterations analogous to (4)-(6) can be deduced. With more variables
and more constraints, more memory is required and the convergence of ADM also becomes slower.
Moreover, to update u and v, whose subproblems are least squares problems, expensive matrix
inversions are often necessary. Even worse, the convergence of ADM with more than two variables
is not guaranteed [7].

To avoid introducing auxiliary variables and still solve subproblems (4) and (5) efficiently, inspired
by Yang et al. [20], we propose a linearization technique for (4) and (5). To further accelerate the
convergence of the algorithm, we also propose an adaptive rule for updating the penalty parameter.

2.2 Linearized ADM

By linearizing the quadratic term in (4) at xk and adding a proximal term, we have the following
approximation:

xk+1 = argmin
x

f(x) + ⟨A∗(λk) + βA∗(A(xk) + B(yk)− c),x− xk⟩+ βηA

2 ∥x− xk∥2

= argmin
x

f(x) +
βηA
2
∥x− xk +A∗(λk + β(A(xk) + B(yk)− c))/(βηA)∥2,

(8)
where A∗ is the adjoint of A and ηA > 0 is a parameter whose proper value will be analyzed later.
The above approximation resembles that of APG [16], but we do not use APG to solve (4) iteratively.

Similarly, subproblem (5) can be approximated by

yk+1 = argmin
y

g(y) +
βηB
2
∥y − yk + B∗(λk + β(A(xk+1) + B(yk)− c))/(βηB)∥2. (9)

The update of Lagrange multiplier still goes as (6)2.

2.3 Adaptive Penalty

In previous ADM and LADM approaches [15, 21, 20], the penalty parameter β is fixed. Some schol-
ars have observed that ADM with a fixed β can converge very slowly and it is nontrivial to choose an
optimal fixed β. So is LADM. Thus a dynamic β is preferred in real applications. Although Tao et
al. [15] and Yang et al. [20] mentioned He et al.’s adaptive updating rule [8] in their papers, the rule
is for ADM only. We propose the following adaptive updating strategy for the penalty parameter β:

βk+1 = min(βmax, ρβk), (10)
2As in [20], we can also introduce a parameter γ and update λ as λk+1 = λk+γβ[A(xk+1)+B(yk+1)−c].

We choose not to do so in this paper in order not to make the exposition of LADMAP too complex. The readers
can refer to Supplementary Material for full details.

3



where βmax is an upper bound of {βk}. The value of ρ is defined as

ρ =

{
ρ0, if βk max(

√
ηA∥xk+1 − xk∥,

√
ηB∥yk+1 − yk∥)/∥c∥ < ε2,

1, otherwise, (11)

where ρ0 ≥ 1 is a constant. The condition to assign ρ = ρ0 comes from the analysis on the stopping
criteria (see Section 2.5). We recommend that β0 = αε2, where α depends on the size of c. Our
updating rule is fundamentally different from He et al.’s for ADM [8], which aims at balancing the
errors in the stopping criteria and involves several parameters.

2.4 Convergence of LADMAP

To prove the convergence of LADMAP, we first have the following propositions.

Proposition 1

−βkηA(xk+1−xk)−A∗(λ̃k+1) ∈ ∂f(xk+1), −βkηB(yk+1−yk)−B∗(λ̂k+1) ∈ ∂g(yk+1), (12)

where λ̃k+1 = λk + βk[A(xk)+B(yk)− c], λ̂k+1 = λk + βk[A(xk+1)+B(yk)− c], and ∂f and
∂g are subgradients of f and g, respectively.

This can be easily proved by checking the optimality conditions of (8) and (9).

Proposition 2 Denote the operator norms ofA and B as ∥A∥ and ∥B∥, respectively. If {βk} is non-
decreasing and upper bounded, ηA > ∥A∥2, ηB > ∥B∥2, and (x∗,y∗, λ∗) is any Karush-Kuhn-
Tucker (KKT) point of problem (1) (see (13)-(14)), then: (1). {ηA∥xk − x∗∥2 − ∥A(xk − x∗)∥2 +
ηB∥yk − y∗∥2 + β−2

k ∥λk − λ∗∥2} is non-increasing. (2). ∥xk+1 − xk∥ → 0, ∥yk+1 − yk∥ → 0,
∥λk+1 − λk∥ → 0.

The proof can be found in Supplementary Material. Then we can prove the convergence of
LADMAP, as stated in the following theorem.

Theorem 3 If {βk} is non-decreasing and upper bounded, ηA > ∥A∥2, and ηB > ∥B∥2, then the
sequence {(xk,yk, λk)} generated by LADMAP converges to a KKT point of problem (1).

The proof can be found in Appendix A.

2.5 Stopping Criteria

The KKT conditions of problem (1) are that there exists a triple (x∗,y∗, λ∗) such that

A(x∗) + B(y∗)− c = 0, (13)
−A∗(λ∗) ∈ ∂f(x∗),−B∗(λ∗) ∈ ∂g(y∗). (14)

The triple (x∗,y∗, λ∗) is called a KKT point. So the first stopping criterion is the feasibility:

∥A(xk+1) + B(yk+1)− c∥/∥c∥ < ε1. (15)

As for the second KKT condition, we rewrite the second part of Proposition 1 as follows

−βk[ηB(yk+1 − yk) + B∗(A(xk+1 − xk))]− B∗(λ̃k+1) ∈ ∂g(yk+1). (16)

So for λ̃k+1 to satisfy the second KKT condition, both βkηA∥xk+1−xk∥ and βk∥ηB(yk+1−yk)+
B∗(A(xk+1 − xk))∥ should be small enough. This leads to the second stopping criterion:

βk max(ηA∥xk+1 − xk∥/∥A∗(c)∥, ηB∥yk+1 − yk∥/∥B∗(c)∥) ≤ ε′2. (17)

By estimating ∥A∗(c)∥ and ∥B∗(c)∥ by
√
ηA∥c∥ and

√
ηB∥c∥, respectively, we arrive at the second

stopping criterion in use:

βk max(
√
ηA∥xk+1 − xk∥,

√
ηB∥yk+1 − yk∥)/∥c∥ ≤ ε2. (18)

Finally, we summarize our LADMAP algorithm in Algorithm 1.

4



Algorithm 1 LADMAP for Problem (1)
Initialize: Set ε1 > 0, ε2 > 0, βmax ≫ β0 > 0, ηA > ∥A∥2, ηB > ∥B∥2, x0, y0, λ0, and k ← 0.
while (15) or (18) is not satisfied do

Step 1: Update x by solving (8).
Step 2: Update y by solving (9).
Step 3: Update λ by (6).
Step 4: Update β by (10) and (11).
Step 5: k ← k + 1.

end while

3 Applying LADMAP to LRR

In this section, we apply LADMAP to solve the LRR problem (2). We further introduce acceleration
tricks to reduce the computation complexity of each iteration.

3.1 Solving LRR by LADMAP

As the LRR problem (2) is a special case of problem (1), PADM can be directly applied to it. The
two subproblems both have closed form solutions. In the subproblem for updating E, one may apply
the l2,1-norm shrinkage operator [12], with a threshold β−1

k , to matrix Mk = −XZk+X−Λk/βk.
In the subproblem for updating Z, one has to apply the singular value shrinkage operator [2], with
a threshold (βkηX)−1, to matrix Nk = Zk − η−1

X XT (XZk + Ek+1 −X +Λk/βk), where ηX >
σ2
max(X). If Nk is formed explicitly, the usual technique of partial SVD, using PROPACK [9] and

rank prediction3, can be utilized to compute the leading r singular values and associated vectors of
Nk efficiently, making the complexity of SVD computation O(rn2), where r is the predicted rank
of Zk+1 and n is the column number of X. Note that as βk is non-decreasing, the predicted rank is
almost non-decreasing, making the iterations computationally efficient.

3.2 Acceleration Tricks for LRR

Up to now, LADMAP for LRR is still of complexity O(n3), although partial SVD is already used.
This is because forming Mk and Nk requires full sized matrix-matrix multiplications, e.g., XZk.
To break this complexity bound, we introduce a decomposition technique to further accelerate
LADMAP for LRR. By representing Zk as its skinny SVD: Zk = UkΣkV

T
k , some of the full sized

matrix-matrix multiplications are gone: they are replaced by successive reduced sized matrix-matrix
multiplications. For example, when updating E, XZk is computed as ((XUk)Σk)V

T
k , reducing the

complexity to O(rn2). When computing the partial SVD of Nk, things are more complicated. If we
form Nk explicitly, we will face with computing XT (X + Λk/βk), which is neither low-rank nor
sparse4. Fortunately, in PROPACK the bi-diagonalizing process of Nk is done by the Lanczos pro-
cedure [9], which only requires to compute matrix-vector multiplications Nkv and uTNk, where u
and v are some vectors in the Lanczos procedure. So we may compute Nkv and uTNk by multi-
plying the vectors u and v successively with the component matrices in Nk, rather than forming Nk

explicitly. So the computation complexity of partial SVD of Nk is still O(rn2). Consequently, with
our acceleration techniques, the complexity of our accelerated LADMAP (denoted as LADMAP(A)
for short) for LRR is O(rn2). LADMAP(A) is summarized in Algorithm 2.

3The current PROPACK can only output a given number of singular values and vectors. So one has to
predict the number of singular values that are greater than a threshold [11, 20, 16]. See step 3 of Algorithm 2.
Recently, we have modified PROPACK so that it can output the singular values that are greater than a threshold
and their corresponding singular vectors. See [10].

4When forming Nk explicitly, XTXZk can be computed as ((XT (XUk))Σk)V
T
k , whose complexity is

still O(rn2), while XTEk+1 could also be accelerated as Ek+1 is a column-sparse matrix.

5



Algorithm 2 Accelerated LADMAP for LRR (2)
Input: Observation matrix X and parameter µ > 0.
Initialize: Set E0, Z0 and Λ0 to zero matrices, where Z0 is represented as (U0,Σ0,V0) ←
(0,0,0). Set ε1 > 0, ε2 > 0, βmax ≫ β0 > 0, ηX > σ2

max(X), r = 5, and k ← 0.
while (15) or (18) is not satisfied do

Step 1: Update Ek+1 = argmin
E

µ∥E∥2,1 + βk

2 ∥E + (XUk)ΣkV
T
k −X + Λk/βk∥2. This

subproblem can be solved by using Lemma 3.2 in [12].
Step 2: Update the skinny SVD (Uk+1,Σk+1,Vk+1) of Zk+1. First, compute the partial
SVD ŨrΣ̃rṼ

T
r of the implicit matrix Nk, which is bi-diagonalized by the successive matrix-

vector multiplication technique described in Section 3.1. Second, Uk+1 = Ũr(:, 1 : r′),
Σk+1 = Σ̃r(1 : r′, 1 : r′) − (βkηX)−1I, Vk+1 = Ṽr(:, 1 : r′), where r′ is the number of
singular values in Σr that are greater than (βkηX)−1.
Step 3: Update the predicted rank r:
If r′ < r, then r = min(r′ + 1, n); otherwise, r = min(r′ + round(0.05n), n).
Step 4: Update Λk+1 = Λk + βk((XUk+1)Σk+1V

T
k+1 +Ek+1 −X).

Step 5: Update βk+1 by (10)-(11).
Step 6: k ← k + 1.

end while

4 Experimental Results

In this section, we report numerical results on LADMAP, LADMAP(A) and other state-of-the-art
algorithms, including APG5, ADM6 and LADM, for LRR based data clustering problems. APG,
ADM, LADM and LADMAP all utilize the Matlab version of PROPACK [9]. For LADMAP(A),
we provide two function handles to PROPACK which fulfils the successive matrix-vector multipli-
cations. All experiments are run and timed on a PC with an Intel Core i5 CPU at 2.67GHz and with
4GB of memory, running Windows 7 and Matlab version 7.10.

We test and compare these solvers on both synthetic multiple subspaces data and the real world
motion data (Hopkin155 motion segmentation database [17]). For APG, we set the parameters
β0 = 0.01, βmin = 10−10, θ = 0.9 in its continuation technique and the Lipschitz constant τ =
σ2
max(X). The parameters of ADM and LADM are the same as those in [12] and [20], respectively.

In particular, for LADM the penalty is fixed at β = 2.5/min(m,n), where m × n is the size of
X. For LADMAP, we set ε1 = 10−4, ε2 = 10−5, β0 = min(m,n)ε2, βmax = 1010, ρ0 = 1.9,
and ηX = 1.02σ2

max(X). As the code of ADM was downloaded, its stopping criteria, ∥XZk +
Ek −X∥/∥X∥ ≤ ε1 and max(∥Ek − Ek−1∥/∥X∥, ∥Zk − Zk−1∥/∥X∥) ≤ ε2, are used in all our
experiments7.

4.1 On Synthetic Data

The synthetic test data, parameterized as (s, p, d, r̃), is created by the same procedure in [12]. s
independent subspaces {Si}si=1 are constructed, whose bases {Ui}si=1 are generated by Ui+1 =
TUi, 1 ≤ i ≤ s − 1, where T is a random rotation and U1 is a d × r̃ random orthogonal matrix.
So each subspace has a rank of r̃ and the data has an ambient dimension of d. Then p data points
are sampled from each subspace by Xi = UiQi, 1 ≤ i ≤ s, with Qi being an r̃ × p i.i.d. zero
mean unit variance Gaussian matrixN (0, 1). 20% samples are randomly chosen to be corrupted by
adding Gaussian noise with zero mean and standard deviation 0.1∥x∥. We empirically find that LRR
achieves the best clustering performance on this data set when µ = 0.1. So we test all algorithms
with µ = 0.1 in this experiment. To measure the relative errors in the solutions, we run LADMAP
2000 iterations with βmax = 103 to establish the ground truth solution (E0,Z0).

The computational comparison is summarized in Table 1. We can see that the iteration numbers and
the CPU times of both LADMAP and LADMAP(A) are much less than those of other methods, and

5Please see Supplementary Material for the detail of solving LRR by APG.
6We use the Matlab code provided online by the authors of [12].
7Note that the second criterion differs from that in (18). However, this does not harm the convergence of

LADMAP because (18) is always checked when updating βk+1 (see (11)).

6



LADMAP(A) is further much faster than LADMAP. Moreover, the advantage of LADMAP(A) is
even greater when the ratio r̃/p, which is roughly the ratio of the rank of Z0 to the size of Z0, is
smaller, which testifies to the complexity estimations on LADMAP and LADMAP(A) for LRR. It
is noteworthy that the iteration numbers of ADM and LADM seem to grow with the problem sizes,
while that of LADMAP is rather constant. Moreover, LADM is not faster than ADM. In particular,
on the last data we were unable to wait until LADM stopped. Finally, as APG converges to an
approximate solution to (2), its relative errors are larger and its clustering accuracy is lower than
ADM and LADM based methods.

Table 1: Comparison among APG, ADM, LADM, LADMAP and LADMAP(A) on the synthetic
data. For each quadruple (s, p, d, r̃), the LRR problem, with µ = 0.1, was solved for the same data
using different algorithms. We present typical running time (in ×103 seconds), iteration number,
relative error (%) of output solution (Ê, Ẑ) and the clustering accuracy (%) of tested algorithms,
respectively.

Size (s, p, d, r̃) Method Time Iter. ∥Ẑ−Z0∥
∥Z0∥

∥Ê−E0∥
∥E0∥ Acc.

(10, 20,200, 5)

APG 0.0332 110 2.2079 1.5096 81.5
ADM 0.0529 176 0.5491 0.5093 90.0

LADM 0.0603 194 0.5480 0.5024 90.0
LADMAP 0.0145 46 0.5480 0.5024 90.0

LADMAP(A) 0.0010 46 0.5480 0.5024 90.0

(15, 20,300, 5)

APG 0.0869 106 2.4824 1.0341 80.0
ADM 0.1526 185 0.6519 0.4078 83.7

LADM 0.2943 363 0.6518 0.4076 86.7
LADMAP 0.0336 41 0.6518 0.4076 86.7

LADMAP(A) 0.0015 41 0.6518 0.4076 86.7

(20, 25, 500, 5)

APG 1.8837 117 2.8905 2.4017 72.4
ADM 3.7139 225 1.1191 1.0170 80.0

LADM 8.1574 508 0.6379 0.4268 80.0
LADMAP 0.7762 40 0.6379 0.4268 84.6

LADMAP(A) 0.0053 40 0.6379 0.4268 84.6

(30, 30, 900, 5)

APG 6.1252 116 3.0667 0.9199 69.4
ADM 11.7185 220 0.6865 0.4866 76.0

LADM N.A. N.A. N.A. N.A. N.A.
LADMAP 2.3891 44 0.6864 0.4294 80.1

LADMAP(A) 0.0058 44 0.6864 0.4294 80.1

Table 2: Comparison among APG, ADM, LADM, LADMAP and LADMAP(A) on the Hopkins155
database. We present their average computing time (in seconds), average number of iterations and
average classification errors (%) on all 156 sequences.

Two Motion Three Motion All
Time Iter. CErr. Time Iter. CErr. Time Iter. CErr.

APG 15.7836 90 5.77 46.4970 90 16.52 22.6277 90 8.36
ADM 53.3470 281 5.72 159.8644 284 16.52 77.0864 282 8.33

LADM 9.6701 110 5.77 22.1467 64 16.52 12.4520 99 8.36
LADMAP 3.6964 22 5.72 10.9438 22 16.52 5.3114 22 8.33

LADMAP(A) 2.1348 22 5.72 6.1098 22 16.52 3.0202 22 8.33

4.2 On Real World Data

We further test the performance of these algorithms on the Hopkins155 database [17]. This database
consists of 156 sequences, each of which has 39 to 550 data vectors drawn from two or three motions.
For computational efficiency, we preprocess the data by projecting it to be 5-dimensional using PCA.
As µ = 2.4 is the best parameter for this database [12], we test all algorithms with µ = 2.4.

Table 2 shows the comparison among APG, ADM, LADM, LADMAP and LADMAP(A) on this
database. We can also see that LADMAP and LADMAP(A) are much faster than APG, ADM, and

7



LADM, and LADMAP(A) is also faster than LADMAP. However, in this experiment the advantage
of LADMAP(A) over LADMAP is not as dramatic as that in Table 1. This is because on this data µ
is chosen as 2.4, which cannot make the rank of the ground truth solution Z0 much smaller than the
size of Z0.

5 Conclusions

In this paper, we propose a linearized alternating direction method with adaptive penalty for solving
subproblems in ADM conveniently. With LADMAP, no auxiliary variables are required and the
convergence is also much faster. We further apply it to solve the LRR problem and combine it with
an acceleration trick so that the computation complexity is reduced from O(n3) to O(rn2), which
is highly advantageous over the existing LRR solvers. Although we only present results on LRR,
LADMAP is actually a general method that can be applied to other convex programs.

Acknowledgments

The authors would like to thank Dr. Xiaoming Yuan for pointing us to [20]. This work is partially
supported by the grants of the NSFC-Guangdong Joint Fund (No. U0935004) and the NSFC Fund
(No. 60873181, 61173103). R. Liu also thanks the support from CSC.

A Proof of Theorem 3

Proof By Proposition 2 (1), {(xk,yk, λk)} is bounded, hence has an accumulation point, say
(xkj ,ykj , λkj )→ (x∞,y∞, λ∞). We accomplish the proof in two steps.

1. We first prove that (x∞,y∞, λ∞) is a KKT point of problem (1).

By Proposition 2 (2), A(xk+1) + B(yk+1) − c = β−1
k (λk+1 − λk) → 0. This shows that any

accumulation point of {(xk,yk)} is a feasible solution.

By letting k = kj − 1 in Proposition 1 and the definition of subgradient, we have

f(xkj ) + g(ykj ) ≤ f(x∗) + g(y∗) + ⟨xkj − x∗,−βkj−1ηA(xkj − xkj−1)−A∗(λ̃kj )⟩
+⟨ykj − y∗,−βkj−1ηB(ykj − ykj−1)− B∗(λ̂kj )⟩.

Let j → +∞, by observing Proposition 2 (2), we have
f(x∞) + g(y∞) ≤ f(x∗) + g(y∗) + ⟨x∞ − x∗,−A∗(λ∞)⟩+ ⟨y∞ − y∗,−B∗(λ∞)⟩

= f(x∗) + g(y∗)− ⟨A(x∞ − x∗), λ∞⟩ − ⟨B(y∞ − y∗), λ∞)⟩
= f(x∗) + g(y∗)− ⟨A(x∞) + B(y∞)−A(x∗)− B(y∗), λ∞⟩
= f(x∗) + g(y∗),

where we have used the fact that both (x∞,y∞) and (x∗,y∗) are feasible solutions. So we conclude
that (x∞,y∞) is an optimal solution to (1).

Again, let k = kj − 1 in Proposition 1 and by the definition of subgradient, we have

f(x) ≥ f(xkj ) + ⟨x− xkj ,−βkj−1ηA(xkj − xkj−1)−A∗(λ̃kj )⟩, ∀x. (19)
Fix x and let j → +∞, we see that

f(x) ≥ f(x∞) + ⟨x− x∞,−A∗(λ∞)⟩, ∀x.
So −A∗(λ∞) ∈ ∂f(x∞). Similarly, −B∗(λ∞) ∈ ∂g(y∞). Therefore, (x∞,y∞, λ∞) is a KKT
point of problem (1).

2. We next prove that the whole sequence {(xk,yk, λk)} converges to (x∞,y∞, λ∞).

By choosing (x∗,y∗, λ∗) = (x∞,y∞, λ∞) in Proposition 2, we have ηA∥xkj −x∞∥2−∥A(xkj −
x∞)∥2 + ηB∥ykj − y∞∥2 + β−2

kj
∥λkj − λ∞∥2 → 0. By Proposition 2 (1), we readily have

ηA∥xk − x∞∥2 −∥A(xk − x∞)∥2 + ηB∥yk − y∞∥2 + β−2
k ∥λk − λ∞∥2 → 0. So (xk,yk, λk)→

(x∞,y∞, λ∞).

As (x∞,y∞, λ∞) can be an arbitrary accumulation point of {(xk,yk, λk)}, we may conclude that
{(xk,yk, λk)} converges to a KKT point of problem (1).

8



References

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. In Michael Jordan, editor,
Foundations and Trends in Machine Learning, 2010.

[2] J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion.
preprint, 2008.

[3] E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? J. ACM, 2011.
[4] E. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of

Computational Mathematics, 2009.
[5] E. J. Candès and M. Wakin. An introduction to compressive sampling. IEEE Signal Processing

Magazine, 2008.
[6] P. Favaro, R. Vidal, and A. Ravichandran. A closed form solution to robust subspace estimation

and clustering. In CVPR, 2011.
[7] B. He, M. Tao, and X. Yuan. Alternating direction method with Gaussian back substitution for

separable convex programming. SIAM Journal on Optimization, accepted.
[8] B. He, H. Yang, and S. Wang. Alternating direction method with self-adaptive penalty param-

eters for monotone variational inequality. J. Optimization Theory and Applications, 106:337–
356, 2000.

[9] R. Larsen. Lanczos bidiagonalization with partial reorthogonalization. Department of Com-
puter Science, Aarhus University, Technical report, DAIMI PB-357, 1998.

[10] Z. Lin. Some software packages for partial SVD computation. arXiv:1108.1548.
[11] Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier method for exact re-

covery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215, 2009,
arXiv:1009.5055.

[12] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In ICML,
2010.

[13] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient l2,1 norm minimization. In UAI,
2009.

[14] Y. Ni, J. Sun, X. Yuan, S. Yan, and L. Cheong. Robust low-rank subspace segmentation with
semidefinite guarantees. In ICDM Workshop, 2010.

[15] M. Tao and X.M. Yuan. Recovering low-rank and sparse components of matrices from incom-
plete and noisy observations. SIAM Journal on Optimization, 21(1):57–81, 2011.

[16] K. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized
least sequares problems. Pacific J. Optimization, 6:615–640, 2010.

[17] R. Tron and R. Vidal. A benchmark for the comparison of 3D montion segmentation algo-
rithms. In CVPR, 2007.

[18] J. Wright, A. Ganesh, S. Rao, and Y. Ma. Robust principal component analysis: Exact recovery
of corrupted low-rank matrices via convex optimization. In NIPS, 2009.

[19] J. Wright, Y. Ma, J. Mairal, G. Sapirao, T. Huang, and S. Yan. Sparse representation for
computer vision and pattern recognition. Proceedings of the IEEE, 2010.

[20] J. Yang and X. Yuan. Linearized augmented Lagrangian and alternating direction methods for
nuclear norm minimization. submitted, 2011.

[21] J. Yang and Y. Zhang. Alternating direction algorithms for l1 problems in compressive sensing.
SIAM J. Scientific Computing, 2010.

[22] W. Yin. Analysis and generalizations of the linearized Bregman method. SIAM Journal on
Imaging Sciences, 2010.

9


