
Budgeted Optimization with Concurrent
Stochastic-Duration Experiments

Javad Azimi, Alan Fern, Xiaoli Z. Fern
School of EECS, Oregon State University

{azimi, afern, xfern}@eecs.oregonstate.edu

Abstract

Budgeted optimization involves optimizing an unknown function that is costly to evalu-
ate by requesting a limited number of function evaluations at intelligently selected inputs.
Typical problem formulations assume that experiments are selected one at a time with
a limited total number of experiments, which fail to capture important aspects of many
real-world problems. This paper defines a novel problem formulation with the following
important extensions: 1) allowing for concurrent experiments; 2) allowing for stochastic
experiment durations; and 3) placing constraints on both the total number of experiments
and the total experimental time. We develop both offline and online algorithms for se-
lecting concurrent experiments in this new setting and provide experimental results on a
number of optimization benchmarks. The results show that our algorithms produce highly
effective schedules compared to natural baselines.

1 Introduction
We study the optimization of an unknown function f by requesting n experiments, each specifying an input
x and producing a noisy observation of f(x). In practice, the function f might be the performance of a de-
vice parameterized by x. We consider the setting where running experiments is costly (e.g. in terms of time),
which renders methods that rely on many function evaluations, such as stochastic search or empirical gra-
dient methods, impractical. Bayesian optimization (BO) [8, 4] addresses this issue by leveraging Bayesian
modeling to maintain a posterior over the unknown function based on previous experiments. The posterior is
then used to intelligently select new experiments to trade-off exploring new parts of the experimental space
and exploiting promising parts.

Traditional BO follows a sequential approach where only one experiment is selected and run at a time.
However, it is often desirable to select more than one experiment at a time so that multiple experiments
can be run simultaneously to leverage parallel facilities. Recently, Azimi et al. (2010) proposed a batch BO
algorithm that selects a batch of k ≥ 1 experiments at a time. While this broadens the applicability of BO, it
is still limited to selecting a fixed number of experiments at each step. As such, prior work on BO, both batch
and sequential, completely ignores the problem of how to schedule experiments under fixed experimental
budget and time constraints. Furthermore, existing work assumes that the durations of experiments are
identical and deterministic, whereas in practice they are often stochastic.

Consider one of our motivating applications of optimizing the power output of nano-enhanced Microbial
Fuel Cells (MFCs). MFCs [3] use micro-organisms to generate electricity. Their performance depends

1

strongly on the surface properties of the anode [10]. Our problem involves optimizing nano-enhanced an-
odes, where various types of nano-structures, e.g. carbon nano-wire, are grown directly on the anode surface.
Because there is little understanding of how different nano-enhancements impact power output, optimizing
anode design is largely guess work. Our original goal was to develop BO algorithms for aiding this process.
However, many aspects of this domain complicate the application of BO. First, there is a fixed budget on
the number of experiments that can be run due to limited funds and a fixed time period for the project. Sec-
ond, we can run multiple concurrent experiments, limited by the number of experimental apparatus. Third,
the time required to run each experiment is variable because each experiment requires the construction of a
nano-structure with specific properties. Nano-fabrication is highly unpredictable and the amount of time to
successfully produce a structure is quite variable. Clearly prior BO models fail to capture critical aspects of
the experimental process in this domain.

In this paper, we consider the following extensions. First, we have l available labs (which may correspond
to experimental stations at one location or to physically distinct laboratories), allowing up to l concurrent
experiments. Second, experiments have stochastic durations, independently and identically distributed ac-
cording to a known density function pd. Finally, we are constrained by a budget of n total experiments and a
time horizon h by which point we must finish. The goal is to maximize the unknown function f by selecting
experiments and when to start them while satisfying the constraints.

We propose offline (Section 4) and online (Section 5) scheduling approaches for this problem, which aim
to balance two competing factors. First, a scheduler should ensure that all n experiments complete within
the horizon h, which encourages high concurrency. Second, we wish to select new experiments given as
many previously completed experiments as possible to make more intelligent experiment selections, which
encourages low concurrency. We introduce a novel measure of the second factor, cumulative prior experi-
ments (CPE) (Section 3), which our approaches aim to optimize. Our experimental results indicate that these
approaches significantly outperform a set of baselines across a range of benchmark optimization problems.

2 Problem Setup

Let X ⊆ <d be a d-dimensional compact input space, where each dimension i is bounded in [ai, bi]. An
element of X is called an experiment. An unknown real-valued function f : X → < represents the expected
value of the dependent variable after running an experiment. For example, f(x) might be the result of a wet-
lab experiment described by x. Conducting an experiment x produces a noisy outcome y = f(x) + ε, where
ε is a random noise term. Bayesian Optimization (BO) aims to find an experiment x ∈ X that approximately
maximizes f by requesting a limited number of experiments and observing their outcomes.

We extend traditional BO algorithms and study the experiment scheduling problem. Assuming a known
density function pd for the experiment durations, the inputs to our problem include the total number of
available labs l, the total number of experiments n, and the time horizon h by which we must finish. The
goal is to design a policy π for selecting when to start experiments and which ones to start to optimize f .
Specifically, the inputs to π are the set of completed experiments and their outcomes, the set of currently
running experiments with their elapsed running time, the number of free labs, and the remaining time till the
horizon. Given this information, π must select a set of experiments (possibly empty) to start that is no larger
than the number of free labs. Any run of the policy ends when either n experiments are completed or the
time horizon is reached, resulting in a set X of n or fewer completed experiments. The objective is to obtain
a policy with small regret, which is the expected difference between the optimal value of f and the value of
f for the predicted best experiment in X . In theory, the optimal policy can be found by solving a POMDP
with hidden state corresponding to the unknown function f . However, this POMDP is beyond the reach of
any existing solvers. Thus, we focus on defining and comparing several principled policies that work well
in practice, but without optimality guarantees. Note that this problem has not been studied in the literature
to the best of our knowledge.

2

3 Overview of General Approach

A policy for our problem must make two types of decisions: 1) scheduling when to start new experiments,
and 2) selecting the specific experiments to start. In this work, we factor the problem based on these decisions
and focus on approaches for scheduling experiments. We assume a black box function SelectBatch for
intelligently selecting the k ≥ 1 experiments based on both completed and currently running experiments.
The implementation of SelectBatch is described in Section 6.

Optimal scheduling to minimize regret appears to be computationally hard for non-trivial instances of Se-
lectBatch. Further, we desire scheduling approaches that do not depend on the details of SelectBatch, but
work well for any reasonable implementation. Thus, rather than directly optimizing regret for a specific
SelectBatch, we consider the following surrogate criteria. First, we want to finish all n experiments within
the horizon h with high probability. Second, we would like to select each experiment based on as much
information as possible, measured by the number of previously completed experiments. These two goals are
at odds, since maximizing the completion probability requires maximizing concurrency of the experiments,
which minimizes the second criterion. Our offline and online scheduling approaches provide different ways
for managing this trade-off.

0 20 40 60 80 100 120
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

CPE

R
eg

re
t

Cosines

0 20 40 60 80 100 120
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

CPE

R
e

g
re

t

Hydrogen

Figure 1: The correlation between CPE and
regret for 30 different schedulers on two BO
benchmarks.

To quantify the second criterion, consider a complete execu-
tionE of a scheduler. For any experiment e inE, let priorE(e)
denote the number of experiments in E that completed be-
fore starting e. We define the cumulative prior experiments
(CPE) of E as:

∑
e∈E priorE(e). Intuitively, a scheduler with

a high expected CPE is desirable, since CPE measures the total
amount of information SelectBatch uses to make its decisions.

CPE agrees with intuition when considering extreme policies.
A poor scheduler that starts all n experiments at the same time
(assuming enough labs) will have a minimum CPE of zero.
Further, CPE is maximized by a scheduler that sequentially executes all experiments (assuming enough
time). However, in between these extremes, CPE fails to capture certain intuitive properties. For example,
CPE increases linearly in the number of prior experiments, while one might expect diminishing returns as
the number of prior experiments becomes large. Similarly, as the number of experiments started together
(the batch size) increases, we might also expect diminishing returns since SelectBatch must choose the
experiments based on the same prior experiments. Unfortunately, quantifying these intuitions in a general
way is still an open problem. Despite its potential shortcomings, we have found CPE to be a robust measure
in practice.

To empirically examine the utility of CPE, we conducted experiments on a number of BO benchmarks. For
each domain, we used 30 manually designed diverse schedulers, some started more experiments early on
than later, and vice-versa, while others included random and uniform schedules. We measured the average
regret achieved for each scheduler given the same inputs and the expected CPE of the executions. Figure 1
shows the results for two of the domains (other results are highly similar), where each point corresponds to
the average regret and CPE of a particular scheduler. We observe a clear and non-trivial correlation between
regret and CPE, which provides empirical evidence that CPE is a useful measure to optimize. Further, as we
will see in our experiments, the performance of our methods is also highly correlated with CPE.

4 Offline Scheduling

We now consider offline schedules, which assign start times to all n experiments before the experimental
process begins. Note that while the schedules are offline, the overall BO policy has online characteristics,
since the exact experiments to run are only specified when they need to be started by SelectBatch, based

3

on the most recent information. This offline scheduling approach is often convenient in real experimental
domains where it is useful to plan out a static equipment/personnel schedule for the duration of a project.
Below we first consider a restricted class of schedules, called staged schedules, for which we present a
solution that optimizes CPE. Next, we describe an approach for a more general class of schedules.

4.1 Staged Schedules

A staged schedule defines a consecutive sequence of N experimental stages, denoted by a sequence of
tuples 〈(ni, di)〉Ni=1, where 0 < ni ≤ l,

∑
i di ≤ h, and

∑
i ni ≤ n. Stage i begins by starting up ni new

experiments selected by SelectBatch using the most recent information, and ends after a duration of di, upon
which stage i+1 starts. In some applications, staged schedules are preferable as they allow project planning
to focus on a relatively small number of time points (the beginning of each stage). While our approach tries
to ensure that experiments finish within their stage, experiments are never terminated and hence might run
longer than their specified duration. If, because of this, at the beginning of stage i there are not ni free labs,
the experiments will wait till labs free up.

We say that an executionE of a staged schedule S is safe if each experiment is completed within its specified
duration in S. We say that a staged schedule S is p-safe if with probability at least p an execution of S is safe
which provides a probabilistic guarantee that all n experiments complete within the horizon h. Further, it
ensures with probability p that the maximum number of concurrent experiments when executing S is maxi ni
(since experiments from two stages will not overlap with probability p). As such, we are interested in finding
staged schedules that are p-safe for a user specified p, e.g. 95%. Meanwhile, we want to maximize CPE.
The CPE of any safe execution of S (slightly abusing notation) is: CPE(S) =

∑N
i=2 ni

∑i−1
j=1 nj . Typical

applications will use relative high values of p, since otherwise experimental resources would be wasted, and
thus with high probability we expect the CPE of an execution of S to equal CPE(S).

Our goal is thus to maximize CPE(S) while ensuring p-safeness. It turns out that for any fixed number of
stages N , the schedules that maximize CPE(S) must be uniform. A staged schedule is defined to be uniform
if ∀i, j, |ni − nj | ≤ 1, i.e., the batch sizes across stages may differ by at most a single experiment.

Proposition 1. For any number of experiments n and labs l, let SN be the set of corresponding N stage
schedules, where N ≥ dn/le. For any S ∈ SN , CPE(S) = maxS′∈SN CPE(S′) if and only if S is uniform.

Algorithm 1 Algorithm for computing a p-safe uniform
schedule with maximum number of stages.
Input:number of experiments (n), number of labs (l),
horizon (h), safety probability (p)
Output:A p-safe uniform schedule with maximum
number of stages
N = dn/le, S ← null
loop
S′ ← MaxProbUniform(N,n, l, h)
if S′ is not p-safe then

return S
end if
S ← S′, N ← N + 1

end loop

It is easy to verify that for a given n and l, an N
stage uniform schedule achieves a strictly higher
CPE than any N − 1 stage schedule. This im-
plies that we should prefer uniform schedules
with maximum number of stages allowed by the
p-safeness restriction. This motivates us to solve
the following problem: Find a p-safe uniform
schedule with maximum number of stages.

Our approach, outlined in Algorithm 1, considers
N stage schedules in order of increasingN , start-
ing at the minimum possible number of stages
N = dn/le for running all experiments. For each
value of N , the call to MaxProbUniform com-
putes a uniform schedule S with the highest prob-
ability of a safe execution, among allN stage uni-
form schedules. If the resulting schedule is p-safe
then we consider N + 1 stages. Otherwise, there
is no uniform N stage schedule that is p-safe and
we return a uniform N − 1 stage schedule, which was computed in the previous iteration.

4

It remains to describe the MaxProbUniform function, which computes a uniform N stage schedule S =
〈(ni, di)〉Ni=1 that maximizes the probability of a safe execution. First, any N stage uniform schedule must
haveN ′ = (n mod N) stages with n′ = bn/Nc+1 experiments andN−N ′ stages with n′−1 experiments.
Furthermore, the probability of a safe execution is invariant to the ordering of the stages, since we assume
i.i.d. distribution on the experiment durations. The MaxProbUniform problem is now reduced to computing
the durations di of S that maximize the probability of safeness for each given ni. For this we will assume that
the distribution of the experiment duration pd is log-concave, which allows us to characterize the solution
using the following lemma.
Lemma 1. For any duration distribution pd that is log-concave, if an N stage schedule S = 〈(ni, di)〉Ni=1

is p-safe, then there is a p-safe N stage schedule S′ = 〈(ni, d′i)〉Ni=1 such that if ni = nj then d′i = d′j .
This lemma suggests that any stages with equal ni’s should have equal di’s to maximize the probability of
safe execution. For a uniform schedule, ni is either n′ or n′ − 1. Thus we only need to consider schedules
with two durations, d′ for stages with ni = n′ and d′′ for stages with ni = n′ − 1. Since all durations must
sum to h, d′ and d′′ are deterministically related by: d′′ = h−d′·N ′

N−N ′ . Based on this, for any value of d′ the
probability of the uniform schedule using durations d′ and d′′ is as follows, where Pd is the CDF of pd.

[
Pd(d

′)
]N′·n′

[
Pd

(
h− d′ ·N ′

N −N ′

)](N−N′)·(n′−1)

(1)

We compute MaxProbUniform by maximizing Equation 1 with respect to d′ and using the corresponding
duration for d′′. Putting everything together we get the following result.
Theorem 1. For any log-concave pd, computing MaxProbUniform by maximizing Equation 1 over d′, if a
p-safe uniform schedule exists, Algorithm 1 returns a maximum-stage p-safe uniform schedule.

4.2 Independent Lab Schedules
We now consider a more general class of offline schedules and a heuristic algorithm for computing them.
This class allows the start times of different labs to be decoupled, desirable in settings where labs are run
by independent experimenters. Further, our online scheduling approach is based on repeatedly calling an
offline scheduler, which requires the flexibility to make schedules for labs in different stages of execution.

An independent lab (IL) schedule S specifies a number of labs k < l and for each lab i, a number of
experimentsmi such that

∑
imi = n. Further, for each lab i a sequence ofmi durationsDi = 〈d1

i , . . . , d
mi
i 〉

is given. The execution of S runs each lab independently, by having each lab start up experiments whenever
they move to the next stage. Stage j of lab i ends after a duration of dji , or after the experiment finishes
when it runs longer than dji (i.e. we do not terminate experiments). Each experiment is selected according
to SelectBatch, given information about all completed and running experiments across all labs.

We say that an execution of an IL schedule is safe if all experiments finish within their specified durations,
which also yields a notion of p-safeness. We are again interested in computing p-safe schedules that max-
imizes the CPE. Intuitively, CPE will be maximized if the amount of concurrency during an execution is
minimized, suggesting the use of as few labs as possible. This motivates the problem of finding a p-safe IL
schedule that use the minimum number of labs. Below we describe our heuristic approach to this problem.

Algorithm Description. Starting with k = 1, we compute a k labs IL schedule with the goal of maximizing
the probability of safe execution. If this probability is less than p, we increment k, and otherwise output the
schedule for k labs. To compute a schedule for each value of k, we first allocate the number of experiments
mi across k labs as uniformly as possible. In particular, (n mod k) labs will have bn/kc+ 1 experiments
and k − (n mod k) labs will have bn/kc experiments. This choice is motivated by the intuition that the
best way to maximize the probability of a safe execution is to distribute the work across labs as uniformly
as possible. Given mi for each lab, we assign all durations of lab i to be h/mi, which can be shown to be
optimal for log-concave pd. In this way, for each value of k the schedule we compute has just two possible
values of mi and labs with the same mi have the same stage durations.

5

5 Online Scheduling Approaches
We now consider online scheduling, which selects the start time of experiments online. The flexibility of
the online approaches offers the potential to outperform offline schedules by adapting to specific stochastic
outcomes observed during experimental runs. Below we first describe two baseline online approaches,
followed by our main approach, policy switching, which aims to directly optimize CPE.

Online Fastest Completion Policy (OnFCP). This baseline policy simply tries to finish all of the n exper-
iments as quickly as possible. As such, it keeps all l labs busy as long as there are experiments left to run.
Specifically whenever a lab (or labs) becomes free the policy immediately uses SelectBatch with the latest
information to select new experiments to start right away. This policy will achieve a low value of expected
CPE since it maximizes concurrency.

Online Minimum Eager Lab Policy (OnMEL). One problem with OnFCP is that it does not attempt to
use the full time horizon. The OnMEL policy simply restricts OnFCP to use only k labs, where k is the
minimum number of labs required to guarantee with probability at least p that all n experiments complete
within the horizon. Monte-Carlo simulation is used to estimate p for each k.

Policy Switching (PS). Our policy switching approach decides the number of new experiments to start at
each decision epoch. Decision epochs are assumed to occur every ∆ units of time, where ∆ is a small
constant relative to the expected experiment durations. The motivation behind policy switching is to exploit
the availability of a policy generator that can produce multiple policies at any decision epoch, where at least
one of them is expected to be good. Given such a generator, the goal is to define a new (switching) policy that
performs as well or better than the best of the generated policies in any state. In our case, the objective is to
improve CPE, though other objectives can also be used. This is motivated by prior work on policy switching
[6] over a fixed policy library, and generalize that work to handle arbitrary policy generators instead of static
policy libraries. Below we describe the general approach and then the specific policy generator that we use.

Let t denote the number of remaining decision epochs (stages-to-go), which is originally equal to bh/∆c and
decremented by one each epoch. We use s to denote the experimental state of the scheduling problem, which
encodes the number of completed experiments and ongoing experiments with their elapsed running time. We
assume access to a policy generator Π(s, t) which returns a set of base scheduling policies (possibly non-
stationary) given inputs s and t. Prior work on policy switching [6] corresponds to the case where Π(s, t)
returns a fixed set of policies regardless of s and t. Given Π(s, t), π̄(s, t, π) denotes the resulting switching
policy based on s, t, and the base policy π selected in the previous epoch. The decision returned by π̄ is
computed by first conductingN simulations of each policy returned by Π(s, t) along with π to estimate their
CPEs. The base policy with the highest estimated CPE is then selected and its decision is returned by π̄. The
need to compare to the previous policy π is due to the use of a dynamic policy generator, rather than a fixed
library. The base policy passed into policy switching for the first decision epoch can be arbitrary.

Despite its simplicity, we can make guarantees about the quality of π̄ assuming a bound on the CPE estima-
tion error. In particular, the CPE of the switching policy will not be much worse than the best of the policies
produced by our generator given accurate simulations. We say that a CPE estimator is ε-accurate if it can
estimate the CPE Cπt (s) of any base policy π for any s and t within an accuracy bound of ε. Below we
denote the expected CPE of π̄ for s, t, and π to be C π̄t (s, π).

Theorem 2. Let Π(s, t) be a policy generator and π̄ be the switching policy computed with ε-accurate
estimates. For any state s, stages-to-go t, and base policy π, C π̄t (s, π) ≥ maxπ′∈Π(s,t)∪{π} C

π′

t (s)− 2tε.

We use a simple policy generator Π(s, t) that makes multiple calls to the offline IL scheduler described
earlier. The intuition is to notice that the produced p-safe schedules are fairly pessimistic in terms of the
experiment runtimes. In reality many experiments will finish early and we can adaptively exploit such
situations. Specifically, rather than follow the fixed offline schedule we may choose to use fewer labs and
hence improve CPE. Similarly if experiments run too long, we will increase the number of labs.

6

Table 1: Benchmark Functions
Cosines(2)[1] 1− (u2 + v2 − 0.3cos(3πu)− 0.3cos(3πv)) Rosenbrock(2)[1] 10− 100(y − x2)2 − (1− x)2

u = 1.6x− 0.5, v = 1.6y − 0.5

Hartman(3,6)[7] Σi=14αi exp
[
−Σdj=1Aij(xj − Pij)2

]
Michalewicz(5)[9]−

∑5
i=1 sin(xi).

(
sin
(
i.x2i
π

))20

α1×4, A4×d, P4×d are constants
Shekel(4)[7] Σ10

i=1
1

αi+Σj=14(xj−Aji)2
α1×10, A4×10 are constants

We define Π(s, t) to return k + 1 policies, {π(s,t,0), . . . , π(s,t,k)}, where k is the number of experiments
running in s. Policy π(s,t,i) is defined so that it waits for i current experiments to finish, and then uses the
offline IL scheduler to return a schedule. This amounts to adding a small lookahead to the offline IL scheduler
where different amounts of waiting time are considered 1. Note that the definition of these policies depends
on s and t and hence can not be viewed as a fixed set of static policies as used by traditional policy switching.
In the initial state s0, π(s0,h,0) corresponds to the offline IL schedule and hence the above theorem guarantees
that we will not perform much worse than the offline IL, with the expectation of performing much better.
Whenever policy switching selects a πi with i > 0 then no new experiments will be started and we wait for
the next decision epoch. For i = 0, it will apply the offline IL scheduler to return a p-safe schedule to start
immediately, which may require starting new labs to ensure high probability of completing n experiments.

6 Experiments
Implementation of SelectBatch. Given the set of completed experiments O and on-going experiments A,
SelectBatch selects k new experiments. We implement SelectBatch based on a recent batch BO algorithm
[2], which greedily selects k experiments considering only O. We modify this greedy algorithm to also
consider A by forcing the selected batch to include the ongoing experiments plus k additional experiments.
SelectBatch makes selections based on a posterior over the unknown function f . We use Gaussian Process
with the RBF kernel and the kernel width = 0.01

∑d
i=1 li, where li is the input space length in dimension i.

Benchmark Functions. We evaluate our scheduling policies using 6 well-known synthetic benchmark
functions (shown in Tab. 1 with dimension inside the parenthesis) and two real-world benchmark functions
Hydrogen and FuelCell over [0, 1]2 [2]. The Hydrogen data is produced by a study on biosolar hydrogen
production [5], where the goal was to maximize hydrogen production of a particular bacteria by optimizing
PH and Nitrogen levels. The FuelCell data was collected in our motivating application mentioned in Sect. 1.
In both cases, the benchmark function was created by fitting regression models to the available data.

Evaluation. We consider a p-safeness guarantee of p = 0.95 and the number of available labs l is 10. For
pd(x), we use one sided truncated normal distribution such that x ∈ (0, inf) with µ = 1, σ2 = 0.1, and we
set the total number of experiments n = 20. We consider three time horizons h of 6, 5, and 4.

Given l, n and h, to evaluate policy π using function f (with a set of initial observed experiments), we execute
π and get a setX of n or fewer completed experiments. We measure the regret of π as the difference between
the optimal value of f (known for all eight functions) and the f value of the predicted best experiment in X .

Results. Table 2 shows the results of our proposed offline and online schedulers. We also include, as a
reference point, the result of the un-constrained sequential policy (i.e., selecting one experiment at a time)
using SelectBatch, which can be viewed as an effective upper bound on the optimal performance of any
constrained scheduler because it ignores the time horizon (h = ∞). The values in the table correspond to
the regrets (smaller values are better) achieved by each policy, averaged across 100 independent runs with
the same initial experiments (5 for 2-d and 3-d functions and 20 for the rest) for all policies in each run.

1For simplicity our previous discussion of the IL scheduler did not consider states with ongoing experiments, which
will occur here. To handle this the scheduler first considers using already executing labs taking into account how long
they have been running. If more labs are required to ensure p-safeness new ones are added.

7

Table 2: The proposed policies results for different horizons.
h=4 h=5 h=6

Functionh =∞ OnFCP OfStaged OfIL OnMEL PS OfStaged OfIL OnMEL PS OfStaged OfIL OnMEL PS
Cosines .142 .339 .181 .195 .275 .205 .181 .194 .274 .150 .167 .147 .270 .156
FuelCell .160 .240 .182 .191 .258 .206 .167 .190 .239 .185 .154 .163 .230 .153
Hydro .025 .115 .069 .070 .123 .059 .071 .069 .086 .042 .036 .035 .064 .025
Rosen .008 .013 .010 .009 .013 .008 .009 .008 .011 .008 .007 .009 .010 .009
Hart(3) .037 .095 .070 .069 .096 .067 .055 .064 .081 .045 .045 .050 .070 .038
Michal .465 .545 .509 .508 .525 .502 .500 .510 .521 .494 .477 .460 .502 .480
Shekel .427 .660 .630 .648 .688 .623 .635 .645 .682 .540 .530 .564 .576 .510
Hart(6) .265 .348 .338 .340 .354 .347 .334 .330 .333 .297 .304 .266 .301 .262
CPE 190 55 100 100 66 100 100 100 91 118 133 137 120 138

We first note that the two offline algorithms (OfStages and OfIL) perform similarly across all three horizon
settings. This suggests that there is limited benefit in these scenarios to using the more flexible IL schedules,
which were primarily introduced for use in the online scheduling context. Comparing with the two online
baselines (OnFCP and OnMEL), the offline algorithms perform significantly better. This may seem surpris-
ing at first because online policies should offer more flexibility than fixed offline schedules. However, the
offline schedules purposefully wait for experiments to complete before starting up new experiments, which
tends to improve the CPE values. To see this, the last row of Table 2 gives the average CPEs of each pol-
icy. Both OnFCP and OnMEL yield significantly lower CPEs compared to the offline algorithms, which
correlates with their significantly larger regrets.

Finally, policy switching consistently outperforms other policies (excluding h =∞) on the medium horizon
setting and performs similarly in the other settings. This makes sense since the added flexibility of PS is not
as critical for long and short horizons. For short horizons, there is less opportunity for scheduling choices and
for longer horizons the scheduling problem is easier and hence the offline approaches are more competitive.
In addition, looking at Table 2, we see that PS achieves a significantly higher CPE than offline approaches in
the medium horizon, and is similar to them in the other horizons, again correlating with the regret. Further
examination of the schedules produced by PS indicates that although it begins with the same number of labs
as OfIL, PS often selects fewer labs in later steps if early experiments are completed sooner than expected,
which leads to higher CPE and consequently better performance. Note that the variances of the proposed
policies are very small which are shown in the supplementary materials.

7 Summary and Future Work
Motivated by real-world applications we introduced a novel setting for Bayesian optimization that incorpo-
rates a budget on the total time and number of experiments and allows for concurrent, stochastic-duration
experiments. We considered offline and online approaches for scheduling experiments in this setting, rely-
ing on a black box function to intelligently select specific experiments at their scheduled start times. These
approaches aimed to optimize a novel objective function, Cumulative Prior Experiments (CPE), which we
empirically demonstrate to strongly correlate with performance on the original optimization problem. Our
offline scheduling approaches significantly outperformed some natural baselines and our online approach of
policy switching was the best overall performer.

For further work we plan to consider alternatives to CPE, which, for example, incorporate factors such as
diminishing returns. We also plan to study further extensions to the experimental model for BO and also for
active learning. For example, taking into account varying costs and duration distributions across labs and
experiments. In general, we believe that there is much opportunity for more tightly integrating scheduling
and planning algorithms into BO and active learning to more accurately model real-world conditions.
Acknowledgments
The authors acknowledge the support of the NSF under grants IIS-0905678.

8

References
[1] B. S. Anderson, A. Moore, and D. Cohn. A nonparametric approach to noisy and costly optimization. In ICML,

2000.

[2] J. Azimi, A. Fern, and X. Fern. Batch bayesian optimization via simulation matching. In NIPS, 2010.

[3] D. Bond and D. Lovley. Electricity production by geobacter sulfurreducens attached to electrodes. Applications of
Environmental Microbiology, 69:1548–1555, 2003.

[4] E. Brochu, M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with appli-
cation to active user modeling and hierarchical reinforcement learning. Technical Report TR-2009-23, Department
of Computer Science, University of British Columbia, 2009.

[5] E. H. Burrows, W.-K. Wong, X. Fern, F. W. Chaplen, and R. L. Ely. Optimization of ph and nitrogen for enhanced
hydrogen production by synechocystis sp. pcc 6803 via statistical and machine learning methods. Biotechnology
Progress, 25:1009–1017, 2009.

[6] H. Chang, R. Givan, and E. Chong. Parallel rollout for online solution of partially observable markov decision
processes. Discrete Event Dynamic Systems, 14:309–341, 2004.

[7] L. Dixon and G. Szeg. The Global Optimization Problem: An Introduction Toward Global Optimization. North-
Holland, Amsterdam, 1978.

[8] D. Jones. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization,
pages 345–383, 2001.

[9] Z. Michalewicz. Genetic algorithms + data structures = evolution programs (2nd, extended ed.). Springer-Verlag
New York, Inc., New York, NY, USA, 1994.

[10] D. Park and J. Zeikus. Improved fuel cell and electrode designs for producing electricity from microbial degrada-
tion. Biotechnol.Bioeng., 81(3):348–355, 2003.

9

