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Abstract

Recently, there has been substantial interest in using large amounts of unlabeled
data to learn word representations which can then be used as features in supervised
classifiers for NLP tasks. However, most current approaches are slow to train, do
not model the context of the word, and lack theoretical grounding. In this paper,
we present a new learning method, Low Rank Multi-View Learning (LR-MVL)
which uses a fast spectral method to estimate low dimensional context-specific
word representations from unlabeled data. These representation features can then
be used with any supervised learner. LR-MVL is extremely fast, gives guaranteed
convergence to a global optimum, is theoretically elegant, and achieves state-of-
the-art performance on named entity recognition (NER) and chunking problems.

1 Introduction and Related Work

Over the past decade there has been increased interest in using unlabeled data to supplement the
labeled data in semi-supervised learning settings to overcome the inherent data sparsity and get
improved generalization accuracies in high dimensional domains like NLP. Approaches like [1, 2]
have been empirically very successful and have achieved excellent accuracies on a variety of NLP
tasks. However, it is often difficult to adapt these approaches to use in conjunction with an existing
supervised NLP system as these approaches enforce a particular choice of model.

An increasingly popular alternative is to learn representational embeddings for words from a large
collection of unlabeled data (typically using a generative model), and to use these embeddings to
augment the feature set of a supervised learner. Embedding methods produce features in low di-
mensional spaces or over a small vocabulary size, unlike the traditional approach of working in the
original high dimensional vocabulary space with only one dimension “on” at a given time. Broadly,
these embedding methods fall into two categories:

1. Clustering based word representations: Clustering methods, often hierarchical, are used to
group distributionally similar words based on their contexts. The two dominant approaches
are Brown Clustering [3] and [4]. As recently shown, HMMs can also be used to induce a
multinomial distribution over possible clusters [5].

2. Dense representations: These representations are dense, low dimensional and real-valued.
Each dimension of these representations captures latent information about a combination
of syntactic and semantic word properties. They can either be induced using neural net-
works like C&W embeddings [6] and Hierarchical log-linear (HLBL) embeddings [7] or
by eigen-decomposition of the word co-occurrence matrix, e.g. Latent Semantic Analy-
sis/Latent Semantic Indexing (LSA/LSI) [8].

Unfortunately, most of these representations are 1). slow to train, 2). sensitive to the scaling of the
embeddings (especially `2 based approaches like LSA/PCA), 3). can get stuck in local optima (like
EM trained HMM) and 4). learn a single embedding for a given word type; i.e. all the occurrences
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of the word “bank” will have the same embedding, irrespective of whether the context of the word
suggests it means “a financial institution” or “a river bank”.

In this paper, we propose a novel context-specific word embedding method called Low Rank Multi-
View Learning, LR-MVL, which is fast to train and is guaranteed to converge to the optimal solution.
As presented here, our LR-MVL embeddings are context-specific, but context oblivious embeddings
(like the ones used by [6, 7]) can be trivially gotten from our model. Furthermore, building on recent
advances in spectral learning for sequence models like HMMs [9, 10, 11] we show that LR-MVL
has strong theoretical grounding. Particularly, we show that LR-MVL estimates low dimensional
context-specific word embeddings which preserve all the information in the data if the data were
generated by an HMM. Moreover, LR-MVL being linear does not face the danger of getting stuck
in local optima as is the case for an EM trained HMM.

LR-MVL falls into category (2) mentioned above; it learns real-valued context-specific word em-
beddings by performing Canonical Correlation Analysis (CCA) [12] between the past and future
views of low rank approximations of the data. However, LR-MVL is more general than those meth-
ods, which work on bigram or trigram co-occurrence matrices, in that it uses longer word sequence
information to estimate context-specific embeddings and also for the reasons mentioned in the last
paragraph.

The remainder of the paper is organized as follows. In the next section we give a brief overview of
CCA, which forms the core of our method. Section 3 describes our proposed LR-MVL algorithm
in detail and gives theory supporting its performance. Section 4 demonstrates the effectiveness of
LR-MVL on the NLP tasks of Named Entity Recognition and Chunking. We conclude with a brief
summary in Section 5.

2 Brief Review: Canonical Correlation Analysis (CCA)

CCA [12] is the analog to Principal Component Analysis (PCA) for pairs of matrices. PCA com-
putes the directions of maximum covariance between elements in a single matrix, whereas CCA
computes the directions of maximal correlation between a pair of matrices. Unlike PCA, CCA does
not depend on how the observations are scaled. This invariance of CCA to linear data transforma-
tions allows proofs that keeping the dominant singular vectors (those with largest singular values)
will faithfully capture any state information.

More specifically, given a set of n paired observation vectors {(l1, r1), ..., (ln, rn)}–in our case the
two matrices are the left (L) and right (R) context matrices of a word–we would like to simultane-
ously find the directions Φl and Φr that maximize the correlation of the projections of L onto Φl

with the projections of R onto Φr. This is expressed as

max
Φl,Φr

E[〈L,Φl〉〈R,Φr〉]√
E[〈L,Φl〉2]E[〈R,Φr〉2]

(1)

where E denotes the empirical expectation. We use the notation Clr (Cll) to denote the cross (auto)
covariance matrices between L and R (i.e. L’R and L’L respectively.).

The left and right canonical correlates are the solutions 〈Φl,Φr〉 of the following equations:

Cll
−1ClrCrr

−1CrlΦl = λΦl

Crr
−1CrlCll

−1ClrΦr = λΦr (2)

3 Low Rank Multi-View Learning (LR-MVL)

In LR-MVL, we compute the CCA between the past and future views of the data on a large unlabeled
corpus to find the common latent structure, i.e., the hidden state associated with each token. These
induced representations of the tokens can then be used as features in a supervised classifier (typically
discriminative).

The context around a word, consisting of the h words to the right and left of it, sits in a high
dimensional space, since for a vocabulary of size v, each of the h words in the context requires an
indicator function of dimension v. The key move in LR-MVL is to project the v-dimensional word
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space down to a k dimensional state space. Thus, all eigenvector computations are done in a space
that is v/k times smaller than the original space. Since a typical vocabulary contains at least 50, 000
words, and we use state spaces of order k ≈ 50 dimensions, this gives a 1,000-fold reduction in the
size of calculations that are needed.

The core of our LR-MVL algorithm is a fast spectral method for learning a v × k matrix A which
maps each of the v words in the vocabulary to a k-dimensional state vector. We call this matrix the
“eigenfeature dictionary”.

We now describe the LR-MVL method, give a theorem that provides intuition into how it works, and
formally present the LR-MVL algorithm. The Experiments section then shows that this low rank
approximation allows us to achieve state-of-the-art performance on NLP tasks.

3.1 The LR-MVL method

Given an unlabeled token sequence w={w0, w1, . . ., wn} we want to learn a low (k)- dimensional
state vector {z0, z1, . . . , zn} for each observed token. The key is to find a v×k matrix A (Algorithm
1) that maps each of the v words in the vocabulary to a reduced rank k-dimensional state vector,
which is later used to induce context specific embeddings for the tokens (Algorithm 2).

For supervised learning, these context specific embeddings are supplemented with other information
about each token wt, such as its identity, orthographic features such as prefixes and suffixes or
membership in domain-specific lexicons, and used as features in a classifier.

Section 3.4 gives the algorithm more formally, but the key steps in the algorithm are, in general
terms:

• Take the h words to the left and to the right of each target word wt (the “Left” and “Right”
contexts), and project them each down to k dimensions using A.

• Take the CCA between the reduced rank left and right contexts, and use the resulting model
to estimate a k dimensional state vector (the “hidden state”) for each token.

• Take the CCA between the hidden states and the tokens wt. The singular vectors associated
with wt form a new estimate of the eigenfeature dictionary.

LR-MVL can be viewed as a type of co-training [13]: The state of each token wt is similar to that
of the tokens both before and after it, and it is also similar to the states of the other occurrences of
the same word elsewhere in the document (used in the outer iteration). LR-MVL takes advantage
of these two different types of similarity by alternately estimating word state using CCA on the
smooths of the states of the words before and after each target token and using the average over the
states associated with all other occurrences of that word.

3.2 Theoretical Properties of LR-MVL

We now present the theory behind the LR-MVL algorithm; particularly we show that the reduced
rank matrix A allows a significant data reduction while preserving the information in our data and
the estimated state does the best possible job of capturing any label information that can be inferred
by a linear model.

Let L be an n × hv matrix giving the words in the left context of each of the n tokens, where the
context is of length h, R be the corresponding n × hv matrix for the right context, and W be an
n× v matrix of indicator functions for the words themselves.

We will use the following assumptions at various points in our proof:

Assumption 1. L, W, and R come from a rank k HMM i.e. it has a rank k observation matrix and
rank k transition matrix both of which have the same domain.

For example, if the dimension of the hidden state is k and the vocabulary size is v then the observa-
tion matrix, which is k × v, has rank k. This rank condition is similar to the one used by [10].

Assumption 1A. For the three views, L, W and R assume that there exists a “hidden state H” of
dimension n × k, where each row Hi has the same non-singular variance-covariance matrix and
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such that E(Li|Hi) = Hiβ
T
L and E(Ri|Hi) = Hiβ

T
R and E(Wi|Hi) = Hiβ

T
W where all β’s are of

rank k, where Li, Ri and Wi are the rows of L, R and W respectively.

Assumption 1A follows from Assumption 1.
Assumption 2. ρ(L,W), ρ(L,R) and ρ(W,R) all have rank k, where ρ(X1,X2) is the expected
correlation between X1 and X2.

Assumption 2 is a rank condition similar to that in [9].
Assumption 3. ρ([L,R],W) has k distinct singular values.

Assumption 3 just makes the proof a little cleaner, since if there are repeated singular values, then
the singular vectors are not unique. Without it, we would have to phrase results in terms of subspaces
with identical singular values.

We also need to define the CCA function that computes the left and right singular vectors for a pair
of matrices:
Definition 1 (CCA). Compute the CCA between two matrices X1 and X2. Let ΦX1 be a matrix
containing the d largest singular vectors for X1 (sorted from the largest on down). Likewise for
ΦX2 . Define the function CCAd(X1,X2) = [ΦX1 ,ΦX2 ]. When we want just one of these Φ’s, we
will use CCAd(X1,X2)left = ΦX1 for the left singular vectors and CCAd(X1,X2)right = ΦX2

for the right singular vectors.

Note that the resulting singular vectors, [ΦX1
,ΦX2

] can be used to give two redundant estimates,
X1ΦX1

and X2ΦX2
of the “hidden” state relating X1 and X2, if such a hidden state exists.

Definition 2. Define the symbol “≈” to mean

X1 ≈ X2 ⇐⇒ lim
n→∞

X1 = lim
n→∞

X2

where n is the sample size.
Lemma 1. Define A by the following limit of the right singular vectors:

CCAk([L,R],W)right ≈ A.

Under assumptions 2, 3 and 1A, such that if CCAk(L,R) ≡ [ΦL,ΦR] then

CCAk([LΦL,RΦR],W)right ≈ A.

Lemma 1 shows that instead of finding the CCA between the full context and the words, we can take
the CCA between the Left and Right contexts, estimate a k dimensional state from them, and take
the CCA of that state with the words and get the same result. See the supplementary material for the
Proof.

Let Ãh denote a matrix formed by stacking h copies of A on top of each other. Right multiplying
L or R by Ãh projects each of the words in that context into the k-dimensional reduced rank space.

The following theorem addresses the core of the LR-MVL algorithm, showing that there is an A
which gives the desired dimensionality reduction. Specifically, it shows that the previous lemma
also holds in the reduced rank space.
Theorem 1. Under assumptions 1, 2 and 3 there exists a unique matrix A such that if
CCAk(LÃh,RÃh) ≡ [Φ̃L, Φ̃R] then

CCAk([LÃhΦ̃L,RÃhΦ̃R],W)right ≈ A

where Ãh is the stacked form of A.

See the supplementary material for the Proof 1.

1It is worth noting that our matrix A corresponds to the matrix Û used by [9, 10]. They showed that U is
sufficient to compute the probability of a sequence of words generated by an HMM; although we do not show
it here (due to limited space), ourA provides a more statistically efficient estimate of U than their Û , and hence
can also be used to estimate the sequence probabilities.
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Under the above assumptions, there is asymptotically (in the limit of infinite data) no benefit to first
estimating state by finding the CCA between the left and right contexts and then finding the CCA
between the estimated state and the words. One could instead just directly find the CCA between
the combined left and rights contexts and the words. However, because of the Zipfian distribution
of words, many words are rare or even unique, and hence one is not in the asymptotic limit. In this
case, CCA between the rare words and context will not be informative, whereas finding the CCA
between the left and right contexts gives a good state vector estimate even for unique words. One can
then fruitfully find the CCA between the contexts and the estimated state vector for their associated
words.

3.3 Using Exponential Smooths
In practice, we replace the projected left and right contexts with exponential smooths (weighted
average of the previous (or next) token’s state i.e. Zt−1 (or Zt+1) and previous (or next) token’s
smoothed state i.e. St−1 (or St+1).), of them at a few different time scales, thus giving a further
dimension reduction by a factor of context length h (say 100 words) divided by the number of
smooths (often 5-7). We use a mixture of both very short and very long contexts which capture short
and long range dependencies as required by NLP problems as NER, Chunking, WSD etc. Since
exponential smooths are linear, we preserve the linearity of our method.

3.4 The LR-MVL Algorithm

The LR-MVL algorithm (using exponential smooths) is given in Algorithm 1; it computes the pair
of CCAs described above in Theorem 1.

Algorithm 1 LR-MVL Algorithm - Learning from Large amounts of Unlabeled Data
1: Input: Token sequence Wn×v , state space size k, smoothing rates αj

2: Initialize the eigenfeature dictionary A to random valuesN (0, 1).
3: repeat
4: Set the state Zt (1 < t ≤ n) of each token wt to the eigenfeature vector of the corresponding word.

Zt = (Aw : w = wt)
5: Smooth the state estimates before and after each token to get a pair of views for each smoothing rate αj .

S
(l,j)
t = (1− αj)S

(l,j)
t−1 + αjZt−1 // left view L

S
(r,j)
t = (1− αj)S

(r,j)
t+1 + αjZt+1 // right view R.

where the tth rows of L and R are, respectively, concatenations of the smooths S(l,j)
t and S(r,j)

t for
each of the α(j)s.

6: Find the left and right canonical correlates, which are the eigenvectors Φl and Φr of
(L′L)−1L′R(R′R)−1R′LΦl = λΦl.
(R′R)−1R′L(L′L)−1L′RΦr = λΦr .

7: Project the left and right views on to the space spanned by the top k/2 left and right CCAs respectively
Xl = LΦ

(k/2)
l and Xr = RΦ

(k/2)
r

where Φ
(k/2)
l , Φ

(k/2)
r are matrices composed of the singular vectors of Φl, Φr with the k/2 largest

magnitude singular values. Estimate the state for each word wt as the union of the left and right esti-
mates: Z = [Xl, Xr]

8: Estimate the eigenfeatures of each word type, w, as the average of the states estimated for that word.
Aw = avg(Zt : wt = w)

9: Compute the change in A from the previous iteration
10: until |∆A| < ε
11: Output: Φk

l , Φk
r , A .

A few iterations (∼ 5) of the above algorithm are sufficient to converge to the solution. (Since the
problem is convex, there is a single solution, so there is no issue of local minima.) As [14] show
for PCA, one can start with a random matrix that is only slightly larger than the true rank k of the
correlation matrix, and with extremely high likelihood converge in a few iterations to within a small
distance of the true principal components. In our case, if the assumptions detailed above (1, 1A, 2
and 3) are satisfied, our method converges equally rapidly to the true canonical variates.

As mentioned earlier, we get further dimensionality reduction in Step 5, by replacing the Left and
Right context matrices with a set of exponentially smoothed values of the reduced rank projections
of the context words. Step 6 finds the CCA between the Left and Right contexts. Step 7 estimates
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the state by combining the estimates from the left and right contexts, since we don’t know which
will best estimate the state. Step 8 takes the CCA between the estimated state Z and the matrix of
words W. Because W is a vector of indicator functions, this CCA takes the trivial form of a set of
averages.

Once we have estimated the CCA model, it is used to generate context specific embeddings for the
tokens from training, development and test sets (as described in Algorithm 2). These embeddings
are further supplemented with other baseline features and used in a supervised learner to predict the
label of the token.

Algorithm 2 LR-MVL Algorithm -Inducing Context Specific Embeddings for Train/Dev/Test Data
1: Input: Model (Φk

l , Φk
r , A) output from above algorithm and Token sequences Wtrain, (Wdev, Wtest)

2: Project the left and right views L and R after smoothing onto the space spanned by the top k left and right
CCAs respectively

Xl = LΦk
l and Xr = RΦk

r

and the words onto the eigenfeature dictionary Xw = W trainA
3: Form the final embedding matrix Xtrain:embed by concatenating these three estimates of state

Xtrain:embed = [Xl ,Xw ,Xr]
4: Output: The embedding matrices Xtrain:embed, (Xdev:embed, Xtest:embed) with context-specific rep-

resentations for the tokens. These embeddings are augmented with baseline set of features mentioned in
Sections 4.1.1 and 4.1.2 before learning the final classifier.

Note that we can get context “oblivious” embeddings i.e. one embedding per word type, just by
using the eigenfeature dictionary (Av×k) output by Algorithm 1.

4 Experimental Results
In this section we present the experimental results of LR-MVL on Named Entity Recognition (NER)
and Syntactic Chunking tasks. We compare LR-MVL to state-of-the-art semi-supervised approaches
like [1] (Alternating Structures Optimization (ASO)) and [2] (Semi-supervised extension of CRFs)
as well as embeddings like C&W, HLBL and Brown Clustering.

4.1 Datasets and Experimental Setup

For the NER experiments we used the data from CoNLL 2003 shared task and for Chunking experi-
ments we used the CoNLL 2000 shared task data2 with standard training, development and testing set
splits. The CoNLL ’03 and the CoNLL ’00 datasets had∼ 204K/51K/46K and∼ 212K/−/47K
tokens respectively for Train/Dev./Test sets.

4.1.1 Named Entity Recognition (NER)

We use the same set of baseline features as used by [15, 16] in their experiments. The detailed list
of features is as below:

• Current Word wi; Its type information: all-capitalized, is-capitalized, all-digits and so on;
Prefixes and suffixes of wi

• Word tokens in window of 2 around the current word i.e. d =
(wi−2, wi−1, wi, wi+1, wi+2); and capitalization pattern in the window.

• Previous two predictions yi−1 and yi−2 and conjunction of d and yi−1
• Embedding features (LR-MVL, C&W, HLBL, Brown etc.) in a window of 2 around the

current word (if applicable).

Following [17] we use regularized averaged perceptron model with above set of baseline features
for the NER task. We also used their BILOU text chunk representation and fast greedy inference as
it was shown to give superior performance.

2More details about the data and competition are available at http://www.cnts.ua.ac.be/
conll2003/ner/ and http://www.cnts.ua.ac.be/conll2000/chunking/
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We also augment the above set of baseline features with gazetteers, as is standard practice in NER
experiments. We tuned our free parameter namely the size of LR-MVL embedding on the develop-
ment and scaled our embedding features to have a `2 norm of 1 for each token and further multiplied
them by a normalization constant (also chosen by cross validation), so that when they are used in
conjunction with other categorical features in a linear classifier, they do not exert extra influence.
The size of LR-MVL embeddings (state-space) that gave the best performance on the development
set was k = 50 (50 each forXl,Xw,Xr in Algorithm 2) i.e. the total size of embeddings was 50×3,
and the best normalization constant was 0.5. We omit validation plots due to paucity of space.
4.1.2 Chunking

For our chunking experiments we use a similar base set of features as above:

• Current Word wi and word tokens in window of 2 around the current word i.e. d =
(wi−2, wi−1, wi, wi+1, wi+2);

• POS tags ti in a window of 2 around the current word.
• Word conjunction features wi ∩ wi+1, i ∈ {−1, 0} and Tag conjunction features ti ∩ ti+1,
i ∈ {−2,−1, 0, 1} and ti ∩ ti+1 ∩ ti+2, i ∈ {−2,−1, 0}.

• Embedding features in a window of 2 around the current word (when applicable).

Since CoNLL 00 chunking data does not have a development set, we randomly sampled 1000 sen-
tences from the training data (8936 sentences) for development. So, we trained our chunking models
on 7936 training sentences and evaluated their F1 score on the 1000 development sentences and used
a CRF 3 as the supervised classifier. We tuned the size of embedding and the magnitude of `2 reg-
ularization penalty in CRF on the development set and took log (or -log of the magnitude) of the
value of the features4. The regularization penalty that gave best performance on development set
was 2 and here again the best size of LR-MVL embeddings (state-space) was k = 50. Finally, we
trained the CRF on the entire (“original”) training data i.e. 8936 sentences.
4.1.3 Unlabeled Data and Induction of embeddings

For inducing the embeddings we used the RCV1 corpus containing Reuters newswire from Aug ’96
to Aug ’97 and containing about 63 million tokens in 3.3 million sentences5. Case was left intact and
we did not do the “cleaning” as done by [18, 16] i.e. remove all sentences which are less than 90%
lowercase a-z, as our multi-view learning approach is robust to such noisy data, like news byline
text (mostly all caps) which does not correlate strongly with the text of the article.

We induced our LR-MVL embeddings over a period of 3 days (70 core hours on 3.0 GHz CPU)
on the entire RCV1 data by performing 4 iterations, a vocabulary size of 300k and using a variety
of smoothing rates (α in Algorithm 1) to capture correlations between shorter and longer contexts
α = [0.005, 0.01, 0.05, 0.1, 0.5, 0.9]; theoretically we could tune the smoothing parameters on the
development set but we found this mixture of long and short term dependencies to work well in
practice.

As far as the other embeddings are concerned i.e. C&W, HLBL and Brown Clusters, we downloaded
them from http://metaoptimize.com/projects/wordreprs. The details about their
induction and parameter tuning can be found in [16]; we report their best numbers here. It is also
worth noting that the unsupervised training of LR-MVL was (> 1.5 times)6 faster than other em-
beddings.

4.2 Results

The results for NER and Chunking are shown in Tables 1 and 2, respectively, which show that
LR-MVL performs significantly better than state-of-the-art competing methods on both NER and
Chunking tasks.

3http://www.chokkan.org/software/crfsuite/
4Our embeddings are learnt using a linear model whereas CRF is a log-linear model, so to keep things on

same scale we did this normalization.
5We chose this particular dataset to make a fair comparison with [1, 16], who report results using RCV1 as

unlabeled data.
6As some of these embeddings were trained on GPGPU which makes our method even faster comparatively.
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F1-Score
Embedding/Model Dev. Set Test Set
Baseline

No Gazetteers

90.03 84.39
C&W, 200-dim 92.46 87.46
HLBL, 100-dim 92.00 88.13
Brown 1000 clusters 92.32 88.52
Ando & Zhang ’05 93.15 89.31
Suzuki & Isozaki ’08 93.66 89.36
LR-MVL (CO) 50× 3-dim 93.11 89.55
LR-MVL 50× 3-dim 93.61 89.91
HLBL, 100-dim

With Gazetteers

92.91 89.35
C&W, 200-dim 92.98 88.88
Brown, 1000 clusters 93.25 89.41
LR-MVL (CO) 50× 3-dim 93.91 89.89
LR-MVL 50× 3-dim 94.41 90.06

Table 1: NER Results. Note: 1). LR-MVL (CO) are Context Oblivious embeddings which are
gotten from (A) in Algorithm 1. 2). F1-score= Harmonic Mean of Precision and Recall. 3). The
current state-of-the-art for this NER task is 90.90 (Test Set) but using 700 billion tokens of unlabeled
data [19].

Embedding/Model Test Set F1-Score
Baseline 93.79
HLBL, 50-dim 94.00
C&W, 50-dim 94.10
Brown 3200 Clusters 94.11
Ando & Zhang ’05 94.39
Suzuki & Isozaki ’08 94.67
LR-MVL (CO) 50× 3-dim 95.02
LR-MVL 50× 3-dim 95.44

Table 2: Chunking Results.

It is important to note that in problems like NER, the final accuracy depends on performance on
rare-words and since LR-MVL is robustly able to correlate past with future views, it is able to learn
better representations for rare words resulting in overall better accuracy. On rare-words (occurring
< 10 times in corpus), we got 11.7%, 10.7% and 9.6% relative reduction in error over C&W, HLBL
and Brown respectively for NER; on chunking the corresponding numbers were 6.7%, 7.1% and
8.7%.

Also, it is worth mentioning that modeling the context in embeddings gives decent improvements
in accuracies on both NER and Chunking problems. For the case of NER, the polysemous words
were mostly like Chicago, Wales, Oakland etc., which could either be a location or organization
(Sports teams, Banks etc.), so when we don’t use the gazetteer features, (which are known lists of
cities, persons, organizations etc.) we got higher increase in F-score by modeling context, compared
to the case when we already had gazetteer features which captured most of the information about
polysemous words for NER dataset and modeling the context didn’t help as much. The polysemous
words for Chunking dataset were like spot (VP/NP), never (VP/ADVP), more (NP/VP/ADVP/ADJP)
etc. and in this case embeddings with context helped significantly, giving 3.1 − 6.5% relative im-
provement in accuracy over context oblivious embeddings.

5 Summary and Conclusion
In this paper, we presented a novel CCA-based multi-view learning method, LR-MVL, for large
scale sequence learning problems such as arise in NLP. LR-MVL is a spectral method that works
in low dimensional state-space so it is computationally efficient, and can be used to train using
large amounts of unlabeled data; moreover it does not get stuck in local optima like an EM trained
HMM. The embeddings learnt using LR-MVL can be used as features with any supervised learner.
LR-MVL has strong theoretical grounding; is much simpler and faster than competing methods and
achieves state-of-the-art accuracies on NER and Chunking problems.

Acknowledgements: The authors would like to thank Alexander Yates, Ted Sandler and the three
anonymous reviews for providing valuable feedback. We would also like to thank Lev Ratinov and
Joseph Turian for answering our questions regarding their paper [16].
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