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Abstract

This work considers the problem of learning the structure of multivariate linear
tree models, which include a variety of directed tree graphical models with contin-
uous, discrete, and mixed latent variables such as linear-Gaussian models, hidden
Markov models, Gaussian mixture models, and Markov evolutionary trees. The
setting is one where we only have samples from certain observed variables in the
tree, and our goal is to estimate the tree structure (i.e., the graph of how the under-
lying hidden variables are connected to each other and to the observed variables).
We propose the Spectral Recursive Grouping algorithm, an efficient and simple
bottom-up procedure for recovering the tree structure from independent samples
of the observed variables. Our finite sample size bounds for exact recovery of
the tree structure reveal certain natural dependencies on underlying statistical and
structural properties of the underlying joint distribution. Furthermore, our sample
complexity guarantees have no explicit dependence on the dimensionality of the
observed variables, making the algorithm applicable to many high-dimensional
settings. At the heart of our algorithm is a spectral quartet test for determining the
relative topology of a quartet of variables from second-order statistics.

1 Introduction

Graphical models are a central tool in modern machine learning applications, as they provide a
natural methodology for succinctly representing high-dimensional distributions. As such, they have
enjoyed much success in various AI and machine learning applications such as natural language
processing, speech recognition, robotics, computer vision, and bioinformatics.

The main statistical challenges associated with graphical models include estimation and inference.
While the body of techniques for probabilistic inference in graphical models is rather rich [1], current
methods for tackling the more challenging problems of parameter and structure estimation are less
developed and understood, especially in the presence of latent (hidden) variables. The problem of
parameter estimation involves determining the model parameters from samples of certain observed
variables. Here, the predominant approach is the expectation maximization (EM) algorithm, and
only rather recently is the understanding of this algorithm improving [2, 3]. The problem of structure
learning is to estimate the underlying graph of the graphical model. In general, structure learning is
NP-hard and becomes even more challenging when some variables are unobserved [4]. The main
approaches for structure estimation are either greedy or local search approaches [5, 6] or, more
recently, based on convex relaxation [7].
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Figure 1: The four possible (undirected) tree topologies over leaves {z1, z2, z3, z4}.

This work focuses on learning the structure of multivariate latent tree graphical models. Here, the
underlying graph is a directed tree (e.g., hidden Markov model, binary evolutionary tree), and only
samples from a set of (multivariate) observed variables (the leaves of the tree) are available for
learning the structure. Latent tree graphical models are relevant in many applications, ranging from
computer vision, where one may learn object/scene structure from the co-occurrences of objects to
aid image understanding [8]; to phylogenetics, where the central task is to reconstruct the tree of life
from the genetic material of surviving species [9].

Generally speaking, methods for learning latent tree structure exploit structural properties afforded
by the tree that are revealed through certain statistical tests over every choice of four variables in the
tree. These quartet tests, which have origins in structural equation modeling [10, 11], are hypothesis
tests of the relative configuration of four (possibly non-adjacent) nodes/variables in the tree (see
Figure 1); they are also related to the four point condition associated with a corresponding additive
tree metric induced by the distribution [12]. Some early methods for learning tree structure are based
on the use of exact correlation statistics or distance measurements (e.g., [13, 14]). Unfortunately,
these methods ignore the crucial aspect of estimation error, which ultimately governs their sample
complexity. Indeed, this (lack of) robustness to estimation error has been quantified for various
algorithms (notably, for the popular Neighbor Joining algorithm [15, 16]), and therefore serves as a
basis for comparing different methods. Subsequent work in the area of mathematical phylogenetics
has focused on the sample complexity of evolutionary tree reconstruction [17, 15, 18, 19]. The basic
model there corresponds to a directed tree over discrete random variables, and much of the recent
effort deals exclusively in the regime for a certain model parameter (the Kesten-Stigum regime [20])
that allows for a sample complexity that is polylogarithmic in the number of leaves, as opposed
to polynomial [18, 19]. Finally, recent work in machine learning has developed structure learning
methods for latent tree graphical models that extend beyond the discrete distributions of evolutionary
trees [21], thereby widening their applicability to other problem domains.

This work extends beyond previous studies, which have focused on latent tree models with either
discrete or scalar Gaussian variables, by directly addressing the multivariate setting where hidden
and observed nodes may be random vectors rather than scalars. The generality of our techniques
allows us to handle a much wider class of distributions than before, both in terms of the conditional
independence properties imposed by the models (i.e., the random vector associated with a node need
not follow a distribution that corresponds to a tree model), as well as other characteristics of the node
distributions (e.g., some nodes in the tree could have discrete state spaces and others continuous, as
in a Gaussian mixture model).

We propose the Spectral Recursive Grouping algorithm for learning multivariate latent tree structure.
The algorithm has at its core a multivariate spectral quartet test, which extends the classical quar-
tet tests for scalar variables by applying spectral techniques from multivariate statistics (specifically
canonical correlation analysis [22, 23]). Spectral methods have enjoyed recent success in the context
of parameter estimation [24, 25, 26, 27]; our work shows that they are also useful for structure learn-
ing. We use the spectral quartet test in a simple modification of the recursive grouping algorithm
of [21] to perform the tree reconstruction. The algorithm is essentially a robust method for reasoning
about the results of quartet tests (viewed simply as hypothesis tests); the tests either confirm or reject
hypotheses about the relative topology over quartets of variables. By carefully choosing which tests
to consider and properly interpreting their results, the algorithm is able to recover the correct latent
tree structure (with high probability) in a provably efficient manner, in terms of both computational
and sample complexity. The recursive grouping procedure is similar to the short quartet method

from phylogenetics [15], which also guarantees efficient reconstruction in the context of evolution-
ary trees. However, our method and analysis applies to considerably more general high-dimensional
settings; for instance, our sample complexity bound is given in terms of natural correlation con-
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ditions that generalize the more restrictive effective depth conditions of previous works [15, 21].
Finally, we note that while we do not directly address the question of parameter estimation, prov-
able parameter estimation methods may derived using the spectral techniques from [24, 25].

2 Preliminaries

2.1 Latent variable tree models

Let T be a connected, directed tree graphical model with leaves Vobs := {x1, x2, . . . , xn} and
internal nodes Vhid := {h1, h2, . . . , hm} such that every node has at most one parent. The leaves
are termed the observed variables and the internal nodes hidden variables. Note that all nodes in
this work generally correspond to multivariate random vectors; we will abuse terminology and still
refer to these random vectors as random variables. For any h ∈ Vhid, let ChildrenT(h) ⊆ VT denote
the children of h in T.

Each observed variable x ∈ Vobs is modeled as random vector in Rd, and each hidden variable
h ∈ Vhid as a random vector in Rk. The joint distribution over all the variables VT := Vobs ∪
Vhid is assumed satisfy conditional independence properties specified by the tree structure over the
variables. Specifically, for any disjoint subsets V1, V2, V3 ⊆ VT such that V3 separates V1 from V2

in T, the variables in V1 are conditionally independent of those in V2 given V3.

2.2 Structural and distributional assumptions

The class of models considered are specified by the following structural and distributional assump-
tions.
Condition 1 (Linear conditional means). Fix any hidden variable h ∈ Vhid. For each hidden child
g ∈ ChildrenT(h) ∩ Vhid, there exists a matrix A(g|h) ∈ Rk×k such that

E[g|h] = A(g|h)h;

and for each observed child x ∈ ChildrenT(h) ∩ Vobs, there exists a matrix C(x|h) ∈ Rd×k such
that

E[x|h] = C(x|h)h.

We refer to the class of tree graphical models satisfying Condition 1 as linear tree models. Such
models include a variety of continuous and discrete tree distributions (as well as hybrid combinations
of the two, such as Gaussian mixture models) which are widely used in practice. Continuous linear
tree models include linear-Gaussian models and Kalman filters. In the discrete case, suppose that
the observed variables take on d values, and hidden variables take k values. Then, each variable is
represented by a binary vector in {0, 1}s, where s = d for the observed variables and s = k for
the hidden variables (in particular, if the variable takes value i, then the corresponding vector is the
i-th coordinate vector), and any conditional distribution between the variables is represented by a
linear relationship. Thus, discrete linear tree models include discrete hidden Markov models [25]
and Markovian evolutionary trees [24].

In addition to the linearity, the following conditions are assumed in order to recover the hidden tree
structure. For any matrix M , let σt(M) denote its t-th largest singular value.
Condition 2 (Rank condition). The variables in VT = Vhid ∪ Vobs obey the following rank condi-
tions.

1. For all h ∈ Vhid, E[hh�] has rank k (i.e., σk(E[hh�]) > 0).

2. For all h ∈ Vhid and hidden child g ∈ ChildrenT(h) ∩ Vhid, A(g|h) has rank k.

3. For all h ∈ Vhid and observed child x ∈ ChildrenT(h) ∩ Vobs, C(x|h) has rank k.

The rank condition is a generalization of parameter identifiability conditions in latent variable mod-
els [28, 24, 25] which rules out various (provably) hard instances in discrete variable settings [24].

3



x6

x1 x2

x3h1

h2

x4 x5

h3

h4

T1 T2 T3

Figure 2: Set of trees Fh4 = {T1, T2, T3} obtained if h4 is removed.

Condition 3 (Non-redundancy condition). Each hidden variable has at least three neighbors. Fur-
thermore, there exists ρ2max > 0 such that for each pair of distinct hidden variables h, g ∈ Vhid,

det(E[hg�])2
det(E[hh�]) det(E[gg�]) ≤ ρ2max < 1.

The requirement for each hidden node to have three neighbors is natural; otherwise, the hidden
node can be eliminated. The quantity ρmax is a natural multivariate generalization of correlation.
First, note that ρmax ≤ 1, and that if ρmax = 1 is achieved with some h and g, then h and g are
completely correlated, implying the existence of a deterministic map between hidden nodes h and
g; hence simply merging the two nodes into a single node h (or g) resolves this issue. Therefore
the non-redundancy condition simply means that any two hidden nodes h and g cannot be further
reduced to a single node. Clearly, this condition is necessary for the goal of identifying the correct
tree structure, and it is satisfied as soon as h and g have limited correlation in just a single direction.
Previous works [13, 29] show that an analogous condition ensures identifiability for general latent
tree models (and in fact, the conditions are identical in the Gaussian case). Condition 3 is therefore
a generalization of this condition suitable for the multivariate setting.

Our learning guarantees also require a correlation condition that generalize the explicit depth condi-
tions considered in the phylogenetics literature [15, 24]. To state this condition, first define Fh to be
the set of subtrees of that remain after a hidden variable h ∈ Vhid is removed from T (see Figure 2).
Also, for any subtree T � of T, let Vobs[T �] ⊆ Vobs be the observed variables in T �.

Condition 4 (Correlation condition). There exists γmin > 0 such that for all hidden variables h ∈
Vhid and all triples of subtrees {T1, T2, T3} ⊆ Fh in the forest obtained if h is removed from T,

max
x1∈Vobs[T1],x2∈Vobs[T2],x3∈Vobs[T3]

min
{i,j}⊂{1,2,3}

σk(E[xix
�
j ]) ≥ γmin.

The quantity γmin is related to the effective depth of T, which is the maximum graph distance
between a hidden variable and its closest observed variable [15, 21]. The effective depth is at most
logarithmic in the number of variables (as achieved by a complete binary tree), though it can also be
a constant if every hidden variable is close to an observed variable (e.g., in a hidden Markov model,
the effective depth is 1, even though the true depth, or diameter, is m + 1). If the matrices giving
the (conditionally) linear relationship between neighboring variables in T are all well-conditioned,
then γmin is at worst exponentially small in the effective depth, and therefore at worst polynomially
small in the number of variables.

Finally, also define

γmax := max
{x1,x2}⊆Vobs

{σ1(E[x1x
�
2 ])}

to be the largest spectral norm of any second-moment matrix between observed variables. Note
γmax ≤ 1 in the discrete case, and, in the continuous case, γmax ≤ 1 if each observed random
vector is in isotropic position.

In this work, the Euclidean norm of a vector x is denoted by �x�, and the (induced) spectral norm
of a matrix A is denoted by �A�, i.e., �A� := σ1(A) = sup{�Ax� : �x� = 1}.
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Algorithm 1 SpectralQuartetTest on observed variables {z1, z2, z3, z4}.

Input: For each pair {i, j} ⊂ {1, 2, 3, 4}, an empirical estimate Σ̂i,j of the second-moment matrix
E[ziz�j ] and a corresponding confidence parameter ∆i,j > 0.

Output: Either a pairing {{zi, zj}, {zi� , zj�}} or ⊥.
1: if there exists a partition of {z1, z2, z3, z4} = {zi, zj} ∪ {zi� , zj�} such that

k�

s=1

[σs(Σ̂i,j)−∆i,j ]+[σs(Σ̂i�,j�)−∆i�,j� ]+ >
k�

s=1

(σs(Σ̂i�,j) + ∆i�,j)(σs(Σ̂i,j�) + ∆i,j�)

then return the pairing {{zi, zj}, {zi� , zj�}}.
2: else return ⊥.

3 Spectral quartet tests

This section describes the core of our learning algorithm, a spectral quartet test that determines
topology of the subtree induced by four observed variables {z1, z2, z3, z4}. There are four possi-
bilities for the induced subtree, as shown in Figure 1. Our quartet test either returns the correct
induced subtree among possibilities in Figure 1(a)–(c); or it outputs ⊥ to indicate abstinence. If the
test returns ⊥, then no guarantees are provided on the induced subtree topology. If it does return a
subtree, then the output is guaranteed to be the correct induced subtree (with high probability).

The quartet test proposed is described in Algorithm 1 (SpectralQuartetTest). The notation [a]+
denotes max{0, a} and [t] (for an integer t) denotes the set {1, 2, . . . , t}.

The quartet test is defined with respect to four observed variables Z := {z1, z2, z3, z4}. For each
pair of variables zi and zj , it takes as input an empirical estimate Σ̂i,j of the second-moment matrix
E[ziz�j ], and confidence bound parameters ∆i,j which are functions of N , the number of samples
used to compute the Σ̂i,j’s, a confidence parameter δ, and of properties of the distributions of zi and
zj . In practice, one uses a single threshold ∆ for all pairs, which is tuned by the algorithm. Our
theoretical analysis also applies to this case. The output of the test is either ⊥ or a pairing of the
variables {{zi, zj}, {zi� , zj�}}. For example, if the output is the pairing is {{z1, z2}, {z3, z4}}, then
Figure 1(a) is the output topology.

Even though the configuration in Figure 1(d) is a possibility, the spectral quartet test never returns
{{z1, z2, z3, z4}}, as there is no correct pairing of Z . The topology {{z1, z2, z3, z4}} can be viewed
as a degenerate case of {{z1, z2}, {z3, z4}} (say) where the hidden variables h and g are determin-
istically identical, and Condition 3 fails to hold with respect to h and g.

3.1 Properties of the spectral quartet test

With exact second moments: The spectral quartet test is motivated by the following lemma, which
shows the relationship between the singular values of second-moment matrices of the zi’s and the
induced topology among them in the latent tree. Let detk(M) :=

�k
s=1 σs(M) denote the product

of the k largest singular values of a matrix M .
Lemma 1 (Perfect quartet test). Suppose that the observed variables Z = {z1, z2, z3, z4} have

the true induced tree topology shown in Figure 1(a), and the tree model satisfies Condition 1 and

Condition 2. Then

detk(E[z1z�3 ])detk(E[z2z�4 ])

detk(E[z1z�2 ])detk(E[z3z�4 ])
=

detk(E[z1z�4 ])detk(E[z2z�3 ])

detk(E[z1z�2 ])detk(E[z3z�4 ])
=

det(E[hg�])2
det(E[hh�]) det(E[gg�]) ≤ 1

(1)

and detk(E[z1z�3 ])detk(E[z2z�4 ]) = detk(E[z1z�4 ])detk(E[z2z�3 ]).

This lemma shows that given the true second-moment matrices and assuming Condition 3, the in-
equality in (1) becomes strict and thus can be used to deduce the correct topology: the correct pairing
is {{zi, zj}, {zi� , zj�}} if and only if

detk(E[ziz�j ])detk(E[zi�z�j� ]) > detk(E[zi�z�j ])detk(E[ziz�j� ]).
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Reliability: The next lemma shows that even if the singular values of E[ziz�j ] are not known ex-
actly, then with valid confidence intervals (that contain these singular values) a robust test can be
constructed which is reliable in the following sense: if it does not output ⊥, then the output topology
is indeed the correct topology.
Lemma 2 (Reliability). Consider the setup of Lemma 1, and suppose that Figure 1(a) is the

correct topology. If for all pairs {zi, zj} ⊂ Z and all s ∈ [k], σs(Σ̂i,j) − ∆i,j ≤
σs(E[ziz�j ]) ≤ σs(Σ̂i,j)+∆i,j , and if SpectralQuartetTest returns a pairing {{zi, zj}, {zi� , zj�}},

then {{zi, zj}, {zi� , zj�}} = {{z1, z2}, {z3, z4}}.

In other words, the spectral quartet test never returns an incorrect pairing as long as the singular
values of E[ziz�j ] lie in an interval of length 2∆i,j around the singular values of Σ̂i,j . The lemma
below shows how to set the ∆i,js as a function of N , δ and properties of the distributions of zi and zj
so that this required event holds with probability at least 1− δ. We remark that any valid confidence
intervals may be used; the one described below is particularly suitable when the observed variables
are high-dimensional random vectors.
Lemma 3 (Confidence intervals). Let Z = {z1, z2, z3, z4} be four random vectors. Let �zi� ≤ Mi

almost surely, and let δ ∈ (0, 1/6). If each empirical second-moment matrix Σ̂i,j is computed using

N iid copies of zi and zj , and if

d̄i,j :=
E[�zi�2�zj�2]− tr(E[ziz�j ]E[ziz�j ]�)

max{�E[�zj�2ziz�i ]�, �E[�zi�2zjz�j ]�} , ti,j := 1.55 ln(24d̄i,j/δ),

∆i,j ≥

�
2max

���E[�zj�2ziz�i ]
��,

��E[�zi�2zjz�j ]
���ti,j

N
+

MiMjti,j
3N

,

then with probability 1− δ, for all pairs {zi, zj} ⊂ Z and all s ∈ [k],

σs(Σ̂i,j)−∆i,j ≤ σs(E[ziz�j ]) ≤ σs(Σ̂i,j) + ∆i,j . (2)

Conditions for returning a correct pairing: The conditions under which SpectralQuartetTest
returns an induced topology (as opposed to ⊥) are now provided.

An important quantity in this analysis is the level of non-redundancy between the hidden variables
h and g. Let

ρ2 :=
det(E[hg�])2

det(E[hh�]) det(E[gg�]) . (3)

If Figure 1(a) is the correct induced topology among {z1, z2, z3, z4}, then the smaller ρ is, the
greater the gap between detk(E[z1z�2 ])detk(E[z3z�4 ]) and either of detk(E[z1z�3 ])detk(E[z2z�4 ])
and detk(E[z1z�4 ])detk(E[z2z�3 ]). Therefore, ρ also governs how small the ∆i,j need to be for the
quartet test to return a correct pairing; this is quantified in Lemma 4. Note that Condition 3 implies
ρ ≤ ρmax < 1.
Lemma 4 (Correct pairing). Suppose that (i) the observed variables Z = {z1, z2, z3, z4} have the

true induced tree topology shown in Figure 1(a); (ii) the tree model satisfies Condition 1, Condi-

tion 2, and ρ < 1 (where ρ is defined in (3)), and (iii) the confidence bounds in (2) hold for all {i, j}
and all s ∈ [k]. If

∆i,j <
1

8k
·min

�
1,

1

ρ
− 1

�
·min
{i,j}

{σk(E[ziz�j ])}

for each pair {i, j}, then SpectralQuartetTest returns the correct pairing {{z1, z2}, {z3, z4}}.

4 The Spectral Recursive Grouping algorithm

The Spectral Recursive Grouping algorithm, presented as Algorithm 2, uses the spectral quartet test
discussed in the previous section to estimate the structure of a multivariate latent tree distribution
from iid samples of the observed leaf variables.1 The algorithm is a modification of the recursive

1To simplify notation, we assume that the estimated second-moment matrices �Σx,y and threshold parame-
ters ∆x,y ≥ 0 for all pairs {x, y} ⊂ Vobs are globally defined. In particular, we assume the spectral quartet
tests use these quantities.
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Algorithm 2 Spectral Recursive Grouping.

Input: Empirical second-moment matrices �Σx,y for all pairs {x, y} ⊂ Vobs computed from N iid
samples from the distribution over Vobs; threshold parameters ∆x,y for all pairs {x, y} ⊂ Vobs.

Output: Tree structure �T or “failure”.
1: let R := Vobs, and for all x ∈ R, T [x] := rooted single-node tree x and L[x] := {x}.
2: while |R| > 1 do
3: let pair {u, v} ∈ {{ũ, ṽ} ⊆ R : Mergeable(R,L[·], ũ, ṽ) = true} be such that

max{σk( �Σx,y) : (x, y) ∈ L[u] × L[v]} is maximized. If no such pair exists, then halt
and return “failure”.

4: let result := Relationship(R,L[·], T [·], u, v).
5: if result = “siblings” then
6: Create a new variable h, create subtree T [h] rooted at h by joining T [u] and T [v] to h with

edges {h, u} and {h, v}, and set L[h] := L[u] ∪ L[v].
7: Add h to R, and remove u and v from R.
8: else if result = “u is parent of v” then
9: Modify subtree T [u] by joining T [v] to u with an edge {u, v}, and modify L[u] := L[u]∪

L[v].
10: Remove v from R.
11: else if result = “v is parent of u” then
12: {Analogous to above case.}
13: end if
14: end while
15: Return �T := T [h] where R = {h}.

grouping (RG) procedure proposed in [21]. RG builds the tree in a bottom-up fashion, where the
initial working set of variables are the observed variables. The variables in the working set always
correspond to roots of disjoint subtrees of T discovered by the algorithm. (Note that because these
subtrees are rooted, they naturally induce parent/child relationships, but these may differ from those
implied by the edge directions in T.) In each iteration, the algorithm determines which variables in
the working set to combine. If the variables are combined as siblings, then a new hidden variable
is introduced as their parent and is added to the working set, and its children are removed. If the
variables are combined as neighbors (parent/child), then the child is removed from the working set.
The process repeats until the entire tree is constructed.

Our modification of RG uses the spectral quartet tests from Section 3 to decide which subtree roots
in the current working set to combine. Note that because the test may return ⊥ (a null result), our
algorithm uses the tests to rule out possible siblings or neighbors among variables in the working
set—this is encapsulated in the subroutine Mergeable (Algorithm 3), which tests quartets of ob-
served variables (leaves) in the subtrees rooted at working set variables. For any pair {u, v} ⊆ R
submitted to the subroutine (along with the current working set R and leaf sets L[·]):

• Mergeable returns false if there is evidence (provided by a quartet test) that u and v should
first be joined with different variables (u� and v�, respectively) before joining with each
other; and

• Mergeable returns true if no quartet test provides such evidence.

The subroutine is also used by the subroutine Relationship (Algorithm 4) which determines whether
a candidate pair of variables should be merged as neighbors (parent/child) or as siblings: essentially,
to check if u is a parent of v, it checks if v is a sibling of each child of u. The use of unreliable
estimates of long-range correlations is avoided by only considering highly-correlated variables as
candidate pairs to merge (where correlation is measured using observed variables in their corre-
sponding subtrees as proxies). This leads to a sample-efficient algorithm for recovering the hidden
tree structure.

The Spectral Recursive Grouping algorithm enjoys the following guarantee.
Theorem 1. Let η ∈ (0, 1). Assume the directed tree graphical model T over variables (random

vectors) VT = Vobs ∪ Vhid satisfies Conditions 1, 2, 3, and 4. Suppose the Spectral Recursive
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Algorithm 3 Subroutine Mergeable(R,L[·], u, v).
Input: Set of nodes R; leaf sets L[v] for all v ∈ R; distinct u, v ∈ R.
Output: true or false.

1: if there exists distinct u�, v� ∈ R \ {u, v} and (x, y, x�, y�) ∈ L[u] × L[v] × L[u�] × L[v�] s.t.
SpectralQuartetTest({x, y, x�, y�}) returns {{x, x�}, {y, y�}} or {{x, y�}, {x�, y}} then return
false.

2: else return true.

Algorithm 4 Subroutine Relationship(R,L[·], T [·], u, v).
Input: Set of nodes R; leaf sets L[v] for all v ∈ R; rooted subtrees T [v] for all v ∈ R; distinct

u, v ∈ R.
Output: “siblings”, “u is parent of v” (“u → v”), or “v is parent of u” (“v → u”).

1: if u is a leaf then assert u �→ v.
2: if v is a leaf then assert v �→ u.
3: let R[w] := (R \ {w}) ∪ {w� : w� is a child of w in T [w]} for each w ∈ {u, v}.
4: if there exists child u1 of u in T [u] s.t. Mergeable(R[u],L[·], u1, v)= false then assert “u �→ v”.
5: if there exists child v1 of v in T [v] s.t. Mergeable(R[v],L[·], u, v1)= false then assert “v �→ u”.
6: if both “u �→ v” and “v �→ u” were asserted then return “siblings”.
7: else if “u �→ v” was asserted then return “v is parent of u” (“v → u”).
8: else return “u is parent of v” (“u → v”).

Grouping algorithm (Algorithm 2) is provided N independent samples from the distribution over

Vobs, and uses parameters given by

∆xi,xj :=

�
2Bxi,xj txi,xj

N
+

MxiMxj txi,xj

3N
(4)

where

Bxi,xj := max
���E[�xi�2xjx

�
j ]
��,
��E[�xj�2xix

�
i ]
���, Mxi ≥ �xi� almost surely,

d̄xi,xj :=
E[�xi�2�xj�2]− tr(E[xix�

j ]E[xjx�
i ])

max
���E[�xj�2xix�

i ]
��,

��E[�xi�2xjx�
j ]
��� , txi,xj := 4 ln(4d̄xi,xjn/η).

Let B := maxxi,xj∈Vobs{Bxi,xj}, M := maxxi∈Vobs{Mxi}, t := maxxi,xj∈Vobs{txi,xj}. If

N >
200 · k2 ·B · t

�
γ2
min

γmax
· (1− ρmax)

�2 +
7 · k ·M2 · t

γ2
min

γmax
· (1− ρmax)

,

then with probability at least 1−η, the Spectral Recursive Grouping algorithm returns a tree �T with

the same undirected graph structure as T.

Consistency is implied by the above theorem with an appropriate scaling of η with N . The theorem
reveals that the sample complexity of the algorithm depends solely on intrinsic spectral properties
of the distribution. Note that there is no explicit dependence on the dimensions of the observable
variables, which makes the result applicable to high-dimensional settings.
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