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Abstract

We consider large matrices of low rank. We address the problem of recovering such matrices
when most of the entries are unknown. Matrix completion finds applications in recommender
systems. In this setting, the rows of the matrix may correspond to items and the columns may
correspond to users. The known entries are the ratings given by users to some items. The
aim is to predict the unobserved ratings. This problem is commonly stated in a constrained
optimization framework. We follow an approach that exploits the geometry of the low-rank
constraint to recast the problem as an unconstrained optimization problem on the Grassmann
manifold. We then apply first- and second-order Riemannian trust-region methods to solve it.
The cost of each iteration is linear in the number of known entries. Our methods, RTRMC 1
and 2, outperform state-of-the-art algorithms on a wide range of problem instances.

1 Introduction

We address the problem of recovering a low-rank m-by-n matrix X of which a few entries are observed, possibly
with noise. Throughout, we assume that r = rank(X) < m < nandnote 2 C {1...m} x {1...n} the set of
indices of the observed entries of X, i.e., X;; is known iff (4, j) € 2. Solving this problem is namely useful in
recommender systems, where one tries to predict the ratings users would give to items they have not purchased.

1.1 Related work

In the noiseless case, one could state the minimum rank matrix recovery problem as follows:
“min rank X, such that X;; = X;; V(i, ) € Q. (1)
XERWLXW,
This problem, however, is NP hard [CR09]. A possible convex relaxation of (1) introduced by Candes and
Recht [CR09] is to use the nuclear norm of X as objective function, i.e., the sum of its singular values,

noted || X||,.. The SVT method [CCS08] attempts to solve such a convex problem using tools from compressed
sensing and the ADMiRA method [LB10] does so using matching pursuit-like techniques.

Alternatively, one may minimize the discrepancy between X and X at entries © under the constraint that

rank(f( ) < r for some small constant r. Since any matrix X of rank at most may be written in the form UW
with U € R™*" and W € R"*"™, a reasonable formulation of the problem reads:

2
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The LMaFit method [WYZ10] does a good job at solving this problem by alternatively fixing either of the
variables and solving the resulting least-squares problem efficiently.

One drawback of the latter formulation is that the factorization of a matrix X into the product UW is not unique.
Indeed, for any r-by-r invertible matrix M, we have UW = (UM )(M~1W). All the matrices UM share the
same column space. Hence, the optimal value of the inner optimization problem in (2) is a function of col(U)—
the column space of U—rather than U specifically. Dai et al. [DMK11, DKM10] exploit this to recast (2) on
the Grassmann manifold G(m, r), i.e., the set of r-dimensional vector subspaces of R"" (see Section 2):
. . 2
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where U € R™*" is any matrix such that col(U) = % and is often chosen to be orthonormal. Unfortunately,
the objective function of the outer minimization in (3) may be discontinuous at points % for which the least-
squares problem in W does not have a unique solution. Dai et al. proposed ingenious ways to deal with the
discontinuity. Their focus, though, was on deriving theoretical performance guarantees rather than developing
fast algorithms.

Keshavan et al. [KO09, KM10] state the problem on the Grassmannian too, but propose to simultaneously
optimize on the row and column spaces, yielding a smaller least-squares problem which is unlikely to not have
a unique solution, resulting in a smooth objective function. In one of their recent papers [KM10], they solve:
. . T 2 2 T 2
Oileg(mﬁrgl,r"fl/eg(n,r) Sgﬂlilgr Z ((USV )U = ) 2 HUSV HF ’ X
(i,5)€Q
where U and V' are any orthonormal bases of %7 and 7, respectively, and A is a regularization parameter. The

authors propose an efficient SVD-based initial guess for %7 and 7 which they refine using a steepest descent
method, along with strong theoretical guarantees.

Meyer et al. [MBS11] proposed a Riemannian approach to linear regression on fixed-rank matrices. Their
regression framework encompasses matrix completion problems. Likewise, Balzano et al. [BNR10] intro-
duced GROUSE for subspace identification on the Grassmannian, applicable to matrix completion. Finally,
in the preprint [Vanl1] which became public while we were preparing the camera-ready version of this paper,
Vandereycken proposes an approach based on the submanifold geometry of the sets of fixed-rank matrices.

1.2 QOur contribution and outline of the paper

Dai et al.’s initial formulation (3) has a discontinuous objective function on the Grassmannian. The OptSpace
formulation (4) on the other hand has a continuous objective and comes with a smart initial guess, but optimizes
on a higher-dimensional search space, while it is arguably preferable to keep the dimension of the manifold
search space low, even at the expense of a larger least-squares problem. Furthermore, the OptSpace regular-
ization term is efficiently computable since HU S VTHF = [|S||p, but it penalizes all entries instead of just the

entries (4,7) ¢ Q.

In an effort to combine the best of both worlds, we equip (3) with a regularization term weighted by A > 0,
which yields a smooth objective function defined over an appropriate search space:
. . 1 2 2 )\2 2
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Here, we introduced a confidence index C;; > 0 for each observation X;;, which may be useful in applications.
As we will see, introducing a regularization term is essential to ensure smoothness of the objective and hence
obtain good convergence properties. It may not be critical for practical problem instances though.

We further innovate on previous works by using a Riemannian trust-region method, GenRTR [ABGO07], as
optimization algorithm to minimize (5) on the Grassmannian. GenRTR is readily available as a free Matlab
package and comes with strong convergence results that are naturally inherited by our algorithms.

In Section 2, we rapidly cover the essential useful tools on the Grassmann manifold. In Section 3, we derive
expressions for the gradient and the Hessian of our objective function while paying special attention to com-
plexity. Section 4 sums up the main properties of the Riemannian trust-region method. Section 5 shows a few
results of numerical experiments demonstrating the effectiveness of our approach.



2  Geometry of the Grassmann manifold

Our objective function f (10) is defined over the Grassmann manifold G(m, ), i.e., the set of r-dimensional
vector subspaces of R™. Absil et al. [AMSO08] give a computation-oriented description of the geometry of this
manifold. Here, we only give a summary of the important tools we use.

Each point 7 € G(m,r) is a vector subspace we may represent numerically as the column space of a full-
rank matrix U € R™*": %/ = col(U). For numerical reasons, we will only use orthonormal matrices U €
U(m,r) ={U € R™*" : UTU = I,.}. The set U (m,r) is the Stiefel manifold.

The Grassmannian is a Riemannian manifold, and as such we can define a tangent space to G(m, ) at each
point %, noted T, G(m,r). The latter is a vector space of dimension dim G(m,r) = r(m — r). A tangent
vector € Tq G(m,r), where we represent % as the orthonormal matrix U, is represented by a unique
matrix H € R™*" verifying U "TH = 0 and % col(U 4+ tH) ‘ o = ¢ . For practical purposes we may, with a
slight abuse of notation we often commit hereafter, write 7 = H—assuming U is known from the context—
and TyG(m,r) = {H € R™*" : UTH = 0}. Each tangent space is endowed with an inner product, the
Riemannian metric, that varies smoothly from point to point. It is inherited from the embedding space of the
matrix representation of tangent vectors R™*": VHy, Hy € TyG(m,r) : (Hy, Ha),; = Trace(H, H,). The
orthogonal projector from R™*" onto the tangent space TyyG(m, r) is given by:

Py :R™" = TyG(m,r): H— PyH = (I — UU ") H.
One can also project a vector onto the tangent space of the Stiefel manifold:
PS5 R™" = Tyl (m,r) : H — PS'H = (I — UU ") H + Uskew(U "H),
where skew(X) = (X — X T)/2 extracts the skew-symmetric part of X. This is useful for the computation of
gradf(U) € TyG(m,r). Indeed, according to [AMSO08, eqgs. (3.37) and (3.39)], considering f : R™*" — R,
its restriction f|u(m O the Stiefel manifold and f : G(m,r) — R such that f(col(U)) = f|u(m " (U) is
well-defined, as will be the case in Section 3, we have (with a slight abuse of notation):

grad(U) = grad fl,,.,, , (U) = PEgradf(U). ©)
Similarly, since Py o P5' = Py, the Hessian of f at % along ¢ is given by [AMSO08, eqs. (5.14) and (5.18)]:
Hessf(U)[H] = Py(D(U = Py'gradf(U))(U)[H]), ©)

where Dg(X)[H] is the directional derivative of g at X along H, in the classical sense. For our optimization
algorithms, it is important to be able to move along the manifold from some initial point U in some prescribed
direction specified by a tangent vector H. To this end, we use the retraction:

Ry(H) = qf(U + H), ®)
where qf (X) € U(m, r) designates the m-by-r Q-factor of the Q R decomposition of X € R™*".

3 Computation of the objective function and its derivatives

We seek an m-by-n matrix X of rank not more than r such that X is as close as possible to a given matrix X
at the entries in the observation set €2. Furthermore, we are given a weight matrix C' € R™*"™ indicating the
confidence we have in each observed entry of X. The matrix C is positive at entries in {} and zero elsewhere.
To this end, we consider the following function, where (X );; equals X;; if (¢, j) € €2 and is zero otherwise:

R 5 1 A2
fR™WTX RN SR (UW) = fUW) = 21100 (UW - Xa)llg + 5 IUWg, — ©)
where © is the entry-wise product, A > 0 is a regularization parameter, ) is the complement of the set 2 and

|| M ||?) = Z(i) feo ij Picking a small but positive A will ensure that the objective function f (10) is smooth.

For a fixed U, computing the matrix W that minimizes f is a least-squares problem. The mapping between U
and this (unique) optimal W, noted Wy,

U — Wy = argmin f(U, W),
WERTXTL



is smooth and easily computable—see Section 3.3.

By virtue of the discussion in Section 1, we know that the mapping U — f (U,Wy), with U € R™*", is
constant over sets of full-rank matrices U spanning the same column space. Hence, considering these sets as
equivalence classes %, the following function f over the Grassmann manifold is well-defined:

f:Gm,r) >R % — f(%) = fUWy), (10)
with any full-rank U € R™*" such that col(U) = % . The interpretation is as follows: we are looking for an
optimal matrix X = UW of rank at most r; we have confidence Cj; that Xij should equal X;; for (i,7) € Q
and (very small) confidence ) that Xij should equal O for (7, j) ¢ Q.

3.1 Rearranging the objective

Considering (9), it looks like evaluating f (U, W) will require the computation of the product U at the entries
in Q and €, i.e., we would need to compute the whole matrix U, which cannot cost much less than O(mnr).
Since applications typically involve very large values of the product mn, this is not acceptable. Alternatively, if
we restrict ourselves—without loss of generality—to orthonormal matrices U, we observe that
2 2 2 2
[UW g +[UW g = [UW]g = [W][g -
Consequently, for all U in U(m,r), we have f(U, W) = f(U, Wy;), where

1 A2 A2
fU.W) =S IC o (OW = Xa)ll§ + 5 Wk = 5 UG- (11

This only requires the computation of UW at entries in €2, at a cost of O(|[r). Finally, let fiR™T 5 R:
U — f(U,Wy), and observe that f(col(U)) = f’u(m " (U) forall U inU (m, r), as in the setting of Section 2.

3.2 Gradient and Hessian of the objective

We now derive formulas for the first and second order derivatives of f. In deriving these formulas, it is useful
to note that, for a suitably smooth mapping g,

grad (X — 1/2]]g(X)[7)(X) = (Dg(X)) [9(X)], (12)

where (Dg(X ))* is the adjoint of the differential of g at X. For ease of notation, let us define the following
m-by-n matrix with the sparsity structure induced by €2:

A C2 — X% if (i,5) €Q
i =1 ’ ’ 1
Cis {O otherwise. (13)
We also introduce a sparse residue matrix Ry that will come up in various formulas:
Ry =C oUWy — Xq) — A2 Xq. (14)
Successively using the chain rule, the optimality of Wy and (12), we obtain:
- d ; . y d 0 ;
d = — = — — C— = — = .
grad f(U) = <= f(U.W0) = = (U Wo) + 50 f(UWo) - =W = =0 F(U, W) = Ry Wy

Indeed, since Wy is optimal, % f (UWy)=U TRy + M2Wy = 0. Then, according to the identity (6) and
since U 'Ry = —A2Wy, the gradient of f at % = col(U) on the Grassmannian is given by:
grad f(U) = grad fl,,,, ., (U) = PStgradf(U) = (I — UU "RyWy, + Uskew (U 'Ry Wyy)
= (I — UU"RyWy — N2 Uskew (W Wy)) = Ry W 4+ N2U (W, W), (15)

We now differentiate (15) according to the identity (7) to get a matrix representation of the Hessian of f at %
along 7. We note H a matrix representation of the tangent vector .7 chosen in accordance with U and

Wo.in £ D(U = Wy)(U)[H]
the derivative of the mapping U +— Wy at U along the tangent direction H. Then:
Hessf(U)[H] = (I — UU "Dgrad f(U)[H]

=(I-UU"|CoHWy+ UWUvH)} Wy + RyWy g+ N HWyWy) + XPUWWy ). (16)



3.3 Wy and its derivative Wy
We still need to provide an explicit formula for Wiy and Wy . We assume U € U(m,r) since we use
orthonormal matrices to represent points on the Grassmannian and U T H = 0 since .7 is a tangent vector at %/ .

We use the vectorization operator, vec, that transforms matrices into vectors by stacking their columns—in
Matlab notation, vec(A) = A(:). Denoting the Kronecker product of two matrices by ®, we will use the
well-known identity for matrices A, Y, B of appropriate sizes [Bro05]:

vec(AYB) = (BT ® A)vec(Y).
We also write I for the orthonormal |Q|-by-mn matrix such that vecq (M) = Igvec(M) is a vector of length
|| corresponding to the entries M;; for (4, j) € €2, taken in order from vec(M).

Computing Wy comes down to minimizing the least-squares objective f (U, W) (11) with respect to W. We
first manipulate f to reach a standard form for least-squares, with S = I, diag(vec(C)):

U, W)

1 2 )\2 2 )\2 2
S1COUW = Xa)lig+ 5 IWIE - 5 [0WI

1 A2 A?
5 [1Svec(UW) — veea(C © Xa)ll; + 5 [[vee(W) 5 — 5 [Iveca(UW)]l3

1 1 1
3 15(In @ U)vec(W) — veca(C' © Xo)ll + 5 IAZvee(W)]15 — 3 IMa(ln @ U)vec(W)|l3

! H {su;[ ® U)] e~ {VeCQ(OC; ° XQ)} i

_ % [N (I, @ U)] vee(W)||5

2
= & v — b2 — 2 14z,
where w = vec(W) € R™, 0,., € R™ is the zero-vector and the definitions for A, As and b; are obvious. If
AlA; — AJ A, is positive definite there is a unique minimizing vector vec(W7y;), given by:
vec(Wy) = (AJ A, — AJA,)"1Ab,.

It is easy to compute the following:

AlA = (L, @ UN)(STS) (I, @ U) + N1,

AJAy = (I © UV IIG) (I, © U),

Alb, = (I, @ U S Tvecq (C © Xq) = (I, @ U Nvec(C? © Xg).
Throughout the text, we use the notation M (™) for entry-wise exponentiation, i.e., (M();; = (M;;)". Note

that STS — A21JI,, = diag(vec(C)). We then define A € R™™*"™ as:

AL ATA, — AJA, = (I, o UT) (diag(vec(é))) (I, @ U) + A2I,. a7

Observe that the matrix A is block-diagonal, with n symmetric blocks of size r. Each block is indeed positive-

definite provided A > 0 (making A positive-definite too). Thanks to the sparsity of C, we can compute these n
blocks with O(|Q|r?) flops. To solve systems in A, we compute the Cholesky factorization of each block, at a
total cost of O(nr3). Once these factorizations are computed, each system only costs O(nr?) to solve [TB97].

Collecting all equations in this subsection, we obtain a closed-form formula for Wy;:
vec(Wy) = A tvec (UT[C@) ©) XQ]) , (18)

where A is a function of U. We would like to differentiate Wy, with respect to U. Using bilinearity and
associativity of ® as well as the formula D(Y +— Y ~1)(X)[H] = —X ~'H X ~! [Bro05], some algebra yields:

vee(Wy.z1) = — A vee (HTRU +UT(Co (HWU))) . (19)



The most expensive operation involved in computing Wy i ought to be the resolution of a linear system in A.
Fortunately, we already factored the n small diagonal blocks of A in Cholesky form to compute Wy;. Conse-
quently, after computing Wy, computing Wy g is cheaper than computing Wy;» for a new U’. This means that
we can benefit from computing this information before we move on to a new candidate on the Grassmannian,
i.e., it is worth trying second order methods. We summarize the complexities in the next subsection.

3.4 Numerical complexities

By exploiting the sparsity of many of the matrices involved and the special structure of the matrix A appearing
in the computation of Wiy and Wy g, it is possible to compute the objective f as well as its gradient and its
Hessian on the Grassmannian in time essentially linear in the size of the data |©2|. Memory complexities are also
linear in |©2|. We summarize the computational complexities in Table 1. Please note that most computations are
easily parallelizable, but we do not take advantage of it here.

Table 1: All complexities are essentially linear in ||, the number of observed entries.

Computation Complexity By-products Formulas

Wy and f(U) O(|Qr? + nr3) Cholesky form of A (9), (10), (17), (18)
gradf(U) o(IQr + (m+n)r?) Ry and W, W, (13), (14), (15)
Wy g and Hessf(U)[H]  O(|Q|r + (m + n)r?) (16), (19)

4 Riemannian trust-region method

We use a Riemannian trust-region (RTR) method [ABGO07] to minimize (10), via the freely available Matlab
package GenRTR (version 0.3.0) with its default parameter values. The package is available at this address:
http://www.math. fsu.edu/~-cbaker/GenRTR/?page=download.

At the current iterate %7 = col(U), the RTR method uses the retraction Ry (8) to build a quadratic model
my : TyG(m,r) — R of the lifted objective function f o Ry (/ifr). It then classically minimizes the model
inside a trust region on this vector space (solve), and retracts the resulting tangent vector H to a candidate
U+ = Ry (H) on the Grassmannian (retract). The quality of %/ T = col(U™) is assessed using f and the step
is accepted or rejected accordingly. Likewise, the radius of the trust region is adapted based on the observed
quality of the model.

The model my; of f o Ry has the form:
1
my(H) = f(U) + (grad f(U), H)y + 5 (AU)H], H)y

where A(U) is some symmetric linear operator on TyG(m, ). Typically, the faster one can compute A(U)[H],
the faster one can minimize m (H) in the trust region.

A powerful property of the RTR method is that global convergence of the algorithm toward critical points—local
minimizers in practice since it is a descent method—is guaranteed independently of A(U) [ABGO7, Thm 4.24,
Cor. 4.6]. We take advantage of this and first set it to the identity. This yields a steepest-descent algorithm
we later refer to as RTRMC 1. Additionally, if we take A(U) to be the Hessian of f at U (16), we get a
quadratic convergence rate, even if we only approximately minimize my within the trust region using a few
steps of a well chosen iterative method [ABG07, Thm 4.14]. This means that the RTR method only requires a
few computations of the Hessian along specific directions. We call our method using the Hessian RTRMC 2.

5 Numerical experiments

We test our algorithms on both synthetic and real data and compare their performances against OptSpace,
ADMIRA, SVT, LMaFit and Balanced Factorization in terms of accuracy and computation time. All algorithms
are run sequentially by Matlab on the same personal computer'. Table 2 specifies a few implementation details.

'Tntel Core i5 670 @ 3.60GHz (4), 8Go RAM, Matlab 7.10 (R2010a).



Table 2: All Matlab implementations call subroutines in non-Matlab code to efficiently deal with the sparsity of
the matrices involved. PROPACK [Lar(05] is a free package for large and sparse SVD computations.

Method Environment Comment

RTRMC 1 Matlab + some C-Mex  Our method with “approximate Hessian” set to identity,
i.e., no second order information. A = 10~%. For the
initial guess %, we use the OptSpace trimmed SVD.

RTRMC 2 Matlab + some C-Mex  Same as RTRMC 1 but with exact Hessian.

OptSpace C code [KO09] with A = 0. Trimmed SVD + descent on Grass.
ADMiRA Matlab with PROPACK  [LB10] Matching pursuit based.

SVT Matlab with PROPACK [CCSO08] default 7 and §. Nuclear norm minimization.
LMaFit Matlab + some C-Mex [WYZ10] Alternating minimization.

Balanced Factorization Matlab + some C-Mex [MBS11] One of their Riemannian regression methods.

Our methods (RTRMC 1 and 2) and Balanced Factorization require knowledge of the target rank r. OptSpace,
ADMIiRA and LMaFit include a mechanism to guess the rank, but benefit from knowing it, hence we provide
the true rank to these methods too. As is, the SVT code does not permit the user to specify the rank.

We use the root mean square error (RMSE) criterion to assess the quality of reconstruction of X with X:
RMSE(X, X) = | X — X|¢/vmn.

Scenario 1. We first compare convergence behavior of the different methods on synthetic data. We pick
m = n = 10000 and r = 10. The dimension of the manifold of m-by-n matrices of rank r is d = r(m+n—r).
We generate A € R™*" and B € R"*" with i.i.d. normal entries of zero mean and unit variance. The target
matrix is X = AB. We sample 2.5d entries uniformly at random, which yields a sampling ratio of 0.5%.
Figure 1 is typical and shows the evolution of the RMSE as a function of time (left) and iteration count (right).

For X = UV with U € R™*", V € R™*", we compute the RMSE in O((m + n)r?2) flops using:
(mn)RMSE(AB, UV)? = Trace((ATA)(BBT)) 4 Trace((U 'U)(VVT)) — 2Trace((U TA)(BVT)).

Be wary though that this formula is numerically inaccurate when the RMSE is much smaller than the norm of
either AB or UV, owing to the computation of the difference of close large numbers.

Scenario 2. In this second test, we repeat the previous experience with rectangular matrices: m = 1000,n =
30000, = 5 and a sampling ratio of 2.6% (5d known entries). We expect RTRMC to perform well on rect-
angular matrices since the dimension of the Grassmann manifold we optimize on only grows linearly with
min(m, n), whereas it is the (simple) least-squares problem dimension that grows linearly in max(m,n). Fig-
ure 2 is typical and shows indeed that RTRMC is the fastest tested algorithm on this test.

Scenario 3. Following the protocol in [KMO09], we test our method on the Jester dataset 1 [GRGPO1] of
ratings of a hundred jokes by 24 983 users. We randomly select 4 000 users and the corresponding continuous
ratings in the range [—10, 10]. For each user, we extract two ratings at random as test data. We run the different
matrix completion algorithms with a prescribed rank on the remaining training data, N = 100 times for each
rank. Table 3 reports the average Normalized Mean Absolute Error (NMAE) on the test data along with a
confidence interval computed as the standard deviation of the NMAE’s obtained for the different runs divided
by v/N. All methods but ADMiRA minimize a similar cost function and consequently perform the same.

6 Conclusion

Our contribution is an efficient numerical method to solve large low-rank matrix completion problems. RTRMC
competes with the state-of-the-art and enjoys proven global and local convergence to local optima, with a
quadratic convergence rate for RTRMC 2. Our methods are particularly efficient on rectangular matrices. To
obtain such results, we exploited the geometry of the low-rank constraint and applied techniques from the field
of optimization on manifolds. Matlab code for RTRMC 1 and 2 is available at:
http://www.inma.ucl.ac.be/~absil/RTRMC/.



Table 3: NMAE’s on the Jester dataset 1 (Scenario 3). All algorithms solve the problem in well under a minute
for rank 7. All but ADMiRA reach similar results. As a reference, consider that a random guesser would obtain
a score of 0.33. Goldberg et al. [GRGPO1] report a score of 0.187 but use a different protocol.

rank RTRMC 2

OptSpace

LMaFit

Bal. Fac.

ADMIRA

1 0.1799+2-107% 0.1799+2-10~% 0.1799+2-10~% 0.1799+2-10~% 0.1836+2-10~1
3 0.1624+2-10% 0.1625+2-10~* 0.1624+2-10~* 0.1626+2-10~* 0.1681+2-10~*
5 0.15844+2-10"* 0.15844+2-10"* 0.15844+2-10~* 0.1584+2-10~* 0.1635+2-10~*
7 0.1578 £2-10=%* 0.1581+2-10~* 0.1578+2-10~* 0.1580+2-10~* 0.1618+2-10~*
10t ¢ 10! L
. OptSpace . \"\‘--.,‘_\_
mlo Bal. Fac. 10 0
wn
=
=
107° ; 107}
\ RTRMC 1
RTRMC
108 : ' 10-8 : :
0 0 25 50 0 50 100

Time [s] Iteration count

Figure 1: Evolution of the RMSE for the six methods under Scenario 1 (m = n = 10000, r = 10, |Q|/(mn) =
0.5%, i.e., 99.5% of the entries are unknown). For RTRMC 2, we count the number of inner iterations, i.e., the
number of parallelizable steps. ADMiRA stagnates and SVT diverges. All other methods eventually find the
exact solution.

10t i
\‘

o Bal. Fac. | k\\___
1)
sz OptSpace

107

10-8 RTRM{ 18 RTRMC 2 . | |

’ 20 50 50 100
Time [s] Iteration count

Figure 2: Evolution of the RMSE for the six methods under Scenario 2 (m = 1000,n = 30000, r = 5,
||/ (mn) = 2.6%). For rectangular matrices, RTRMC is especially efficient owing to the linear growth of the
dimension of the search space in min(m, n), whereas for most methods the growth is linear in m + n.
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