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Abstract

Metric learning has become a very active research field. The most popular
representative–Mahalanobis metric learning–can be seen as learning a linear trans-
formation and then computing the Euclidean metric in the transformed space.
Since a linear transformation might not always be appropriate for a given learning
problem, kernelized versions of various metric learning algorithms exist. How-
ever, the problem then becomes finding the appropriate kernel function. Multiple
kernel learning addresses this limitation by learning a linear combination of a
number of predefined kernels; this approach can be also readily used in the con-
text of multiple-source learning to fuse different data sources. Surprisingly, and
despite the extensive work on multiple kernel learning for SVMs, there has been
no work in the area of metric learning with multiple kernel learning. In this paper
we fill this gap and present a general approach for metric learning with multiple
kernel learning. Our approach can be instantiated with different metric learning
algorithms provided that they satisfy some constraints. Experimental evidence
suggests that our approach outperforms metric learning with an unweighted ker-
nel combination and metric learning with cross-validation based kernel selection.

1 Introduction

Metric learning (ML), which aims at learning dissimilarities by determining the importance of dif-
ferent input features and their correlations, has become a very active research field over the last
years [23, 5, 3, 14, 22, 7, 12]. The most prominent form of ML is learning the Mahalanobis metric.
Its computation can be seen as a two-step process; in the first step we perform a linear projection of
the instances and in the second step we compute their Euclidean metric in the projected space.

Very often a linear projection cannot adequately represent the inherent complexities of a problem
at hand. To address this limitation various works proposed kernelized versions of ML methods in
order to implicitly compute a linear transformation and Euclidean metric in some non-linear feature
space; this computation results in a non-linear projection and distance computation in the original
input space [23, 5, 3, 14, 22]. However, we are now faced with a new problem, namely that of
finding the appropriate kernel function and the associated feature space matching the requirements
of the learning problem.

The simplest approach to address this problem is to select the best kernel from a predefined kernel
set using internal cross-validation. The main drawback of this approach is that only one kernel
is selected which limits the expressiveness of the resulting method. Additionally, this approach
is limited to a small number of kernels–due to computational constraints–and requires the use of
extra data. Multiple Kernel Learning (MKL) [10, 17] lifts the above limitations by learning a linear
combination of a number of predefined kernels. The MKL approach can also naturally handle the
multiple-source learning scenarios where instead of combining kernels defined on a single input
data, which depending on the selected kernels could give rise to feature spaces with redundant
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features, we combine different and complementary data sources. In [11, 13] the authors propose a
method that learns a distance metric for multiple-source problems within a multiple-kernel scenario.
The proposed method defines the distance of two instances as the sum of their distances in the
feature spaces induced by the different kernels. During learning, a set of Mahalanobis metrics, one
for each source, are learned together. However, this approach ignores the potential correlations
between the different kernels. To the best of our knowledge most of the work on MKL has been
confined in the framework of SVMs and despite the recent popularity of ML there exists so far no
work that performs MKL in the ML framework by learning a distance metric in the weighted linear
combination of feature spaces.

In this paper we show how to perform the Mahalanobis ML with MKL. We first propose a general
framework of ML with MKL which can be instantiated with virtually any Mahalanobis ML algo-
rithm h provided that the latter satisfies some stated conditions. We examine two parametrizations
of the learning problem that give rise to two alternative formulations, denoted by MLh-MKLµ and
MLh-MKLP. Our approach can be seen as the counterpart of MKL with SVMs [10, 20, 17] for ML.
Since the learned metric matrix has a regularized form (i.e. it has internal structure) we propose a
straightforward non-regularized version of ML with MKL, denoted by NR-MLh-MKL; however, due
to the number of free parameters the non-regularized version can only scale with very small number
of kernels and requires ML methods that are able to cope with large dimensionalities. We performed
a number of experiments for ML with MKL in which, for the needs of this paper, we have cho-
sen the well known Large Margin Nearest Neighbor [22] (LMNN) algorithm as the ML method h.
The experimental results suggest that LMNN-MKLP outperforms LMNN with an unweighted kernel
combination and the single best kernel selected by internal cross-validation.

2 Preliminaries

In the different flavors of metric learning we are given a matrix of learning instances X : n× d, the
i-th row of which is the xTi ∈ Rd instance, and a vector of class labels y = (y1, . . . , yn)T , yi ∈
{1, . . . , c}. Consider a mapping Φl(x) of instances x to some feature space Hl, i.e. x → Φl(x) ∈
Hl. The corresponding kernel function kl(xi,xj) computes the inner product of two instances
in the Hl feature space, i.e. kl(xi,xj) = 〈Φl(xi),Φl(xj)〉. We denote dimensionality of Hl
(possibly infinite) as dl. The squared Mahalanobis distance of two instances in the Hl space
is given by d2

Ml
(Φl(xi),Φl(xj)) = (Φl(xi) − Φl(xj))TMl(Φl(xi) − Φl(xj)), where Ml is

a Positive Semi-Definite (PSD) metric matrix in the Hl space (Ml � 0). For some given ML
method h we optimize (most often minimize) some cost function Fh with respect to the Ml met-
ric matrix1 under the PSD constraint for Ml and an additional set of pairwise distance constraints
Ch({d2

Ml
(Φl(xi),Φl(xj)) | i, j = 1, . . . , n}) that depend on the choice of h, e.g. similarity and

dissimilarity pairwise constraint [3] and relative comparison constraint [22]. In the reminder of this
paper, for simplicity, we denote this set of constraints as Ch(d2

Ml
(Φl(xi),Φl(xj))). The kernelized

ML optimization problem can be now written as:
min
Ml

Fh(Ml) s.t. Ch(d2
Ml

(Φl(xi),Φl(xj))), Ml � 0 (1)

Kernelized ML methods do not require to learn the explicit form of the Mahalanobis metric Ml. It
was shown in [9] that the optimal solution of the Mahalanobis metric Ml is in the form of Ml =
ηhI + Φl(X)TAlΦl(X), where I is the identity matrix of dimensionality dl × dl, Al is a n × n
PSD matrix, Φl(X) is the matrix of learning instances in theHl space (with instances in rows), and
ηh is a constant that depends on the ML method h. Since in the vast majority of the existing ML
methods [19, 8, 18, 23, 5, 14, 22] the value of constant ηh is zero, in this paper we only consider the
optimal form of Ml with ηh = 0. Under the optimal parametrization of Ml = Φl(X)TAlΦl(X)
the squared Mahalanobis distance becomes:

d2
Ml

(Φl(xi),Φl(xj)) = (Ki
l −Kj

l )
TAl(Ki

l −Kj
l ) = d2

Al
(Φl(xi),Φl(xj)) (2)

where Ki
l is the i-th column of kernel matrix Kl, the (i, j) element of which is Klij

= kl(xi,xj).
As a result, (1) can be rewritten as:

min
Al

Fh(Φl(X)TAlΦl(X)) s.t. Ch(d2
Al

(Φl(xi),Φl(xj))), Al � 0 (3)

1The optimization could also be done with respect to other variables of the cost function and not only Ml.
However, to keep the notation uncluttered we parametrize the optimization problem only over Ml.
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In MKL we are given a set of kernel functions Z = {kl(xi,xj) | l = 1 . . .m} and the goal is to
learn an appropriate kernel function kµ(xi,xj) parametrized by µ under a cost functionQ. The cost
function Q is determined by the cost function of the learning method that is coupled with multiple
kernel learning, e.g. it can be the SVM cost function if one is using an SVM as the learning approach.
As in [10, 17] we parametrize kµ(xi,xj) by a linear combination of the form:

kµ(xi,xj) =
m∑
i=l

µlkl(xi,xj), µl ≥ 0,
m∑
l

µl = 1 (4)

We denote the feature space that is induced by the kµ kernel by Hµ, feature space which is given
by the mapping x → Φµ(x) = (

√
µ1Φ1(x)T , . . . ,

√
µmΦm(x)T )T ∈ Hµ. We denote the dimen-

sionality ofHµ by d; it can be infinite. Finally, we denote byH the feature space that we get by the
unweighted concatenation of the m feature spaces, i.e. ∀µi, µi = 1, whose representation is given
by x→ Φ(x) = (Φ1(x)T , . . . ,Φm(x)T )T .

3 Metric Learning with Multiple Kernel Learning

The goal is to learn a metric matrix M in the feature space Hµ induced by the mapping Φµ as
well as the kernel weight µ; we denote this metric by d2

M,µ. Based on the optimal form of the
Mahalanobis metric M for metric learning method learning with a single kernel function [9], we
have the following lemma:
Lemma 1. Assume that for a metric learning method h the optimal parameterization of its Maha-
lanobis metricM∗ is Φl(X)TA∗Φl(X), for some A∗, when learning with a single kernel function
kl(x,x′). Then, for h with multiple kernel learning the optimal parametrization of its Mahalanobis
metricM∗∗ is given by Φµ(X)TA∗∗Φµ(X), for some A∗∗.

The proof of the above Lemma is similar to the proof of Theorem 1 in [9] (it is not presented here
due to the lack of space). Following Lemma 1, we have:

d2
M,µ(Φµ(xi),Φµ(xj)) = (Φµ(xi)−Φµ(xj))TΦµ(X)TAΦµ(X)(Φµ(xi)−Φµ(xj)) (5)

=
∑
l

µl(Ki
l −Kj

l )
TA

∑
l

µl(Ki
l −Kj

l ) = d2
A,µ(Φµ(xi),Φµ(xj))

Based on (5) and the constraints from (4), the ML optimization problem with MKL can be presented
as:

min
A,µ

Fh(Φµ(X)TAΦµ(X)) s.t. Ch(d2
A,µ(Φµ(xi),Φµ(xj))), A � 0, µl ≥ 0,

m∑
l

µl = 1(6)

We denote the resulting optimization problem and the learning method by MLh-MKLµ; clearly this
is not fully specified until we choose a specific ML method h.

Let B =

 (Ki
1 −Kj

1)
T

. . .
(Ki

m −Kj
m)T

. We note that d2
A,µ(Φµ(xi),Φµ(xj)) from (5) can also be written

as:

d2
A,µ(Φµ(xi),Φµ(xj)) = µTBABTµ = tr(PBABT) = d2

A,P(ΦP(xi),ΦP(xj)) (7)

where P = µµT and tr(·) is the trace of a matrix. We use ΦP(X) to emphasize the explicit the
dependence of Φµ(X) to P = µµT . As a result, instead of optimizing over µ we can also use the
parametrization over P; the new optimization problem can now be written as:

min
A,P

Fh(ΦP(X)TAΦP(X)) (8)

s.t. Ch(d2
A,P(ΦP(xi),ΦP(xj))), A � 0,

∑
ij

Pij = 1, Pij ≥ 0, Rank(P) = 1, P = PT

where the constraints
∑
ij Pij = 1, Pij ≥ 0, Rank(P) = 1, and P = PT are added so that

P = µµT . We call the optimization problem and learning method (8) as MLh-MKLP; as before in
order to fully instantiate it we need to choose a specific metric learning method h.
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Now, we derive an alternative parametrization of (5). We need two additional matrices: Cµiµj
=

µiµjI, where the dimensionality of I is n× n, and Φ
′
(X) which is an mn× d dimensional matrix:

Φ
′
(X) =

[ Φ1(X) . . . 0
. . . . . . . . .
0 . . . Φm(X)

]
We have:

d2
A,µ(Φµ(xi),Φµ(xj)) = (Φ(xi)−Φ(xj))TM

′
(Φ(xi)−Φ(xj)) (9)

where:
M

′
= Φ

′
(X)TA′Φ

′
(X) (10)

and A′ is a mn×mn matrix:

A′ =

[ Cµ1µ1A . . . Cµ1µm
A

. . . . . . . . .
Cµmµ1A . . . CµmµmA

]
. (11)

From (9) we see that the Mahalanobis metric, parametrized by the M or A matrix, in the feature
space Hµ induced by the kernel kµ, is equivalent to the Mahalanobis metric in the feature space H
which is parametrized by M′ or A′. As we can see from (11), MLh-MKLµ and MLh-MKLP learn
a regularized matrix A′ (i.e. matrix with internal structure) that corresponds to a parametrization of
the Mahalanobis metric M

′
in the feature spaceH.

3.1 Non-Regularized Metric Learning with Multiple Kernel Learning

We present here a more general formulation of the optimization problem (6) in which we lift the
regularization of matrix A′ from (11), and learn instead a full PSD matrix A′′:

A′′ =

[ A11 . . . A1m

. . . . . . . . .
A1m . . . Amm

]
(12)

where Akl is an n × n matrix. The respective Mahalanobis matrix, which we denote by M′′, still
have the same parametrization form as in (10), i.e. M′′ = Φ

′
(X)TA′′Φ

′
(X). As a result, by using

A′′ instead of A′ the squared Mahalanobis distance can be written now as:

d2
A′′(Φ(xi),Φ(xj)) = (Φ(xi)−Φ(xj))TM

′′
(Φ(xi)−Φ(xj)) (13)

= [(Ki
1 −Kj

1)
T , . . . , (Ki

m −Kj
m)T ]A′′[(Ki

1 −Kj
1)
T , . . . , (Ki

m −Kj
m)T ]T

= [ΦZ(xi)−ΦZ(xj)]TA′′(ΦZ(xi)−ΦZ(xj)]

where ΦZ(xi) = ((Ki
1)
T , . . . , (Ki

m)T )T ∈ HZ. What we see here is that under the M′′

parametrization computing the Mahalanobis metric in the H is equivalent to computing the Ma-
halanobis metric in the HZ space. Under the parametrization of the Mahalanobis distance given by
(13), the optimization problem of metric learning with multiple kernel learning is the following:

min
A′′

Fh(Φ
′
(X)TA′′Φ

′
(X)) s.t. Ch(d2

A′′(Φ(xi),Φ(xj))), A′′ � 0 (14)

We call this optimization problem NR-MLh-MKL. We should note that this formulation has scaling
problems since it has O(m2n2) parameters that need to be estimated, and it clearly requires a very
efficient ML method h in order to be practical.

4 Optimization

4.1 Analysis

The NR-MLh-MKL optimization problem obviously has the same convexity properties as the metric
learning algorithm h that will be used, since the parametrization M′′ = Φ

′
(X)TA′′Φ

′
(X) used in

NR-MLh-MKL is linear with A′′, and the composition of a function with an affine mapping preserves
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the convexity property of the original function [1]. This is also valid for the subproblems of learning
matrix A in MLh-MKLµ and MLh-MKLP given the weight vector µ.

Given the PSD matrix A, we have the following two lemmas for optimization problems MLh-
MKL{µ|P}:
Lemma 2. Given the PSD matrix A the MLh-MKLµ optimization problem is convex with µ if
metric learning algorithm h is convex with µ.

Proof. The last two constraints on µ of the optimization problem from (6) are linear, thus this
problem is convex if metric learning algorithm h is convex with µ.

Since d2
A,µ(Φµ(xi),Φµ(xj)) is convex quadratic of µ, which can be easily proved based on the

PSD property of matrix BABT in (7), many of the well known metric learning algorithms, such as
Pairwise SVM [21], POLA [19] and Xing’s method [23] satisfy the conditions in Lemma 2.

The MLh-MKLP optimization problem (8) is not convex given a PSD matrix A because the rank
constraint is not convex. However, when the number of kernelsm is small, e.g. a few tens of kernels,
there is an equivalent convex formulation.
Lemma 3. Given the PSD matrix A, the MLh-MKLP optimization problem (8) can be formulated
as an equivalent convex problem with respect to P if the ML algorithm h is linear with P and the
number of kernel m is small.

Proof. Given the PSD matrix A, if h is linear with P, we can formulate the rank constraint problem
with the help of the two following convex problems [2]:

min
P

Fh(ΦP(X)TAΦP(X)) + w · tr(PTW) (15)

s.t. Ch(d2
A,P(ΦP(xi), ΦP(xj))), A � 0, P � 0,

∑
ij

Pij = 1, Pij ≥ 0, P = PT

where w is a positive scalar just enough to make tr(PTW) vanish, i.e. global convergence defined
in (17), and the direction matrix W is an optimal solution of the following problem:

min
W

tr(P∗TW) s.t. 0 �W � I, tr(W) = m− 1 (16)

where P∗ is an optimal solution of (15) given A and W, and m is the number of kernels. The
problem (16) has a closed form solution W = UUT , where U ∈ Rm×m−1 is the eigenvector matrix
of P∗ whose columns are the eigenvectors which correspond to the m − 1 smallest eigenvalues of
P∗. The two convex problems are iteratively solved until global convergence, defined as:

m∑
i=2

λ(P∗)i = tr(P∗TW∗) = λ(P∗)Tλ(W∗) ≡ 0 (17)

where λ(P∗)i is the i-th largest eigenvalue of P∗. This formulation is not a projection method. At
global convergence the convex problem (15) is not a relaxation of the original problem, instead it is
an equivalent convex problem [2].

We will now prove the convergence of problem (15). Suppose the objective value of (15) is fi at
iteration i. Since both (15) and (16) minimize the objective value of (15), we have fj < fi for
any iteration j > i. Beacuse the infimum f∗ of the objective value of (15) corresponds to the
optimal objective value of (15) when the second term is removed. Thus the nonincreasing sequence
of objective values is bounded below and as a result converges because any bounded monotonic
sequence in R is convergent. Thus the local convergence of (15) is now established.

Only the local convergence can be established for problem (15) because the objective tr(PTW) is
generally multimodal [2]. However, as indicated in section 7.2 [2], when the size of m is small, the
global optimal of problem (15) can be often achieved. This can be simply verified by comparing the
difference between the infimum f∗ and the optimal objective value f of problem (15).

For a number of known metric learning algorithms, such as LMNN [22], POLA [19], MLSVM [14]
and Xing’s method [23] linearity with respect to P holds given A � 0.
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Algorithm 1 MLh-MKLµ, MLh-MKLP

Input: X, Y, A0, µ0, and matrices K1, . . . ,Km

Output: A and µ
repeat
µ(i)=WeightLearning(A(i−1))
Kµ(i) =

∑
k µ

i
kKk

A(i)=MetricLearningh(A(i−1),X,Kµ(i) )
i := i+ 1

until convergence

4.2 Optimization Algorithms

The NR-MLh-MKL optimization problem can be directly solved by any metric learning algorithm
h on the space HZ when the optimization problem of the latter only involves the squared pairwise
Mahalanobis distance, e.g. LMNN [22] and MCML [5]. When the metric learning algorithm h
has regularization term on M, e.g. trace norm [8] and Frobenius norm [14, 19], most often the
NR-MLh-MKL optimization problem can be solved by a slightly modification of original algorithm.

We now describe how we can solve the optimization problems of MLh-MKLµ and MLh-MKLP.
Based on Lemmas 2 and 3 we propose for both methods a two-step iterative algorithm, Algorithm 1,
at the first step of which we learn the kernel weighting and at the second the metric under the kernel
weighting learned in the first step. At the first step of the i-th iteration we learn theµ(i) kernel weight
vector under fixed PSD matrices A(i−1), learned at the preceding iteration (i− 1). For MLh-MKLµ

we solve the weight learning problem using Lemma 2 and for MLh-MKLP using Lemma 3. At
the second step we apply the metric learning algorithm h and we learn the PSD matrices A(i) with
the Kµ(i) =

∑
l µ

(i)
l Ki kernel matrix using as the initial metric matrices the A(i−1). We should

make clear that the optimization problem we are solving is only individually convex with respect to
µ given the PSD matrix A and vice-versa. As a result, the convergence of the two-step algorithm
(possible to a local optima) is guaranteed [6] and checked by the variation of µ and the objective
value of metric learning method h. In our experiments (Section 6) we observed that it most often
converges in less than ten iterations.

5 LMNN-Based Instantiation

We have presented two basic approaches to metric learning with multiple kernel learning: MLh-
MKLµ (MLh-MKLP) and NR-MLh-MKL. In order for the approaches to be fully instantiated we have
to specify the ML algorithm h. In this paper we focus on the LMNN state-of-the-art method [22].

Due to the relative comparison constraint, LMNN does not satisfy the condition of Lemma 2. How-
ever, as we already mentioned LMNN satisfies the condition of Lemma 3 so we get the MLh-MKLP

variant of the optimization problem for LMNN which we denote by LMNN-MKLP. The resulting
optimization problem is:

min
A,P,ξ

∑
ij

Sij{(1− γ)d2
A,P(ΦP(xi),ΦP(xj)) + γ

∑
k

(1−Yik)ξijk} (18)

s.t. d2
A,P(ΦP(xi),ΦP(xk))− d2

A,P(ΦP(xi),ΦP(xj)) ≥ 1− ξijk, ξijk > 0, A � 0∑
kl

Pkl = 1, Pkl ≥ 0, Rank(P) = 1, P = PT

where the matrix Y,Yij ∈ {0, 1}, indicates if the class labels yi and yj are the same (Yij = 1)
or different (Yij = 0). The matrix S is a binary matrix whose Sij entry is non-zero if instance xj
is one of the k same class nearest neigbors of instance xi. The objective is to minimize the sum of
the distances of all instances to their k same class nearest neighbors while allowing for some errors,
trade of which is controlled by the γ parameter. As the objective function of LMNN only involves
the squared pairwise Mahalanobis distances, the instantiation of NR-MLh-MKL is straightforward
and it consists simply of the application of LMNN on the spaceHZ in order to learn the metric. We
denote this instantiation by NR-LMNN-MKL.
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Table 1: Accuracy results. The superscripts +−= next to the accuracies of NR-LMNN-MKLand
LMNN-MKLPindicate the result of the McNemar’s statistical test of their comparison to the accura-
cies of LMNNHand LMNN-MKLCV and denote respectively a significant win, loss or no difference.
The number in the parenthesis indicates the score of the respective algorithm for the given dataset
based on the pairwise comparisons of the McNemar’s statistical test.

Datasets NR-LMNN-MKL LMNN-MKLP LMNNH LMNN-MKLCV 1-NN
Sonar 88.46+=(3.0) 85.58==(2.0) 82.21(1.0) 88.46(3.0) 82.21(1.0)
Wine 98.88==(2.0) 98.88==(2.0) 98.31(2.0) 96.07(2.0) 97.19(2.0)
Iris 93.33==(2.0) 95.33==(2.0) 94.67(2.0) 94.00(2.0) 95.33(2.0)
Ionosphere 93.73==(2.5) 94.87=+(3.0) 92.59(2.5) 90.88(2.0) 86.89(0.0)
Wdbc 94.90−=(1.0) 97.36=+(3.5) 97.36(3.0) 95.96(1.5) 95.43(1.0)
CentralNervous 55.00==(2.0) 63.33==(2.0) 65.00(2.0) 65.00(2.0) 58.33(2.0)
Colon 80.65==(2.0) 85.48+=(2.5) 66.13(1.5) 79.03(2.0) 74.19(2.0)
Leukemia 95.83+=(2.5) 94.44+=(2.5) 70.83(0.0) 95.83(2.5) 88.89(2.5)
MaleFemale 86.57==(2.5) 88.81+=(3.0) 80.60(1.5) 89.55(3.0) 58.96(0.0)
Ovarian 95.26+=(3.0) 94.47+=(3.0) 90.51(0.5) 94.47(3.0) 87.35(0.5)
Prostate 79.50==(2.0) 80.43==(2.5) 79.19(2.0) 78.88(2.0) 76.71(1.5)
Stroke 69.71==(2.0) 72.12==(2.0) 71.15(2.0) 70.19(2.0) 65.38(2.0)
Total Score 26.5 30.0 20.0 27.0 16.5

6 Experiments

In this section we perform a number of experiments on real world datasets in order to compare the
two of the LMNN-based instantiations of our framework, i.e. LMNN-MKLP and NR-LMNN-MKL.
We compare these methods against two baselines: LMNN-MKLCV in which a kernel is selected
from a set of kernels using 2-fold inner cross-validation (CV), and LMNN with the unweighted
sum of kernels, which induces the H feature space, denoted by LMNNH. Additionally, we report
performance of 1-Nearest-Neighbor, denoted as 1-NN, with no metric learning. The PSD matrix
A and weight vector µ in LMNN-MKLP were respectively initialized by I and equal weighting (1
divided by the number of kernels). The parameter w in the weight learning subproblem of LMNN-
MKLP was selected from {10i | i = 0, 1, . . . , 8} and was the smallest value enough to achieve
global convergence. Its direction matrix W was initialized by 0. The number of k same class
nearest neighbors required by LMNN was set to 5 and its γ parameter to 0.5. After learning the
metric and the multiple kernel combination we used 1-NN for classification.

6.1 Benchmark Datasets

We first experimented with 12 different datasets: five from the UCI machine learning repository,
i.e. Sonar, Ionosphere, Wine, Iris, and Wdbc; three microarray datasets, i.e. CentralNervous, Colon,
and Leukemia; and four proteomics datasets, i.e. MaleFemale, Stroke, Prostate and Ovarian. The
attributes of all the datasets are standardized in the preprocessing step. The Z set of kernels that we
use consists of the following 20 kernels: 10 polynomial with degree from one to ten, ten Gaussians
with bandwidth σ ∈ {0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20} (the same set of kernels was used in [4]).
Each basic kernel Kk was normalized by the average of its diag(Kk). LMNN-MKLP, LMNNH and
LMNN-MKLCV were tested using the complete Z set. For NR-LMNN-MKL due to its scaling limi-
tations we could only use a small subset of Z consisting of the linear, the second order polynomial,
and the Gaussian kernel with the kernel width of 0.5. We use 10-fold CV to estimate the predictive
performance of the different methods. To test the statistical significance of the differences we used
McNemar’s test and we set the p-value to 0.05. To get a better understanding of the relative per-
formance of the different methods for a given dataset we used a ranking schema in which a method
A was assigned one point if its accuracy was significantly better than that of another method B, 0.5
points if the two methods did not have a significantly different performance, and zero points if A
was found to be significantly worse than B.

The results are reported in Table 1. First, we observe that by learning the kernel inside LMNN-
MKLP we improve performance over LMNNH that uses the unweighted kernel combination. More
precisely, LMNN-MKLP is significantly better than LMNNH in four out of the thirteen datasets. If
we now compare LMNN-MKLP with LMNN-MKLCV , the other baseline method where we select the
best kernel with CV, we can see that LMNN-MKLP also performs better being statistically significant
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Table 2: Accuracy results on the multiple source datasets.

Datasets LMNN-MKLP LMNNH LMNN-MKLCV 1-NN
Multiple Feature 98.79++(3.0) 98.44(1.5) 98.44(1.5) 97.86(0.0)
Oxford Flowers 86.01++(3.0) 85.74(2.0) 65.46(0.0) 67.38(1.0)

better in two dataset. If we now examine NR-LMNN-MKL and LMNNH we see that the former
method, even though learning with only three kernels, is significantly better in two datasets, while it
is significantly worse in one dataset. Comparing NR-LMNN-MKL and LMNN-MKLCV we observe
that the two methods achieve comparable predictive performances. We should stress here that NR-
LMNN-MKL has a disadvantage since it only uses three kernels, as opposed to other methods that
use 20 kernels; the scalability of NR-LMNN-MKL is left as a future work. In terms of the total score
that the different methods obtain the best one is LMNN-MKLP followed by LMNN-MKLCV and
NR-LMNN-MKL.

6.2 Multiple Source Datasets

To evaluate the proposed method on problems with multiple sources of information we also perform
experiments on the Multiple Features and the Oxford flowers datasets [16]. Multiple Features from
UCI has six different feature representations for 2,000 handwritten digits (0-9); each class has 200
instances. In the preprocessing step all the features are standardized in all the data sources. Oxford
flowers dataset has 17 category flower images; each class has 80 instances. In the experiment seven
distance matrices from the website2 are used; these matrices are precomputed respectively from
seven features, the details of which are described in [16, 15]. For both datasets Gaussian kernels are
constructed respectively using the different feature representations of instances with kernel width
σ0, where σ0 is the mean of all pairwise distances. We experiment with 10 random splits where
half of the data is used for training and the other half for testing. We do not experiment here with
NR-LMNN-MKL here due to its scaling limitations.

The accuracy results are reported in Table 2. We can see that by learning a linear combination of
different feature representations LMNN-MKLP achieves the best predictive performance on both
datasets being significantly better than the two baselines, LMNNH and LMNN-MKLCV . The bad
performance of LMNN-MKLCV on the Oxford flowers dataset could be explained by the fact that
the different Gaussian kernels are complementary for the given problem, but in LMNN-MKLCV only
one kernel is selected.

7 Conclusions

In this paper we combine two recent developments in the field of machine learning, namely metric
learning and multiple kernel learning, and propose a general framework for learning a metric in
a feature space induced by a weighted combination of a number of individual kernels. This is in
contrast with the existing kernelized metric learning techniques which consider only one kernel
function (or possibly an unweighted combination of a number of kernels) and hence are sensitive
to the selection of the associated feature space. The proposed framework is general as it can be
coupled with many existing metric learning techniques. In this work, to practically demonstrate the
effectiveness of the proposed approach, we instantiate it with the well know LMNN metric learning
method. The experimental results confirm that the adaptively induced feature space does bring
an advantage in the terms of predictive performance with respect to feature spaces induced by an
unweighted combination of kernels and the single best kernel selected by internal CV.
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