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Abstract

We study multi-label prediction for structured output sets, a problem that occurs,
for example, in object detection in images, secondary structure prediction in com-
putational biology, and graph matching with symmetries. Conventional multi-
label classification techniques are typically not applicable in this situation, be-
cause they require explicit enumeration of the label set, which is infeasible in case
of structured outputs. Relying on techniques originally designed for single-label
structured prediction, in particular structured support vector machines, results in
reduced prediction accuracy, or leads to infeasible optimization problems.

In this work we derive a maximum-margin training formulation for multi-label
structured prediction that remains computationally tractable while achieving high
prediction accuracy. It also shares most beneficial properties with single-label
maximum-margin approaches, in particular formulation as a convex optimization
problem, efficient working set training, and PAC-Bayesian generalization bounds.

1 Introduction

The recent development of conditional random fields (CRFs) [1], max-margin Markov networks
(M3Ns) [2], and structured support vector machines (SSVMs) [3] has triggered a wave of interest in
the prediction of complex outputs. Typically, these are formulated as graph labeling or graph match-
ing tasks in which each input has a unique correct output. However, not all problems encountered
in real applications are reflected well by this assumption: machine translation in natural language
processing, secondary structure prediction in computational biology, and object detection in com-
puter vision are examples of tasks in which more than one prediction can be “correct” for each data
sample, and that are therefore more naturally formulated as multi-label prediction tasks.

In this paper, we study multi-label structured prediction, defining the task and introducing the nec-
essary notation in Section 2. Our main contribution is a formulation of a maximum-margin training
problem, named MLSP, which we introduce in Section 3. Once trained it allows the prediction of
multiple structured outputs from a single input, as well as abstaining from a decision. We study
the generalization properties of MLSP in form of a generalization bound in Section 3.2, and we
introduce a working set optimization procedure in Section 3.3. The main insights from these is that
MLSP behaves similarly to a single-label SSVM in terms of efficient use of training data and compu-
tational effort during training, despite the increased complexity of the problem setting. In Section 4
we discuss MLSP’s relation to existing methods for multi-label prediction with simple label sets,
and to single-label structured prediction. We furthermore compare MLSP to a multi-label structured
prediction methods within the SSVM framework in Section 4.1. In Section 5 we compare the dif-
ferent approaches experimentally, and we conclude in Section 6 by summarizing and discussing our
contribution.
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2 Multi-label structured prediction
We first recall some background and establish the notation necessary to discuss multi-label classi-
fication and structured prediction in a maximum margin framework. Our overall task is predicting
outputs y ∈ Y for inputs x ∈ X in a supervised learning setting.

In ordinary (single-label) multi-class prediction we use a prediction function, g : X → Y , for this,
which we learn from i.i.d. example pairs {(xi, yi)}i=1,...,n ⊂ X ×Y . Adopting a maximum-margin
setting, we set

g(x) := argmaxy∈Y f(x, y) for a compatibility function f(x, y) := 〈w,ψ(x, y)〉. (1)
The joint feature map ψ : X ×Y → H maps input-output pairs into a Hilbert space H with inner
product 〈· , ·〉. It is defined either explicitly, or implicitly through a joint kernel function k : (X ×
Y) × (X ×Y) → R. We measure the quality of predictions by a task-dependent loss function
∆ : Y × Y → R+, where ∆(y, ȳ) specifies what cost occurs if we predict an output ȳ while the
correct prediction is y.

Structured output prediction can be seen as a generalization of the above setting, where one wants to
make not only one, but several dependent decisions at the same time, for example, deciding for each
pixel of an image to which out of several semantic classes it belongs. Equivalently, one can interpret
the same task as a special case of supervised single-label prediction, where inputs and outputs consist
of multiple parts. In the above example, a whole image is one input sample, and a segmentation mask
with as many entries as the image has pixels is an output. Having a choice ofM ≥ 2 classes per pixel
of a (w×h)-sized image leads to an output set of Mw·h elements. Enumerating all of these is out of
question, and collecting training examples for each of them even more so. Consequently, structured
output prediction requires specialized techniques that avoid enumerating all possible outputs, and
that can generalize between labels in the output set. A popular technique for this task is the structured
(output) support vector machine (SSVM) [3]. To train it, one has to solve a quadratic program
subject to n|Y| linear constraints. If an efficient separation oracle is available, i.e. a technique for
identifying the currently most violated linear constraints, working set training, in particular cutting
plane [4] or bundle methods [5] allow SSVM training to arbitrary precision in polynomial time.

Multi-label prediction is a generalization of single-label prediction that gives up the condition of a
functional relation between inputs and outputs. Instead, each input object can be associated with
any (finite) number of outputs, including none. Formally, we are given pairs {(xi, Y i)}i=1,...,n ⊂
X ×P(Y), where P denotes the power set operation, and we want to determine a set-valued function
G : X → P(Y). Often it is convenient to use indicator vectors instead of variable size subsets.
We say that v ∈ {±1}Y represents the subset Y ∈ P(Y) if vy = +1 for y ∈ Y and vy = −1
otherwise. Where no confusion arises, we use both representations interchangeably, e.g., we write
either Y i or vi for a label set in the training data. To measure the quality of a predicted set we use a
set loss function ∆ML : P(Y)× P(Y)→ R. Note that multi-label prediction can also be interpreted
as ordinary single-output prediction with P(Y) taking the place of the original output set Y . We will
come back to this view in Section 4.1 when discussing related work.

Multi-label structured prediction combines the aspects of multi-label prediction and structured out-
put sets: we are given a training set {(xi, Y i)}i=1,...,n ⊂ X × P(Y), where Y is a structured output
set of potentially very large size, and we would like to learn a prediction function: G : X → P(Y)
with the ability to generalize also in the output set. In the following, we will take the view of struc-
tured prediction point of view, deriving expressions for predicting multiple structured outputs instead
of single ones. Alternatively, the same conclusions could be reached by interpreting the task as per-
forming multi-label predicting with binary output vectors that are too large to store or enumerate
explicitly, but that have an internal structure allowing generalization between the elements.

3 Maximum margin multi-label structured prediction

In this section we propose a learning technique designed for multi-label structure prediction that we
call MLSP. It makes set-valued prediction by1,

G(x) := {y ∈ Y : f(x, y) > 0} for f(x, y) := 〈w,ψ(x, y)〉. (2)

1More complex prediction rules exist in the multi-label literature, see, e.g., [6]. We restrict ourselves to per-
label thresholding, because more advanced rules complicate the learning and prediction problem even further.
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Note that the compatibility function, f(x, y), acts on individual inputs and outputs, as in single-label
prediction (1), but the prediction step consists of collecting all outputs of positive scores instead of
finding the outputs of maximal score. By including a constant entry into the joint feature mapψ(x, y)
we can model a bias term, thereby avoiding the need of a threshold during prediction (2). We can
also add further flexibility by a data-independent, but label-dependent term. Note that our setup
differs from SSVMs training in this regard. There, a bias term, or a constant entry of the feature
map, would have no influence, because during training only pairwise differences of function values
are considered, and during prediction a bias does not affect the argmax-decision in Equation (1).

We learn the weight vectorw for the MLSP compatibility function in a maximum-margin framework
that is derived from regularized risk minimization. As the risk depends on the loss function chosen,
we first study the possibilities we have for the set loss ∆ML : P(Y) × P(Y) → R+. There are no
established functions for this in the structured prediction setting, but it turns out that two canonical
set losses are consistent with the following first principles. Positivity: ∆ML(Y, Ȳ ) ≥ 0, with equality
only if Y = Ȳ , Modularity: ∆ML should decompose over the elements of Y (in order to facilitate
efficient computation), Monotonicity: ∆ML should reflect that making a wrong decision about some
element y ∈ Y can never reduce the loss. The last criterion we formalize as

∆ML(Y, Ȳ ∪ {ȳ}) ≥ ∆ML(Y, Ȳ ) for any ȳ 6∈ Y , and (3)

∆ML(Y ∪ {y}, Ȳ ) ≥ ∆ML(Y, Ȳ ) for any y 6∈ Ȳ . (4)

Two candidates that fulfill these criteria are the sum loss, ∆sum(Y, Ȳ ) :=
∑
y∈Y�Ȳ λ(Y, y), and the

max loss, ∆max(Y, Ȳ ) := maxy∈Y�Ȳ λ(Y, y), where Y� Ȳ := (Y \Ȳ )∪(Ȳ \Y ) is the symmetric set
difference, and λ : P(Y)×Y → R+ is a task-dependent per-label misclassification cost. Assuming
that a set Y is the correct prediction, λ(Y, ȳ) specifies either the cost of predicting ȳ, although ȳ 6∈ Y ,
or of not predicting ȳ, when really ȳ ∈ Y . In the special case of λ ≡ 1 the sum loss is known as
symmetric difference loss, and it coincides with the Hamming loss of the binary indicator vector
representation. The max loss becomes the 0/1-loss between sets in this case. In a general case, λ
typically expresses partial correctness, generalizing the single-label structured loss ∆(y, ȳ). Note
that in evaluating λ(Y, ȳ) one has access to the whole set Y , not just single elements. Therefore, a
flexible penalization of multiple errors is possible, e.g., submodular behavior.

While in the small-scale multi-label situation, the sum loss is more common, we argue in this work
that that the max loss has advantages in the structured prediction situation. For once, the sum loss has
a scaling problem. Because it adds potentially exponentially many terms, the ratio in loss between
making few mistakes and making many mistakes is very large. If used in the unnormalized form
given above this can result in impractically large values. Normalizing the expression by multiplying
with 1/|Y| stabilizes the upper value range, but it leads to a situation where ∆sum(Y, Ȳ ) ≈ 0 in
the common situation that Ȳ differs from Y in only a few elements. The value range of the max
loss, on the other hand, is the same as the value range of λ and therefore easy to keep reasonable.
A second advantage of the max loss is that it leads to an efficient constraint generation technique
during training, as we will see in Section 3.3.

3.1 Maximum margin multi-label structured prediction (MLSP)
To learn the parameters w of the compatibility function f(x, y) we follow a regularized risk mini-
mization framework: given i.i.d. training examples {(xi, Y i)}i=1,...,n, we would like to minimize
1
2‖w‖

2 + C
n

∑
i ∆max(Y

i, G(xi)). Using the definition of ∆max this is equivalent to minimizing
1
2‖w‖

2 + C
n

∑
i ξ
i, subject to ξi ≥ λ(Y i, y) for all y ∈ Y with viyf(xi, y) ≤ 0. Upper bounding the

inequalities by a Hinge construction yields the following maximum-margin training problem:

(w∗, ξ∗) = argmin
w∈H,ξ1,...,ξn∈R+

1

2
‖w‖2 +

C

n

n∑
i=1

ξi (5)

subject to, for i = 1, . . . , n,

ξi ≥ λ(Y i, y)[1− viyf(xi, y)], for all y ∈ Y . (6)

Note that making per-label decisions through thresholding does not rule out the sharing of information between
labels. In the terminology of [7], Equation (2) corresponds to a conditional label independence assumption.
Through the joint feature function ψ(x, y) te proposed model can still learn unconditional dependence between
labels, which relates closer to an intuition of the form “Label A tends to co-occur with label B”.
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Besides this slack rescaled variant, one can also form margin rescaled training using the constraints

ξi ≥ λ(Y i, y)− viyf(xi, y), for all y ∈ Y . (7)

Both variants coincide in the case of 0/1 set loss, λ(Y i, y) ≡ 1. The main difference between slack
and margin rescaled training is how they treat the case of λ(Y i, y) = 0 for some y ∈ Y . In slack
rescaling, the corresponding outputs have no effect on the training at all, whereas for margin rescal-
ing, no margin is enforced for such examples, but a penalization still occurs whenever f(xi, y) > 0
for y 6∈ Y i, or if f(xi, y) < 0 for y ∈ Y i.

3.2 Generalization Properties
Maximum margin structured learning has become successful not only because it provides a pow-
erful framework for solving practical prediction problems, but also because it comes with certain
theoretical guarantees, in particular generalization bounds. We expect that many of these results
will have multi-label analogues. As an initial step, we formulate and prove a generalization bound
for slack-rescaled MLSP similar to the single-label SSVM analysis in [8].

Let Gw(x) := {y ∈ Y : fw(x, y) > 0} for fw(x, y) = 〈w,ψ(x, y)〉. We assume |Y| < r and
‖ψ(x, y)‖ < s for all (x, y) ∈ X × Y , and λ(Y, y) ≤ Λ for all (Y, y) ∈ P(Y)× Y .

For any distribution Qw over weight vectors, that may depend on w, we denote by L(Qw, P ) the
expected ∆max-risk for P -distributed data,

L(Qw, P ) = Ew̄∼Qw

{
RP,∆max(Gw̄)

}
= Ew̄∼Qw,(x,Y )∼P

{
∆max(Y,Gw̄(x))

}
. (8)

The following theorem bounds the expected risk in terms of the total margin violations.
Theorem 1. With probability at least 1 − σ over the sample S of size n, the following inequality
holds simultaneously for all weight vectors w.

L(Qw,D) ≤ 1

n

n∑
i=1

`(xi, Y i, f) +
||w||2

n
+
(s2||w||2 ln(rn/||w||2) + ln n

σ

2(n− 1)

)1/2

(9)

for `(xi, Y i, f) := max
y∈Y

λ(Y i, y)Jviyf(xi, y) < 1K, where vi is the binary indicator vector of Y i.

Proof. The argument follows [8, Section 11.6]. It can be found in the supplemental material.

A main insight from Theorem 1 is that the number of samples needed for good generalization grows
only logarithmically with r, i.e. the size of Y . This is the same complexity as for single-label
prediction using SSVMs, despite the fact that multi-label prediction formally maps into P(Y), i.e.
an exponentially larger output set.

3.3 Numeric Optimization
The numeric solution of MLSP training resembles SSVM training. For explicitly given joint fea-
ture maps, ψ(x, y), we can solve the optimization problem (5) in the primal, for example using
subgradient descent. To solve MLSP in a kernelized setup we introduce Lagrangian multipliers
(αiy)i=1,...,n;y∈Y for the constraints (7)/(6). For the margin-rescaled variant we obtain the dual

max
αi

y∈R+
−1

2

∑
(i,y),(ı̄,ȳ)

viyv
ı̄
ȳα

i
yα

ı̄
ȳ k
(
(xi, y), (xı̄, ȳ)

)
+
∑
(i,y)

λiyα
i
y (10)

subject to
∑

y
αiy ≤

C

n
, for i = 1, . . . , n. (11)

For slack-rescaled MLSP, the dual is computed analogously as

max
αi

y∈R+
−1

2

∑
(i,y),(ı̄,ȳ)

viyv
ı̄
ȳα

i
yα

ı̄
ȳ k
(
(xi, y), (xı̄, ȳ)

)
+
∑
(i,y)

αiy (12)

subject to
∑

y

αiy
λiy
≤ C

n
, for i = 1, . . . , n, (13)
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with the convention that only terms with λiy 6= 0 enter the summation. In both cases, the compati-
bility function becomes

f(x, y) =
∑

(i,ȳ)
αiȳv

i
ȳ k
(
(xi, ȳ), (x, y)

)
. (14)

Comparing the optimization problems (10)/(11) and (12)/(13) to the ordinary SVM dual, we see
that MLSP couples |Y| binary SVM problems by the joint kernel function and the summed-over box
constraints. In particular, whenever only a feasibly small subset of variables has to be considered, we
can solve the problem using a general purpose QP solver, or a slightly modified SVM solver. Overall,
however, there are infeasibly many constraints in the primal, or variables in the dual. Analogously
to the SSVM situation we therefore apply iterative working set training, which we explain here
using the terminology of the primal. We start with an arbitrary, e.g. empty, working set S. Then, in
each step we solve the optimization using only the constraints indicated by the working set. For the
resulting solution (wS , ξS) we check whether any constraints of the full set (6)/(7) are violated up
to a target precision ε. If not, we have found the optimal parameters. Otherwise, we add the most
violated constraint to S and start the next iteration. The same monotonicity argument as in [3] shows
that we reach an objective value ε-close to the optimal one within O( 1

ε ) steps. Consequently, MLSP
training is roughly comparable in computational complexity to SSVM training.

The crucial step in working set training is the identification of violated constraints. Note that con-
straints in MLSP are determined by pairs of samples and single labels, not pairs of samples and
sets of labels. This allows us to reuse existing methods for loss augmented single label inference.
In practice, it is safe to assume that the sets Y i are feasibly small, since they are given to us ex-
plicitly. Consequently, we can identify violated “positive” constraints by explicitly checking the
inequalities (7)/(6) for y ∈ Y i. Identifying violated “negative” constraint requires loss-augmented
prediction over Y\Y i. We are not aware of a general purpose solution for this task, but at least all
problems that allow efficient K-best MAP prediction can be handled by iteratively performing loss-
augmented prediction within Y until a violating example from Y\Y i is found, or it is confirmed that
no such example exists. Note that K-best versions of most standard MAP prediction methods have
been developed, including max-flow [9], loopy BP [10], LP-relaxations [11], and Sampling [12].

3.4 Prediction problem
After training, Equation (2) specifies the rule to predict output sets for new input data. In contrast
to single-label SSVM prediction this requires not only a maximization over all elements of Y , but
the collection of all elements y ∈ Y of positive score. The structure of the output set is not as
immediately helpful for this as it is, e.g., in MAP prediction. Task-specific solutions exist, however,
for example branch-and-bound search for object detection [13]. Also, it is often possible to establish
an upper bound on the number of desired outputs, and then, K-best prediction techniques can again
be applied. This makes MLSP of potential use for several classical tasks, such as parsing and
chunking in natural language processing, secondary structured prediction in computational biology,
or human pose estimation in computer vision. In general situations, evaluating (2) might require
approximate structured prediction techniques, e.g. iterative greedy selection [14]. Note that the use
of approximation algorithms is little problematic here, because, in contrast to training, the prediction
step is not performed in an iterative manner, so errors do not accumulate.

4 Related Work
Multi-label classification is an established field of research in machine learning and several es-
tablished techniques are available, most of which fall into one of three categories: 1) Multi-class
reformulations [15] treat every possible label subset, Y ∈ P(Y), as a new class in an independent
multi-class classification scenario. 2) Per-label decomposition [16] trains one classifier for each out-
put label and makes independent decision for each of those. 3) Label ranking [17] learns a function
that ranks all potential labels for an input sample. Given the size of Y , 1) is not a promising direction
for multi-label structured prediction. A straight-forward application of 2) and 3) are also infeasible
if Y is too large to enumerate. However, MLSP resembles both approaches by sharing their predic-
tion rule (2). MLSP can be seen as a way to make a combination of approaches applicable to the
situation of structured prediction by incorporating the ability to generalize in the label set.

Besides the general concepts above, many specific techniques for multi-label prediction have been
proposed, several of them making use of structured prediction techniques: [18] introduces an SSVM
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formulation that allows direct optimization of the average precision ranking loss when the label
set can be enumerated. [19] relies on a counting framework for this purpose, and [20] proposes
an SSVM formulation for enforcing diversity between the labels. [21] and [22] identify shared
subspaces between sets of labels, [23] encodes linear label relations by a change of the SSVM
regularizer, and [24] handles the case of tree- and DAG-structured dependencies between possible
outputs. All these methods work in the multi-class setup and require an explicit enumerations of the
label set. They use a structured prediction framework to encode dependencies between the individual
output labels, of which there are relatively few. MLSP, on the other hand, aims at predicting multiple
structured object, i.e. the structured prediction framework is not just a tool to improve multi-class
classification with multiple output labels, but it is required as a core component for predicting even
a single output.

Some previous methods targeting multi-label prediction with large output sets, in particular using
label compression [25] or a label hierarchy [26]. This allows handling thousands of potential output
classes, but a direct application to the structured prediction situation is not possible, because the
methods still require explicit handling of the output label vectors, or cannot predict labels that were
not part of the training set.

The actual task of predicting multiple structured outputs has so far not appeared explicitly in the
literature. The situation of multiple inputs during training has, however, received some attention:
[27] introduces a one-class SVM based training technique for learning with ambiguous ground truth
data. [13] trains an SSVM for the same task by defining a task-adapted loss function ∆min(Y, ȳ) =
miny∈Y ∆(y, ȳ). [28] uses a similar min-loss in a CRF setup to overcome problems with incomplete
annotation. Note that ∆min(Y, ȳ) has the right signature to be used as a misclassification cost λ(Y, ȳ)
in MLSP. The compatibility functions learned by the maximum-margin techniques [13, 27] have
the same functional form as f(x, y) in MLSP, so they can, in principle, be used to predict multiple
outputs using Equation (2). However, our experiments of Section 5 show that this leads to low multi-
label prediction accuracy, because the training setup is not designed for this evaluation procedure.

4.1 Structured Multilabel Prediction in the SSVM Framework
At first sight, it appears unnecessary to go beyond the standard structured prediction framework at
all in trying to predict subsets of Y . As mentioned in Section 3, multi-label prediction into Y can
be interpreted as single-label prediction into P(Y), so a straight-forward approach to multi-label
structured prediction would be to use an ordinary SSVM with output set P(Y). We will call this
setup P-SSVM. It has previously been proposed for classical multi-label prediction, for example
in [23]. Unfortunately, as we will show in this section, the P-SSVM setup is not well suited to the
structured prediction situation.

A P-SSVM learns a prediction function, G(x) := argmaxY ∈P(Y) F (x, Y ), with linearly parameter-
ized compatibility function, F (x, Y ) := 〈w,ψ(x, Y )〉, by solving the optimization problem

argmin
w∈H,ξ1,...,ξn∈R+

1

2
‖w‖2 +

C

n

n∑
i=1

ξi, subject to ξi ≥ ∆(yi, Y ) + F (xi, Y )− F (xi, Y i), (15)

for i = 1, . . . , n, and for all Y ∈ P(Y). The main problem with this general form is that identifying
violated constraints of (15) requires loss-augmented maximization of F over P(Y), i.e. an exponen-
tially larger set than Y . To better understand this problem, we analyze what happens when making
the same simplifying assumptions as for MLSP in Section 3.1. First, we assume additivity of F over
Y , i.e. F (x, Y ) :=

∑
y∈Y f(x, y) for f(x, y) := 〈w,ψ(x, y)〉. This turns the argmax-evaluation

for G(x) exactly into the prediction rule (2), and the constraint set in (15) simplifies to

ξi ≥ ∆ML(Y i, Y )−
∑

y∈Y�Y i
viyf(xi, y), for i = 1, . . . , n, and for all Y ∈ P(Y), (16)

Choosing ∆ML as max loss does not allow us to further simplify this expression, but choosing the
sum loss does: with ∆ML(Y i, Y ) =

∑
y∈Y�Y i λ(Y i, y), we obtain an explicit expression for the

label set maximizing the right hand side of the constraint (16), namely

Y iviol ={y ∈ Y i : f(xi, y) < λ(Y i, y)} ∪ {y ∈ Y \ Y i : f(xi, y) > −λ(Y i, y)}. (17)

Thus, we avoid having to maximize a function over P(Y). Unfortunately, the set Y iviol in Equa-
tion (17) can contain exponentially many terms, rendering a numeric computation of F (xi, Y iviol) or
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its gradient still infeasible in general. Note that this is not just a rare, easily avoidable case. Because
w, and thereby f , are learned iteratively, they typically go through phases of low prediction qual-
ity, i.e. large Y iviol. In fact, starting the optimization with w = 0 would already lead to Y iviol = Y
for all i = 1, . . . , n. Consequently, we presume that P-SSVM training is intractable for structured
prediction problems, except for the case of a small label set.

Note that while computational complexity is the most prominent problem of P-SSVM training, it is
not the only one. For example, even if we did find a polynomial-time training algorithm to solve (15)
the generalization ability of the resulting predictor would be unclear: the SSVM-generalization
bounds [8] suggest that training sets of size O(log |P(Y)|) = O(|Y|) will be required, compared to
the O(log |Y|) bound we established for MLSP in Section 3.2.

5 Experimental Evaluation
To show the practical use of MLSP we performed experiments on multi-label hierarchical classi-
fication and object detection in natural images. The complete protocol of training a miniature toy
example can be found in the supplemental material (available from the author’s homepage).

5.1 Multi-label hierarchical classification
We use hierarchical classification as an illustrative example that in particular allows us to compare
MLSP to alternative, less scalable, methods. On the one hand, it is straight-forward to model as a
structured prediction task, see e.g. [3, 29, 30, 31]. On the other hand, its output set is small enough
such that we can compare MLSP also against other approaches that cannot handle very large output
sets, in particular P-SSVM and independent per-label training.

The task in hierarchical classification is to classify samples into a number of discrete classes, where
each class corresponds to a path in a tree. Classes are considered related if they share a path in the
tree, and this is reflected by sharing parts of the joint feature representations. In our experiments,
we use the PASCAL VOC2006 dataset that contains 5304 images, each belonging to between 1
and 4 out of 10 classes. We represent each image x by 960-dimensional GIST features φ(x) and
use the same 19-node hierarchy κ and joint feature function, ψ(x, y) = vec(φ(x) ⊗ κ(y)), as in
[30]. As baselines we use P-SSVM [23], JKSE [27], and an SSVM trained with the normal, single-
label objective, but evaluated by Equation (2). We follow the pre-defined data splits, doing model
selection using the train and val parts to determine C ∈ {2−1, . . . , 214} (MLSP, P-SSVM, SSVM),
or ν ∈ {0.05, 0.10, . . . , 0.95} (JKSE). We then retrain on the combination of train and val and we
test on the test part of the dataset. As the label set is small, we use exhaustive search over Y to
identify violated constraints during training and to perform the final predictions.

We report results in Table 1a). As there is no single established multi-label error measure, and be-
cause it illustrates the effect of training with different loss function, we report several common mea-
sures. The results show nicely how the assumptions made during training influence the prediction
characteristics. Qualitatively, MLSP achieves best prediction accuracy in the max loss, P-SSVM is
better if we judge by the sum loss. This exactly reflects the loss functions they are trained with. In-
dependent training achieves very good results with respect to both measures, justifying its common
use for multi-label prediction with small label sets and many training examples per label2 Ordinary
SSVM training does not achieve good max- or sum-loss scores, but it performs well if quality is
measured by the average of the area under the precision-recall curves across labels for each indi-
vidual test example. This is also plausible, as SSVM training uses a ranking-like loss: all potential
labels for each input are enforced to be in the right order (correct labels have higher score than in-
correct ones), but nothing in the objective encourages a cut-off point at 0. As a consequence, too
few or too many labels are predicted by Equation (2). In Table 1a) it appears to be too many, visible
as high recall but low precision. JKSE does not achieve competitive results in max loss, mAUC loss
or F1-score. Potentially this is because we use it with a linear kernel to stay comparable with the
other methods, whereas [27] reported good results mainly for nonlinear kernels.

Qualitatively, MLSP and P-SSVM show comparable prediction quality. We take this as an indication
that both, training with sum loss and training with max loss, make sense conceptually. However, of

2For ∆sum this is not surprising: independent training is known to be the optimal setup, if enough data is
available [32]. For ∆sum, the multi-class reformulation would be the optimal setup. The problem in multi-label
structured prediction is solely that |Y| is too large, and training data too scarce, to use either of these setups.
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Figure 1: Multi-label structured prediction results. ∆max/∆sum: max/sum loss (lower is better),
mAUC: mean area under per-sample precision-recall curve, prec/rec/F1: precision, recall, F1-score
(higher is better). Methods printed in italics are infeasible for general structured output sets.

∆max ∆sum mAUC F1 ( prec / rec )
MLSP 0.73 1.59 0.82 0.42 ( 0.40 / 0.46 )
JKSE 1.00 1.91 0.54 0.23 ( 0.14 / 0.76 )
SSVM 0.88 3.86 0.84 0.37 ( 0.24 / 0.88 )
P-SSVM 0.75 1.11 0.83 0.44 ( 0.48 / 0.41 )
indep. 0.73 1.07 0.84 0.46 ( 0.61 / 0.38 )

(a) Hierarchical classification results.

∆max ∆sum F1 ( prec / rec )
MLSP 0.66 1.31 0.46 ( 0.60 / 0.52 )
JKSE 0.99 7.29 0.09 ( 0.60 / 0.16 )
SSVM 0.93 3.71 0.21 ( 0.79 / 0.33 )
P-SSVM infeasible
indep. infeasible

(b) Object detection results.

the five methods, only MLSP, JKSE and SSVM generalize to more general structured prediction
setting, as they do not require exhaustive enumeration of the label set. Amongst these, MLSP is
preferable, except if one is only interested in ranking the labels, for which SSVM also works well.

5.2 Object class detection in natural images
Object detection can be solved as a structured prediction problem where natural images are the inputs
and coordinate tuples of bounding boxes are the outputs. The label set is of quadratic size in the num-
ber of image pixels and thus cannot be searched exhaustively. However, efficient (loss-augmented)
argmax-prediction can be performed by branch-and-bound search [33]. Object detection is also in-
herently a multi-label task, because natural images contain different numbers of objects. We perform
experiments on the public UIUC-Cars dataset [34]. Following the experimental setup of [27] we use
the multiscale part of the dataset for training and the singlescale part for testing. The additional set
of pre-cropped car and background images serves as validation set for model selection. We use the
localization kernel, k

(
(x, y), (x̄, ȳ)

)
= φ(x|y)tφ(x̄|ȳ) where φ(x|y) is a 1000-dimensional bag of

visual words representation of the region y within the image x [13]. As misclassification cost we
use λ(Y, y) := 1 for y ∈ Y , and λ(Y, y) := minȳ∈Y A(ȳ, y) otherwise, where A(ȳ, y) := 0 if
area(ȳ∩y)
area(ȳ∪y) ≥ 0.5, and A(ȳ, y) := 1 otherwise. This is a common measure in object detection, which
reflects the intuition that all objects in an image should be identified, and that an object’s position is
acceptable if it overlaps sufficiently with at least one ground truth object. P-SSVM and independent
training are not applicable in this setup, so we compare MLSP against JKSE and SSVM. For each
method we train models on the training set and choose the C or ν value that maximizes the F1 score
over the validation set of precropped object and background images. Prediction is performed using
branch and bound optimization with greedy non-maximum suppression [35]. Table 1b) summarizes
the results on the test set (we do not report the mAUC measure, as computing this would require
summing over the complete output set). One sees that MLSP achieves the best results amongst the
three method. SSVM as well as JKSE suffer particularly from low recall, and their predictions also
have higher sum loss as well as max loss.

6 Summary and Discussion

We have studied multi-label classification for structured output sets. Existing multi-label techniques
cannot directly be applied to this task because of the large size of the output set, and our analysis
showed that formulating multi-label structured prediction set a set-valued structured support vec-
tor machine framework also leads to infeasible training problems. Instead, we proposed an new
maximum-margin formulation, MLSP, that remains computationally tractable by use of the max
loss instead of sum loss between sets, and shows several of the advantageous properties known
from other maximum-margin based techniques, in particular a convex training problem and PAC-
Bayesian generalization bounds. Our experiments showed that MLSP has higher prediction accuracy
than baseline methods that remain applied in structured output settings. For small label sets, where
both concepts are applicable, MLSP performs comparable to the set-valued SSVM formulation.

Besides these promising initial results, we believe that there are still several aspects of multi-label
structured prediction that need to be better understood, in particular the prediction problem at test
time. Collecting all elements of positive score is a natural criterion, but it is costly to perform
exactly if the output set is very large. Therefore, it would be desirable to develop sparsity enforcing
variations of Equation (2), for example by adopting ideas from compressed sensing [25].
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