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Abstract

In this paper, we consider the problem of compressed sensing where the goal is to recover alf sparse
vectors using a small number of fixed linear measurements. For this problem, we propose a novel
partial hard-thresholding operator that leads to a general family of iterative algorithms, While one
extreme of the family yields well known hard thresholding algorithms like ITI and HTP[17, 10], the
other end of the spectrum leads to a novel algorithm that we call Orthogonal Matching Pursuit with
Replacement (OMPR). OMPR, like the classic greedy algorithm OMP, adds exactly one coordinate
to the support at each iteration, based on the correlation with the current residual. However, unlike
OMP, OMPR also removes one coordinate from the support. This simple change allows us to prove
that OMPR has the best known guarantees for sparse recovery in terms of the Restricted Isometry
Property (a condition on the measurement matrix). In contrast, OMP is known to have very weak
performance guarantees under RIP. Given its simple structure, we are able to extend OMPR using
locality sensitive hashing to get OMPR-Hash, the first provably sub-linear (in dimensionality) al-
gorithm for sparse recovery. Our proof techniques are novel and flexible enough to also permit the
tightest known analysis of popular iterative algorithms such as CoSaMP and Subspace Pursuit. We
provide experimental results on large problems providing recovery for vectors of size up to million
dimensions. We demonstrate that for large-scale problems our proposed methods are more robust
and faster than existing methods.

1 Introduction

‘We nowadays routinely face high-dimensional datasets in diverse application areas such as biology, astronomy, and
finance. The associated curse of dimensionality is often alleviated by prior knowledge that the object being estimated
has some structure. One of the most natural and well-studied structural assumption for vectors is sparsity. Accordingly,
a huge amount of recent work in machine learning, statistics and signal processing has been devoted to finding better
ways to leverage sparse structures. Compressed sensing, a new and active branch of modern signal processing, deals
with the problem of designing measuretnent matrices and recovery algorithms, such that altmost all sparse signals can
be recovered from a small number of measurements. It has important applications in imaging, computer vision and
machine learning (see, for example, [9, 24, 14]).

In this paper, we focus on the compressed sensing setting [3, 7] where we want to design a measurcment matrix
A € R™*™ such that a sparse vector z* € R" with ||z*[|o := |supp(z™)| < k < n can be efficiently recovered from
the measurements b = Axr* € R™, Initial work focused on various random ensembles of matrices A such that, if A
was chosen randomly from that ensemble, one would be able to recover all or almost all sparse vectors z* from Az*.
Candes and Tao[3] isolated a key property called the restricted Isometry property (RIP) and proved that, as long as the
measurement matrix A satisfies RIP, the true sparse vector can be obtained by solving an £; -optimization problem,

min ||z||; st Az =5.

The above problem can be easily formulated as a linear program and is hence efficiently solvable. We recall for the
reader that a matrix A is said to satisfy RIP of order k if there is some Jj, € [0, 1) such that, for all 2 with ||z|o < k,

we have
(1 —&)ll2|? < [|Az]® < (1 + &)l .



Several random matrix ensembles are known to satisfy d.; < @ with high probability provided one chooses
m=0(%1log ) measurements, It was shown in [2] that £;-minimization recovers all k-sparse vectors provided A
satisfies 0oz < 0.414 although the condition has been recently improved to daz < 0.473 [11]. Note that, in compressed
sensing, the goal is to recover all, or most, k-sparse signals using the same measurement matrix A. Hence, weaker
conditions such as restricted convexity [20] studied in the statistical literature (where the aim is to recover a single
sparse vector from noisy linear measurements) typically do not suffice. In fact, if RIP is not satisfied then multiple
sparse vectors £ can lead to the same observation b, hence making recovery of the true sparse vector impossible.

Based on its RIP guarantees, £; -minimization can guarantee recovery using just O(k log(n/k)) measurements, but it
has been observed in practice that £; -minimization is too expensive in large scale applications [8], for example, when
the dimensionality is in the millions. This has sparked a huge interest in other iterative methods for spatse recovery.
An early classic iterative method is Orthogonal Matching Pursuit (OMP) [21, 6] that greedily chooses elements to add
to the support. It is a natural, easy-to-implement and fast method but unfortunately lacks strong theoretical guarantees.
Indeed, it is known that, if run for % iterations, OMP cannot uniformly recover all k-sparse vectors assuming RTP
condition of the form do;, < &[22, 18]. However, Zhang [26] showed that OMP, if run for 30k iterations, recovers the
optimal solution when 63,3 < 1/3; a significantly more restrictive condition than the ones required by other methods
like ¢, -minimization.

Several other iterative approaches have been proposed that include Iterative Soft Thresholding (IST) [17], Iterative
Hard Thresholding (THT) [1], Compressive Sampling Matching Pursuit (CoSaMP) [19], Subspace Pursuit (SP) [4],
Iterative Thresholding with Inversion (ITT) [16], Hard Thresholding Pursuit (HTP) [10] and many others. In the family
of iterative hard thresholding algorithms, we can identify two major subfamilies [17]: one- and two-stage algorithms.
As their names suggest, the distinction is based on the number of stages in each iteration of the algorithm. One-stage
algorithms such as IHT, ITI and HTP, decide on the choice of the next support set and then usually solve a least
squares problem on the updated support. The one-stage methods always set the support set to have size &, where &
is the target sparsity level. On the other hand, two-stage algorithms, notable examples being CoSaMP and SP, first
enlarge the support set, solve a least squares on it, and then reduce the support set back again to the desired size. A
second least squares problem is then solved on the reduced support. These algorithms typically enlarge and reduce
the support set by & or 2k elements. An exception is the two-stage algorithm FoBa [25] that adds and removes single
elements from the support. However, it differs from our proposed methods as its analysis requires very restrictive RIP
conditions (dgx < 0.1 as quoted in [14]) and the connection to locality sensitive hashing (see below) is not made.
Another algorithm with replacement steps was studied by Shalev-Shwartz et al. [23]. However, the algorithm and the
setting under which it is analyzed are different from ours.

In this paper, we present and provide a unified analysis for a family of one-stage iterative hard thresholding algorithms.
The family is parameterized by a positive integer ! < k. At the extreme value [ = k, we recover the algorithm ITI/HTP.
At the other extreme & = 1, we get a novel algorithm that we call Orthogonal Matching Pursuit with Replacement
(OMPR). OMPR can be thought of as a simple modification of the classic greedy algorithm OMP: instead of simply
adding an element to the existing support, it replaces an existing support element with a new one. Surprisingly, this
change allows us to prove sparse recovery under the condition dox < 0.499. This is the best &5 based RIP condition
under which any method, including £; -minimization, is (currently) known to provably perform sparse recovery.

OMPR also lends itself to a faster implementation using locality sensitive hashing (LSH). This allows us to provide
recovery guarantees using an algorithm whose run-time is provably sub-linear in n, the number of dimensions. An
added advantage of OMPR, unlike many iterative methods, is that no careful tuning of the step-size parameter is
required even under noisy settings or even when RIP does not hold. The default step-size of 1 is always guaranteed to
converge to at least a local optimum.

Finally, we show that our proof techniques used in the analysis of the OMPR family are useful in tightening the
analysis of two-stage algorithms, such as CoSaMP and SF, as well. As a result, we are able to prove better recovery
guarantees for these algorithms: §4, < 0.35 for CoSaMP, and dz; < 0.35 for SP. We hope that this unified analysis
sheds more light on the interrelationships between the various kinds of iterative hard thresholding algorithms.

In summary, the contributions of this paper are as follows.

e We present a family of iterative hard thresholding algorithms that on one end of the spectrum includes ex-
isting methods such as ITI/HTP while on the other end gives OMPR. OMPR is an improvement over the
classical OMP method as it enjoys better theoretical guarantees and is also better in practice as shown in our
experiments,

e Unlike other improvements over OMP, such as CoSaMP or SP, OMPR changes only one element of the
support at a time. This allows us to use Locality Sensitive Hashing (LSH) to speed it up resulting in the first
provably sub-linear (in the ambient dimensionality r) time sparse recovery algorithm,



Algorithm 1 OMPR Algorithm 2 OMPR (1)

1: Input: matrix A, vector b, sparsity level k& 1: Imput: matrix A, vector b, sparsity level &

2 Parameter. step size 5 > 0 2: Parameter. step size > 0, replacement budgetl
3: Initialize ! s.t. | supp(z!)| = k, 1 = supp(z?) 3; Tnitialize 7' s.t. | supp(z')| = k, I = supp(z')
4: fort—ltono 4: fort—ltono

50 2t — gt + AT (b — Axt) 5. 2 gt + nAT (b — Azt)

6 Jer1 — argmaxjer |25t 6:  top,., + indices of top I elements of |27+
T Jt+1 — It (W] {Jt+1} 7 Jt+1 — It U topH_l

1
&yt e Hy (2] &yt H (25111)
9: Iy < supp{ytt!) 9 It+1 — SUPP(:UH'l)
1 1
10: 27l — Ar,\b, m}:l —0 10:  gft +1 — Ar.\b, x -0
11: end for 11: end for

o We provide a general proof for all the algorithms in our partial hard thresholding based family. In particular,
we can guarantee recovery using OMPR, under both noiseless and noisy settings, provided da; < 0.499.
This is the least restrictive da; condition under which any efficient sparse recovery method is known to work.
Furthermore, our proof technique can be used to provide a general theorem that provides the least restrictive
known guarantees for all the two-stage algorithms such as CoSaMP and SP (see Appendix D),

All proofs omitted from the main body of the paper can be found in the appendix.

2 Orthogonal Matching Pursuit with Replacement

Orthogonal matching pursuit (OMP), is a classic iterative algorithm for sparse recovery. At every stage, it selects a
coordinate to include in the current support set by maximizing the inner product between columns of the measurement
matrix A and the current residual b — Az?. Once the new coordinate has been added, it solves a least squares problem
to fully minimize the error on the current support set. As a result, the residual becomes orthogonal to the columns of
A that correspond to the current support set. Thus, the least squares step is also referred to as orthogonalization by
some authors [5].

Let us briefly explain some of our notation. We use the MATLAB notation:
A\b := argmin | Az — b||5 .
=

The hard thresholding operator Hy (-} sorts its argument vector in decreasing order (in absolute value) and retains
only the top k entries. It is defined formally in the next section. Also, we use subscripts to denote sub-vectors and
submatrices, e.g. if I C [n] is a set of cardinality k and z € R®, z; € R* denotes the sub-vector of x indexed by 1.
Slmllarly, A; for a matrix A € R™*" denotes a sub-matrix of size m x k with columns indexed by I. The complement
of set I is denoted by I and z; denotes the subvector not indexed by I. The support (indices of non-zero entries) of a
vector z is denoted by supp(z).

Our new algorithm called Orthogonal Matching Pursuit with Replacement (OMPR ), shown as Algorithm 1, differs
from OMP in two respects. First, the selection of the coordinate to include is based not just on the magnitude of entries
in AT (b— Az*) but instead on a weighted combination z* +nAT (b — Az*) with the step-size 77 controlling the relative
importance of the two addends. Second, the selected coordinate replaces one of the existing elements in the support,
namely the one corresponding to the minimum magnitude entry in the weighted combination mentioned above.

Once the support I;,; of the next iterate has been determined, the actual iterate #*+! is obtained by solving the least
squares problem:
ot =  argmin || Az — by .
z :supp{z)=Ft41

Note that if the matrix A satisfies RIP of order k or larger, the above problem will be well conditioned and can be
solved quickly and reliably using an iterative least squares solver. We will show that OMPR, unlike OMP, recovers any
k-sparse vector under the RIP based condition da, < 0.499. This appears to be the least restrictive recovery condition
(i.e., best known condition) under which any method, be it basis pursuit (£, -minimization) or some iterative algorithm,
i8 guaranteed to recover all k-sparse vectors.

In the literature on sparse recovery, RIP based conditions of a different order other than 2k are often provided. It is
seldom possible to directly compare two conditions, say, one based on do, and the other based on dsy,. Foucart [10] has



given a heuristic to compare such RIP conditions based on the number of samples it takes in the Gaussian ensemble
to satisfy a given RIP condition. This heuristic says that an RIP condition of the form d.; < 8 is less restrictive if the
ratio ¢/6? is smaller. For the OMPR condition da; < 0.499, this ratio is 2/0.499? = 8 which makes it heuristically
the least restrictive RIP condition for sparse recovery. The following summarize our main results on OMPR.
Theorem 1 (Noiseless Case). Suppose the vecior z* € R" is k-sparse and the matrix A satisfies da, < 0.499 and
82 < 0.002. Then OMPR converges to an € approximate solution (i.e. 1/2||Az — b||> < ¢ from measurements
b= Az* in O(klog(k/e)) iterations.

Theorem 2 (Noisy Case). Suppose the vector x* € R™ is k-sparse and the matrix A satisfies b6z < 0.499 and
82 < 0.002. Then OMPR converges to a (C,¢€) approximate solution (ie. 1/2| Az — b|?> < £|e|? + ¢ from
measurements b = Az* + e in O(klog((k + ||€||?)/€)) iterations. Here C > 1 is a constant dependent only on &3 .
The above theorems are special cases of our convergence results for a family of algorithms that contains OMPR as a
special case. We now turn our attention to this family. We note that the condition d» < 0.002 is very mild and will
typically hold for standard random matrix ensembles as soon as the number of rows sampled is larger than a fixed
universal constant.

3 A New Family of Iterative Algorithms

In this section we show that OMPR is one particular member of a family of algorithms parameterized by a single
integer I € {1,...,k}. The {-th member of this family, OMPR (i), shown in Algorithm 2, replaces at most [ elements
of the current support with new elements. OMPR corresponds to the choice [ = 1. Hence, OMPR and OMPR (1)
refer to the same algorithm.

Our first result in this section connects the OMPR. family to hard thresholding. Given a set I of cardinality k, define
the partial hard thresholding operator

Hy(z;1,1):== argmin |y — 2. )]
Ivlosk
| supp(g)\I|<I
Ag is clear from the definition, the above operator tries to find a vector y close to a given vector z under two constraints:

(i) the vector y should have bounded support (|v|lc < k), and (ii) its support should not include more than ! new
elements outside a given support 1.

The name partial hard thresholding operator is justified because of the following reasoning. When { = k, the constraint
| supp(w)\J| < lis trivially implied by ||y]lo < & and hence the operator becomes independent of I. In fact, it becomes
identical to the standard hard thresholding operator

Hy (z;1,k) = Hy (2) := argmin |ly — 2| . @
Ivllo<k

Even though the definition of Hy (z) seems to involve searching through ('Q subsets, it can in fact be computed
efficiently by simply sorting the vector z by decreasing absolute value and retaining the top & entries.

The following result shows that even the partial hard thresholding operator is easy to compute. In fact, lines 6-8 in
Algorithm 2 precisely compute Hy, (21 I, ).

Proposition 3. Let |I| = k and z be given. Then y = Hy, (2;1,1) can be computed using the sequence of operations
top = indices of top l elements of |z7|, J=IUtop, y=Hg(zs).

The proof of this proposition is straightforward and elementary. However, using it, we can now see that the OMPR (1)
algorithm has a simple conceptual structure. In each iteration (with current iterate * having support I; = supp(z?)),
we do the following:

1. (Gradient Descent) Form z!*t! = z* — nAT (Az? —b). Note that AT (Az® — b) is the gradient of the objective

function 1|| Az — b)|? at z*.

2. (Partial Hard Thresholding) Form y#t? by partially hard thresholding 221 using the operator Hy, (- I, I).

3. (Least Squares) Form the next iterate z°+! by solving a least squares problem on the support 7; 1 of y**1.
A nice property enjoyed by the entire OMPR family is guaranteed sparse recovery under RIP based conditions. Note
from below that the condition under which OMPR ({) recovers sparse vectors becomes more restrictive as [ increases.
This could be an artifact of our analysis, as in experiments, we do not see any degradation in recovery ability as [ is
increased.



Theorem 4 (Noiseless Case). Suppose the vector £* € R™ is k-sparse. Then OMPR (1} converges to an € approxima-
tion solution (i.e. 1/2||Az — b||? < ¢} from measurements b = Az* in O(% log(k/e)) iterations provided we choose a
step size 1 that satisfies n(1 + dop) < 1 and n(1 — da) > 1/2.

Theorem 5 (Noisy Case). Suppose the vector z* € R™ is k-sparse. Then OMPR (1) converges to a (C‘ €) approximate
solution (i.e., 1/2||Az — b||? < £|le||? + ¢) from measurements b = Az* + e in O(£ log((k + ||e||?)/€)) iterations
provided we choose a step size 1) that satisfies {1 + 0z) < 1 and n(1 — 02;) > 1 /2. Here C > 1 is a constant
dependent only on by, o,

Progf. Here we provide a rough sketch of the proof of Theorem 4; the complete proof is given in Appendix A.

Our proof uses the following crucial observation regarding the structure of the vector 27! = 2t — nAT(Az* —b) .
Due to the least squares step of the previous iteration, the current residual Az® — b is orthogonal to columns of Ay,.
This means that

g =al,, #=-nAf(42"-1). €)

As the algorithtn proceeds, elemnents come in and move out of the current set I;. Let us give names to the set of found
and lost elements as we move from [; to I¢+1:

(fO'IJIld) It+1\It, (].OSt) : Lt = It\It+1-

Hence, using (3) and updates for y;,1: y}.‘l‘l = Z5t = —nAT A(z* — 2*), and 25! = 2 . Now let f(z) =
1/2|| Az — b||2, then using upper RIP and the fact that | supp(y“r1 —zt)| = |Fy U Ly < 21, we can show that (details
are in the Appendix A):

[E5 @

s - s < (2 - DY e+ T2

2

Furthermore, since 3*? is chosen based on the % largest entries in ztjﬂl, we have: ||yFt 112 = ||th 49 ||th 2 =
ll=%,, 1 . Plugging this into (4), we get:

1) - £t < (1 b ,1?) s ©)

Since f(z'+1) < f(y't!) < f(zt), the above expression shows that if < ﬁ then our method monotonically
decreases the objective function and converges to a local optimum even if RIP is not satisfied (note that upper RIP
bound is independent of lower RIP bound, and can always be satisfied by normalizing the matrix appropriately).

However, to prove convergence to the global optimum, we need to show that at least one new element is added at each
step, i.e.,, |F3| > 1. Furthermore, we need to show sufficient decrease, i.e, ||3,.v1;.t1||2 > ¢4 f(z*). We show both these
conthlons for global convergence in Lemma 6, whose proof is given in Appendix A.

Lemma 6. Lef 65 < 1 — and 1/2 < n < 1. Then assuming f(z*) > 0, at least one new element is found i.e.
F, # (. Furthermore, ||yFt1|| > Lef(z*), where c = min(4n(1 — n)2,2(2n - ﬁ)) > 0 is a constant.

Assuming Lemma 6, (5) shows that at each iteration OMPR (1) reduces the objective function value by at least a
constant fraction. Furthermore, if 2° is chosen to have entries bounded by 1, then f(z°) < (1 + 63z )k. Hence, afoer
O(k/llog(k/€)) iterations, the optlma.l solution z* would be obtained within € error.

Special Cases: We have already observed that the OMPR algorithm of the previous section is simply OMPR (1).
Also note that Theorem 1 immediately follows from Theorem 4.

The algorithm at the other extreme of I — k has appeared at least three times in the recent literature: as Iterative (hard)
Thresholding with Inversion (ITI) in [16], as SVP-Newton (in its matrix avatar) in [15], and as Hard Thresholding
Pursuit (HTP) in [10]). Let us call it IHT-Newton as the least squares step can be viewed as a Newton step for the
quadratic objective. The above general result for the OMPR family immediately implies that it recovers sparse vectors
as soon as the measurement matrix A satisfies dox < 1/3.

Corollary 7. Suppose the vector z* € R" is k-sparse and the matrix A satisfies 8z, < 1/3. Then IHT-Newfon
recovers * from measurements b = Axz* in O(log(k)) iferations.

5



4 Tighter Analysis of Two Stage Hard Thresholding Algorithms

Recently, Maleki and Donoho [17] proposed a novel family of algorithms, namely two-stage hard thresholding algo-
rithms. During each iteration, these algorithms add a fixed number (say [} of elements to the current iterate’s support
set. A least squares problem is solved over the larger support set and then ! elements with smallest magnitude are
dropped to form next iterate’s support set. Next iterate is then obtained by again solving the least squares over next
iterate’s support set. See Appendix D for a more detailed description of the algorithm.

Using proof techniques developed for our proof of Theorem 4, we can obtain a simple proof for the entire spectrum of

algorithms in the two-stage hard thresholding family.

Theorem 8. Suppose the vector t* € {—1,0,1}" is k-sparse. Then the Two-stage Hard Thresholding algorithm with

replacement size | recovers x* from measurements b = Azx* in O(k) iterations provided: by < .35.

Note that CoSaMP [19] and Subspacc Pursuit{SP) [4] arc popular speccial cases of the two-stage family. Using our

general analysis, we are able to provide significantly less restrictive RTP conditions for recovery.

Corollary 9. CoSaMP[19] recovers k-sparse t* € {—1,0,1}" from measurements b = Ax* provided d4, < 0.35.

6Corollary 10. Subspace Pursuit{4] recovers k-sparse z* € {—1,0,11" from measurements b = Az* provided
2 < 0.35.

Note that CoSaMP’s analysis given by [19] requires §4, < 0.1 while Subspace Pursuit’s analysis given by [4] requires

O3 < 0.205. See Appendix D in the supplementary material for proofs of the above theoremn and corollaries.

5 Fast Implementation Using Hashing

In this section, we discuss a fast implementation of the OMPR method using locality-sensitive hashing. The
main intuition behind our approach is that the OMPR. method selects at most one element at cach step (given by
argmax; | A7 (Az' — b)|); hence, selection of the top most element is equivalent to finding the column A; that is most
“similar” (in magnitude) to r; = Ax® — b, i.e., this may be viewed as the similarity search task for queries of the form
r, and —r; from a database of N vectors [Ay, ..., Ax].

To this end, we use locality sensitive hashing (LSH) [12], a well known data-structure for approximate nearcst-
neighbor retrieval. Note that while LSH is designed for nearest neighbor search (in terms of Euclidean distances) and
in general might not have any guarantees for the similar neighbor search task, we are still able to apply it to our task
because we can lower-bound the similarity of the most similar neighbor.

We first briefly describe the LSH scheme that we use. LSH generates hash bits for a vector using randomized hash
functions that have the property that the probability of collision between two vectors is proportional to the similarity
between them. For our problem, we use the following hash function: k., (a) = sign{(uTa), where u ~ N(0,I)isa
random hyper-plane generated from the standard multivariate Gaussian distribution. It can be shown that [13]

1 ola
Prihy(a1) = hy(as)) =1— ~cos™! (12)
Palan) =@zl =1= 0 07 g, aa]
Now, an s-bit hash key is created by randomly sampling hash functions h,, ie, g{a) =
[y (@), Bus (@), . .., By, (@)], where each w; is sampled randomly from the standard multivariate Gaussian
distribution. Next, g hash tables are constructed during the pre-processing stage using independently constructed hash
key functions gy, ga, . . . , g¢- During the query stage, a query is indexed into each hash table using hash-key functions
g1,92, . .., gq and then the nearest neighbors are retrieved by doing an exhaustive search over the indexed elements.

Below we state the following theorem from [12] that guarantees sub-linear time nearest neighbor retrieval for LSH.

Theorem 11, Let s = O(log ) and g = O(log 1/6)nTi<, then with probability 1 — §, LSH recovers (1 + €)-nearest
neighbors, i.e, |[a' —r|? < (1 +¢€)||a* — »||?, where a* is the nearest neighbor to v and @' is a point retrieved by
LSH.

However, we cannot directly use the above theorem to guarantee convergence of our hashing based OMPR algorithm
as our algorithm requires finding the most similar point in terms of magnitude of the inner product. Below, we provide
appropriate settings of the LSH parameters to guaraniee sub-linear time convergence of our method under a slightly
weaker condition on the RIP constant. A detailed proof of the theorem below can be found in Appendix B.

Theorem 12, Lef o < 1/4—y and = 1 — -y, wherey > 0 is a small constant, then with probability 1 — §, OMPR
with hashing converges to the optimal solution in O(kmn/ A+ /%) 1og k /) computational steps.

The above theorem shows that the time complexity is sub-linear in n. However, currently our guarantees are not
particularly strong as for large k£ the exponent of n will be close to 1. We believe that the exponent can be improved
by more careful analysis and our empirical results indicate that LSH does speed up the OMPR method significantly.

6
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Figure 1: Phase Transition Diagrams for different methods. Red represents high probability of success while blue

represents low probability of success. Clearly, OMPR recovers correct solution for a much larger region of the plot
than OMP and is comparable to IHT-Newton. (Best viewed in color)

6 Experimental Results

In this section we present empirical results to demonstrate accurate and fast recovery by our OMPR method. In the first
set of experiments, we present a phase transition diagram for OMPR and compare it to the phase transition diagrams
of OMP and IHT-Newton with step size 1. For the second set of experiments, we demonstrate robustness of OMPR
compared to many existing methods when measurements are noisy or smaller in number than what is required for exact
recovery. For the third set of experiments, we demonstrate efficiency of our LSH based implementation by comparing
recovery error and time required for our method with OMP and THT-Newton (with step-size 1 and 1/2). We do not
present results for the £;/basis pursuit methods, as it has already been shown in several recent papers [10, 17] that the
£, relaxation based methods are relatively inefficient for very large scale recovery problems.

In all the experiments we generate the measurement matrix by sampling each entry independently from the standard
normal distribution A(0, 1) and then normalize each column to have unit norm. The underlying k-sparse vectors are
generated by randomly selecting a support set of size k and then each entry in the support set is sampled uniformly from
{+1, —1}. We usc our own optimized implementation of OMP and IHT-Newton. All the methods are implemented in
MATLAB and our hashing routine uses mex files.

6.1 Phase Transition Diagrams

We first compare different methods using phase transition diagrams which are commonly used in compressed sensing
literature to compare different methods [17]. We first fix the number of measurements to be m = 400 and generate
different problem sizes by varying p = k/m and § = m/n. For each problem size (m,n, k), we generate random
m x n Gaussian measurement matrices and k-sparse random vectors. We then estimate the probability of success of
cach of the method by applying the method to 100 randomly generated instances. A method is considered successful
for a particular instance if it recovers the underlying k-sparse vector with at most 1% relative error.

In Figure 1, we show the phase transition diagram of our OMPR method as well as that of OMP and THT-Newton (with
step size 1). The plots shows probability of successful recovery as a function of p = m/n and § = k/m. Figure 1 (a)
shows color coding of different success probabilities; red represents high probability of success while blue represents
low probability of success. Note that for Gaussian measurement matrices, the RIP constant dy is less than a fixed
constant if and only if m = Cklog(n/k), where C is a universal constant. This implies that 1 = C'log p and hence a
method that recovers for high ds; will have a large fraction in the phase transition diagram where successful recovery
probability is high. We observe this phenomenon for both OMPR. and IHT-Newton method which is consistent with
their respective theoretical guarantees (see Theorem 4), On the other hand, as expected, the phase transition diagram
of OMP has a negligible fraction of the plot that shows high recovery probability.

6.2 Performance for Noisy or Under-sampled Observations

Next, we empirically compare performance of OMPR to various existing compressed sensing methods. As shown
in the phase transition diagrams in Figure 1, OMPR provides comparable recovery to the IHT-Newton method for
noiseless cases. Here, we show that OMPR is fairly robust under the noisy setting as well as in the case of under-
sampled observations, where the number of observations is much smaller than what is required for exact recovery.

For this experiment, we generate random Gaussian measurement matrix of size m = 200, n = 3000. We then generate
random binary vector z of sparsity k and add Gaussian noise to it. Figure 2 (a) shows recovery error (||Az — b||)
incurred by various methods for increasing k and noise level of 10%. Clearly, our method outperforms the existing
methods, perhaps a consequence of guaranteed convergence to a local minimum for fixed step size = 1. Similarly,
Figure 2 (b) shows recovery error incurred by various methods for fixed & = 50 and varying noise level. Here again,
our method outperforms existing methods and is more robust to noise. Finally, in Figure 2 (¢) we show difference in
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Figure 2: Error in recovery (|| Az — b||) of n = 3000 dimensional vectors from m = 200 measurements. (a): Error
incurred by various methods as the sparsity level k increases. Note that OMPR incurs the least error as it provably
converges to at least a local minimum for fixed step size # = 1. (b): Error incurred by various methods as the noise
level increases. Here again OMFR performs significantly better than the existing methods. (c): Difference in error
incurred by IHT-Newton and OMPR . Numbers in bracket denote confidence interval at 95% significance level.
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Figure 3: (a): Error (|| Az — b||) incurred by various methods as k increases. The measurements b = Az are computing

by generating = with support size m/10. (b),(c): Error incurred and time required by various methods to recover
vectors of support size 0.1m as n increases. IHT-Newton(1/2) refers to the IHT-Newton method with step size p = 1/2.

error incurred along with confidence interval (at 95% signficance level) by IHT-Newton and OMPR for varying levels
of noises and k. Our method is better than IHT-Newton (at 95% signficance level) in terms of recovery error in around
30 cells of the table, and is not worse in any of the cells but one.

6.3 Performance of LSH based implementation

Next, we empirically study recovery properties of OMPR-Hash in the following real-time setup: generate a random
measurement matrix from the Gaussian ensemble and construct hash tables offline using hash functions specified in
Section 5. During the reconstruction stage, measurements arrive one at a time and the goal is to recover the underlying
signal accurately in real-time.For our experiments, we generate measurements using random sparse vectors and then
report recovery error || Az — b|| and computational time required by each method averaged over 20 runs.

In our first set of experiments, we empirically study the performance of different methods as % increases. Here, we fix
m = 500, n = 500,000 and generate measurements using n-dimensional random vectors of support set size m/10.
We then run different methods to estimate vectors = of support size k that minimize || Az — b||. For our OMPR-Hash
method, we use 8 = 20 bits hash-keys and generate ¢ = 1/n hash-tables. Figure 3 (a) shows the error incurred by
OMPR , OMPR-Hash , and IHT-Newton for different k (recall that % is an input to both OMPR and IHT-Newton).
Note that although OMPR-Hash performs an approximation at each step, it is still able to achieve error similar to
OMPR and IHT-Newton. Also, note that since the number of measurements are not enough for exact recovery by the
IHT-Newton method, it typically diverges after a few steps. As a result, we use [HT-Newton with step size n = 1/2
which is always guaranteed to monotonically converge to at least a local minimum (see Theorem 4). In contrast, in
OMPR and OMPR-Hash can always set step size 7 aggressively to be 1.

Next, we evaluate OMPR-Hash as dimensionality of the data n increases. For OMPR-Hash , we use s = logy(n)
hash-keys and ¢ = +/n hash-tables. Figures 3(b) and (c) compare error incurred and time requu‘ed by OMPR-Hash
with OMPR and IHT-Newton. Here again we use step size 5 = 1/2 for IHT-Newton as it does not converge forn = 1.
Note that OMPR-Hash is an order of magnitude faster than OMPR while incurring slightly higher error. OMPR-Hash
is also nearly 2 times faster than IHT-Newton.
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