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Abstract

Psychologists have recently begun to develop computational accounts of how peo-
ple infer others’ preferences from their behavior. The inverse decision-making
approach proposes that people infer preferences by inverting a generative model
of decision-making. Existing data sets, however, do not provide sufficient resolu-
tion to thoroughly evaluate this approach. We introduce a new preference learning
task that provides a benchmark for evaluating computational accounts and use it to
compare the inverse decision-making approach to a feature-based approach, which
relies on a discriminative combination of decision features. Our data support the
inverse decision-making approach to preference learning.

A basic principle of decision-making is that knowing people’s preferences allows us to predict how
they will behave: if you know your friend likes comedies and hates horror films, you can probably
guess which of these options she will choose when she goes to the theater. Often, however, we do
not know what other people like and we can only infer their preferences from their behavior. If you
know that a different friend saw a comedy today, does that mean that he likes comedies in general?
The conclusion you draw will likely depend on what else was playing and what movie choices he
has made in the past.

A goal for social cognition research is to develop a computational account of people’s ability to
infer others’ preferences. One computational approach is based on inverse decision-making. This
approach begins with a model of how someone’s preferences lead to a decision. Then, this model is
inverted to determine the most likely preferences that motivated an observed decision. An alternative
approach might simply learn a functional mapping between features of an observed decision and the
preferences that motivated it. For instance, in your friend’s decision to see a comedy, perhaps the
more movie options he turned down, the more likely it is that he has a true preference for comedies.
The difference between the inverse decision-making approach and the feature-based approach maps
onto the standard dichotomy between generative and discriminative models.

Economists have developed an instance of the inverse decision-making approach known as the multi-
nomial logit model [1] that has been widely used to infer consumer’s preferences from their choices.
This model has recently been explored as a psychological model [2, 3, 4], but there are few behav-
ioral data sets for evaluating it as a model of how people learn others’ preferences. Additionally, the
data sets that do exist tend to be drawn from the developmental literature, which focuses on simple
tasks that collect only one or two judgments from children [5, 6, 7]. The limitations of these data
sets make it difficult to evaluate the multinomial logit model with respect to alternative accounts of
preference learning like the feature-based approach.

In this paper, we use data from a new experimental task that elicits a detailed set of preference judg-
ments from a single participant in order to evaluate the predictions of several preference learning
models from both the inverse decision-making and feature-based classes. Our task requires each
participant to sort a large number of observed decisions on the basis of how strongly they indicate
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(a) (c)(b) 1. Number of chosen effects (−/+)

2. Number of forgone effects (+/+)

3. Number of forgone options (+/+)

4. Number of forgone options containing x (−/−)

6. Is x in every option? (−/−)

7. Chose only option with x? (+/+)

8. Is x the only difference between options? (+/+)

9. Do all options have same number of effects? (+/+)

10. Chose option with max/min number of effects? (−/−)

(d)

5. Max/min number of effects in a forgone option (+/−)
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Figure 1: (a)–(c) Examples of the decisions used in the experiments. Each column represents one
option and the boxes represent different effects. The chosen option is indicated by the black rect-
angle. (d) Features used by the weighted feature and ranked feature models. Features 5 and 10
involved maxima in Experiment 1, which focused on all positive effects, and minima in Experiment
2, which focused on all negative effects. The signs in parentheses indicate the direction of the feature
that suggests a stronger preference in Experiment 1 / Experiment 2.

a preference for a chosen item. Because the number of decisions is large and these decisions vary
on multiple dimensions, predicting how people will order them offers a challenging benchmark on
which to compare computational models of preference learning. Data sets from these sorts of de-
tailed tasks have proved fruitful in other domains. For example, data reported by Shepard, Hovland,
and Jenkins [8]; Osherson, Smith, Wilkie, López, and Shafir [9]; and Wasserman, Elek, Chatlosh,
and Baker [10] have motivated much subsequent research on category learning, inductive reasoning,
and causal reasoning, respectively.

We first describe our preference learning task in detail. We then present several inverse decision-
making and feature-based models of preference learning and compare these models’ predictions
to people’s judgments in two experiments. The data are well predicted by models that follow the
inverse decision-making approach, suggesting that this computational approach may help explain
how people learn others’ preferences.

1 Multi-attribute decisions and revealed preferences

We designed a task that can be used to elicit a large number of preference judgments from a single
participant. The task involves a set of observed multi-attribute decisions, some examples of which
are represented visually in Figure 1. Each decision is among a set of options and each option
produces a set of effects. Figure 1 shows several decisions involving a total of five effects distributed
among up to five options. The differently colored boxes represent different effects and the chosen
option is marked by a black rectangle. For example, 1a shows a choice between an option with four
effects and an option with a single effect; here, the decision maker chose the second option.

In our task, people are asked to rank a large number of these decisions by how strongly they suggest
that the decision maker had a preference for a particular effect (e.g., effect x in Figure 1). By
imposing some minimal constraints, the space of unique multi-attribute decisions is finite and we
can obtain rankings for every decision in the space. For example, Figure 2c shows a complete list of
47 unique decisions involving up to five effects, subject to several constraints described later.

Three of these decisions are shown in Figure 1. If all the effects are positive—pieces of candy,
for example—the first decision (1a) suggests a strong preference for candy x, because the decision
maker turned down four pieces in favor of one. The second decision (1b), however, offers much
weaker evidence because nearly everyone would choose four pieces of candy over one, even without
a specific preference for x. The third decision (1c) provides evidence that is strong but perhaps not
quite as strong as the first decision. When all effects are negative—like electric shocks at different
body locations—decision makers may still find some effects more tolerable than others, but different
inferences are sometimes supported. For example, for negative effects, 1a provides weak evidence
that x is relatively tolerable because nearly everyone would choose one shock over four.

2 A computational account of preference learning

We now describe a simple computational model for learning a person’s preferences after observing
that person make a decision like the ones in Figure 1. We assume that there are n available options
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{o1, . . . , on}, each of which produces one or more effects from the set {f1, f2, ..., fm}. For simplic-
ity, we assume that effects are binary. Let ui denote the utility the decision maker assigns to effect
fi.

We begin by specifying a model of decision-making that makes the standard assumptions that de-
cision makers tend to choose things with greater utility and that utilities are additive. That is, if
fj is a binary vector indicating the effects produced by option oj and u is a vector of utilities as-
signed to each of the m effects, then the total utility associated with option oj can be expressed as
Uj = fj

Tu. We complete the specification of the model by applying the Luce choice rule [11], a
common psychological model of choice behavior, as the function that chooses among the options:

p(c = oj |u, f) =
exp(Uj)∑n
k=1 exp(Uk)

=
exp(fj

Tu)∑n
k=1 exp(fk

Tu)
(1)

where c denotes the choice made.

This model can predict the choice someone will make among a specified set of options, given the
utilities that person assigns to the effects in each option. To obtain estimates of someone’s utilities,
we invert this model by applying Bayes’ rule:

p(u|c,F) = p(c|u,F)p(u)
p(c|F)

(2)

where F = {f1, . . . , fn} specifies the available options and their corresponding effects. This is the
multinomial logit model [1], a standard econometric model. In order to apply Equation 2 we must
specify a prior p(u) on the utilities. We adopt a standard approach that places independent Gaussian
priors on the utilities: ui ∼ N (µ, σ2). For decisions where effects are positive—like candies—we
set µ = 2σ, which corresponds to a prior distribution that places approximately 2% of the probability
mass below zero. Similarly, for negative effects—like electric shocks—we set µ = −2σ.

2.1 Ordering a set of observed decisions

Equation 2 specifies a posterior probability distribution over utilities for a single observed decision
but does not provide a way to compare the inferences drawn from multiple decisions for the purposes
of ordering them. Suppose we are interested in a decision maker’s preference for effect x and we
wish to order a set of decisions by how strongly they support this preference. Two criteria for
ordering the decisions are as follows:

Absolute utility E(ux|c,F) = Eux

(
p(c|ux,F)p(ux)

p(c|F)

)
Relative utility p(∀j ux ≥ uj |c,F) =

p(c|∀j ux ≥ uj ,F)p(∀j ux ≥ uj)
p(c|F)

The absolute utility model orders decisions by the mean posterior utility for effect x. This criterion
is perhaps the most natural way to assess how much a decision indicates a preference for x, but
it requires an inference about the utility of x in isolation, and research suggests that people often
think about the utility of an effect only in relation to other salient possibilities [12]. The relative
utility model applies this idea to preference learning by ordering decisions based on how strongly
they suggest that x has a greater utility than all other effects. The decisions in Figures 1b and 1c are
cases where the two models lead to different predictions. If the effects are all negative (e.g., electric
shocks), the absolute utility model predicts that 1b provides stronger evidence for a tolerance for
x because the decision maker chose to receive four shocks instead of just one. The relative utility
model predicts that 1c provides stronger evidence because 1b offers no way to determine the relative
tolerance of the four chosen effects with respect to one another.

Like all generative models, the absolute and relative models incorporate three qualitatively differ-
ent components: the likelihood term p(c|u,F), the prior p(u), and the reciprocal of the marginal
likelihood 1/p(c|F). We assume that the total number of effects is fixed in advance and, as a re-
sult, the prior term will be the same for all decisions that we consider. The two other components,
however, will vary across decisions. The inverse decision-making approach predicts that both com-
ponents should influence preference judgments, and we will test this prediction by comparing our
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two inverse decision-making models to two alternatives that rely only one of these components as
an ordering criterion:

Representativeness p(c|∀j ux ≥ uj ,F)
Surprise 1/p(c|F)

The representativeness model captures how likely the observed decision would be if the utility for
x were high, and previous research has shown that people sometimes rely on a representativeness
computation of this kind [13]. The surprise model captures how unexpected the observed decision
is overall; surprising decisions may be best explained in terms of a strong preference for x, but
unsurprising decisions provide little information about x in particular.

2.2 Feature-based models

We also consider a class of feature-based models that use surface features to order decisions. The ten
features that we consider are shown in Figure 1d, where x is the effect of interest. As an example, the
first feature specifies the number of effects chosen; because x is always among the chosen effects,
decisions where few or no other effects belong to the chosen option suggest the strongest preference
for x (when all effects are positive). This and the second feature were previously identified by
Newtson [14]; we included the eight additional features shown in Figure 1d in an attempt to include
all possible features that seemed both simple and relevant.

We consider two methods for combining this set of features to order a set of decisions by how
strongly they suggest a preference for x. The first model is a standard linear regression model,
which we refer to as the weighted feature model. The model learns a weight for each feature, and
the rank of a given decision is determined by a weighted sum of its features. The second model
is a ranked feature model that sorts the observed decisions with respect to a strict ranking of the
features. The top-ranked feature corresponds to the primary sort key, the second-ranked feature to
the secondary sort key, and so on. For example, suppose that the top-ranked feature is the number
of chosen effects and the second-ranked feature is the number of forgone options. Sorting the three
decisions in Figure 1 according to this criterion produces the following ordering: 1a,1c,1b. This
notion of sorting items on the basis of ranked features has been applied before to decision-making
[15, 16] and other domains of psychology [17], but we are not aware of any previous applications to
preference learning.

Although our inverse decision-making and feature-based models represent two very different ap-
proaches, both may turn out to be valuable. An inverse decision-making approach may be the
appropriate account of preference learning at Marr’s [18] computational level, and a feature-based
approach may capture the psychological processes by which the computational-level account is im-
plemented. Our goal, therefore, is not necessarily to accept one of these approaches and dismiss
the other. Instead, we entertain three distinct possibilities. First, both approaches may account well
for the data, which would support the idea that they are valid accounts operating at different levels
of analysis. Second, the inverse decision-making approach may offer a better account, suggesting
that process-level accounts other than the feature-based approach should be explored. Finally, the
feature-based approach may offer a better account, suggesting that inverse decision-making does not
constitute an appropriate computational-level account of preference learning.

3 Experiment 1: Positive effects

Our first experiment focuses on decisions involving only positive effects. The full set of 47 decisions
we used is shown in Figure 2c. This set includes every possible unique decision with up to five
different effects, subject to the following constraints: (1) one of the effects (effect x) must always
appear in the chosen option, (2) there are no repeated options, (3) each effect may appear in an
option at most once, (4) only effects in the chosen option may be repeated in other options, and (5)
when effects appear in multiple options, the number of effects is held constant across options. The
first constraint is necessary for the sorting task, the second two constraints create a finite space of
decisions, and the final two constraints limit attention to what we deemed the most interesting cases.

Method 43 Carnegie Mellon undergraduates participated for course credit. Each participant was
given a set of cards, with one decision printed on each card. The decisions were represented visually
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(a)

(b)

(c) Decisions

1. dcbax

2. cbax

3. bax

4. ax

5. x

6. dcax | bcax

7. dx | cx | bx | ax

8. cax | bax

9. bdx | bcx | bax

10. dcx | bax

11. bx | ax

12. bdx | cax | bax

13. cx | bx | ax

14. d | cbax

15. c | bax

16. b | ax

17. d | c | bax

18. dc | bax

19. c | b | ax

20. dc | bx | ax

21. bdc | bax

23. d | c | b | ax

24. bad | bcx | bax

25. ac | bx | ax

26. cb | ax

27. cbad | cbax

28. dc | b | ax

29. ad | ac | bx | ax

30. ab | ax

31. bad | bax

32. dc | ab | ax

33. dcb | ax

34. a | x

35. bad | bac | bax

36. ac | ab | ax

37. ad | ac | ab | ax

38. b | a | x

39. ba | x

40. c | b | a | x

41. cb | a | x

42. d | c | b | a | x

43. cba | x

44. dc | ba | x

45. dc | b | a | x

46. dcb | a | x

47. dcba | x

22. ad | cx | bx | ax

Mean human rankings (Experiment 2)
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Figure 2: (a) Comparison between the absolute utility model rankings and the mean human rankings
for Experiment 1. Each point represents one decision, numbered with respect to the list in panel c.
(b) Comparison between the mean human rankings in Experiments 1 and 2. In both scatter plots,
the solid diagonal lines indicate a perfect correspondence between the two sets of rankings. (c) The
complete set of decisions, ordered by the mean human rankings from Experiment 1. Options are
separated by vertical bars and the chosen option is always at the far right. Participants were always
asked about a preference for effect x.

as in Figure 1 but without the letter labels. Participants were told that the effects were different types
of candy and each option was a bag containing one or more pieces of candy. They were asked to sort
the cards by how strongly each decision suggested that the decision maker liked a particular target
candy, labeled x in Figure 2c. They sorted the cards freely on a table but reported their final rankings
by writing them on a sheet of paper, from weakest to strongest evidence. They were instructed to
order the cards as completely as possible, but were told that they could assign the same ranking to a
set of cards if they believed those cards provided equal evidence.

3.1 Results

Two participants were excluded as outliers based on the criterion that their rankings for at least
five decisions were at least three standard deviations from the mean rankings. We performed a
hierarchical clustering analysis of the remaining 41 participants’ rankings using rank correlation as
a similarity metric. Participants’ rankings were highly correlated: cutting the resulting dendrogram
at 0.2 resulted in one cluster that included 33 participants and the second largest cluster included
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Figure 3: Comparison between human rankings in both experiments and predicted rankings from
four models. The solid diagonal lines indicate a perfect correspondence between human and model
rankings.

only 3 participants. Thus, we grouped all participants together and analyzed their mean rankings.
The 0.2 threshold was chosen because it produced the most informative clustering in Experiment 2.

Inverse decision-making models We implemented the inverse decision-making models using im-
portance sampling with 5 million samples drawn from the prior distribution p(u). Because all the
effects were positive, we used a prior on utilities that placed nearly all probability mass above zero
(µ = 4, σ = 2).

The mean human rankings are compared with the absolute utility model rankings in Figure 2a, and
the mean human rankings are listed in order in 2c. Fractional rankings were used for both the human
data and the model predictions. The human rankings in the figure are the means of participants’
fractional rankings. The first row of Figure 3 contains similar plots that allow comparison of the
four models we considered. In these plots, the solid diagonal lines indicate a perfect correspondence
between model and human rankings. Thus, the largest deviations from this line represent the largest
deviations in the data from the model’s predictions.

Figure 3 shows that the absolute and relative utility models make virtually identical predictions and
both models provide a strong account of the human rankings as measured by mean absolute error
(MAE = 2.3 in both cases). Moreover, both models correctly predict the highest ranked decision and
the set of lowest ranked decisions. The only clear discrepancy between the model predictions and
the data is the cluster of points at the lower left, labeled as Decisions 6–13 in Figure 2a. These are all
cases in which effect x appears in all options and therefore these decisions provide no information
about a decision maker’s preference for x. Consequently, the models assign the same ranking to this
group as to the group of decisions in which there is only a single option (Decisions 1–5). Although
people appeared to treat these groups somewhat differently, the models still correctly predict that the
entire group of decisions 1–13 is ranked lower than all other decisions.

The surprise and representativeness models do not perform nearly as well (MAE = 7.0 and 17.8, re-
spectively). Although the surprise model captures some of the general trends in the human rankings,
it makes several major errors. For example, consider Decision 7: dx|cx|bx|ax. This decision
provides no information about a preference for x because it appears in every option. The decision is
surprising, however, because a decision maker choosing at random from these options would make
the observed choice only 1/4 of the time. The representativeness model performs even worse, pri-
marily because it does not take into account alternative explanations for why an option was chosen,
such as the fact that no other options were available (e.g., Decision 1 in Figure 2c). The failure
of these models to adequately account for the data suggests that both the likelihood p(c|u,F) and
marginal likelihood p(c|F) are important components of the absolute and relative utility models.

Feature-based models We compared the performance of the absolute and relative utility models to
our two feature-based models: the weighted feature and ranked feature models. For each participant,
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Figure 4: Results of the feature-based
model analysis from Experiment 1 for (a)
the weighted feature models and (b) the
ranked feature models. The histograms
show the minimum number of features
needed to match the accuracy (measured
by MAE) of the absolute utility model for
each participant.

we considered every subset of features1 in Figure 1d in order to determine the minimum number of
features needed by the two models to achieve the same level of accuracy as the absolute utility
model, as measured by mean absolute error. The results of these analyses are shown in Figure 4. For
the majority of participants, at least four features were needed by both models to match the accuracy
of the absolute utility model. For the weighted feature model, 14 participants could not be fit as
well as the absolute utility model even when all ten features were considered. These results indicate
that a feature-based account of people’s inferences in our task must be supplied with a relatively
large number of features. By contrast, the inverse decision-making approach provides a relatively
parsimonious account of the data.

4 Experiment 2: Negative effects

Experiment 2 focused on a setting in which all effects are negative, motivated by the fact that the
inverse decision-making models predict several major differences in orderings when effects are neg-
ative rather than positive. For instance, the absolute utility model’s relative rankings of the decisions
in Figures 1a and 1b are reversed when all effects are negative rather than positive.

Method 42 Carnegie Mellon undergraduates participated for course credit. The experimental de-
sign was identical to Experiment 1 except that participants were told that the effects were electric
shocks at different body locations. They were asked to sort the cards on the basis of how strongly
each decision suggested that the decision maker finds shocks at the target location relatively toler-
able. The model predictions were derived in the same way as for Experiment 1, but with a prior
distribution on utilities that placed nearly all probability mass below zero (µ = −4, σ = 2) to reflect
the fact that effects were all negative.

4.1 Results

Three participants were excluded as outliers by the same criterion applied in Experiment 1. The re-
sulting mean rankings are compared with the corresponding rankings from Experiment 1 in Figure
2b. The figure shows that responses based on positive and negative effects were substantially differ-
ent in a number of cases. Figure 3 shows how the mean rankings compare to the predictions of the
four models we considered. Although the relative utility model is fairly accurate, no model achieves
the same level of accuracy as the absolute and relative utility models in Experiment 1. In addition,
the relative utility model provides a poor account of the responses of many individual participants.
To better understand responses at the individual level, we repeated the hierarchical clustering analy-
sis described in Experiment 1, which revealed that 29 participants could be grouped into one of four
clusters, with the remaining participants each in their own clusters. We analyzed these four clusters
independently, excluding the 10 participants that could not be naturally grouped.

We compared the mean rankings of each cluster to the absolute and relative utility models, as well as
all one- and two-feature weighted feature and ranked feature models. Figure 5 shows that the mean
rankings of participants in Cluster 1 (N = 8) were best fit by the absolute utility model, the mean
rankings of participants in Cluster 2 (N = 12) were best fit by the relative utility model, and the
mean rankings of participants in Clusters 3 (N = 3) and 4 (N = 6) were better fit by feature-based
models than by either the absolute or relative utility models.

1A maximum of six features was considered for the ranked feature model because considering more features
was computationally intractable.
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Figure 5: Comparison between human rankings for four clusters of participants identified in Ex-
periment 2 and predicted rankings from three models. Each point in the plots corresponds to one
decision and the solid diagonal lines indicate a perfect correspondence between human and model
rankings. The third row shows the predictions of the best-fitting two-factor weighted feature model
for each cluster. The two factors listed refer to Figure 1d.

To examine how well the models accounted for individuals’ rankings within each cluster, we com-
pared the predictions of the inverse decision-making models to the best-fitting two-factor feature-
based model for each participant. In Cluster 1, 7 out of 8 participants were best fit by the absolute
utility model; in Cluster 2, 8 out of 12 participants were best fit by the relative utility model; in
Clusters 3 and 4, all participants were better fit by feature-based models. No single feature-based
model provided the best fit for more than two participants, suggesting that participants not fit well
by the inverse decision-making models were not using a single alternative strategy.

Applying the feature-based model analysis from Experiment 1 to the current results revealed that the
weighted feature model required an average of 6.0 features to match the performance of the absolute
utility model for participants in Cluster 1, and an average of 3.9 features to match the performance
of the relative utility model for participants in Cluster 2. Thus, although a single model did not fit all
participants well in the current experiment, many participants were fit well by one of the two inverse
decision-making models, suggesting that this general approach is useful for explaining how people
reason about negative effects as well as positive effects.

5 Conclusion

In two experiments, we found that an inverse decision-making approach offered a good computa-
tional account of how people make judgments about others’ preferences. Although this approach is
conceptually simple, our analyses indicated that it captures the influence of a fairly large number of
relevant decision features. Indeed, the feature-based models that we considered as potential process
models of preference learning could only match the performance of the inverse decision-making
approach when supplied with a relatively large number of features. We feel that this result rules out
the feature-based approach as psychologically implausible, meaning that alternative process-level
accounts will need to be explored. One possibility is sampling, which has been proposed as a psy-
chological mechanism for approximating probabilistic inferences [19, 20]. However, even if process
models that use large numbers of features are considered plausible, the inverse decision-making ap-
proach provides a valuable computational-level account that helps to explain which decision features
are informative.
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