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Abstract

In this paper we consider general rank minimization problems with rank appear-
ing in either objective function or constraint. We first show that a class of matrix
optimization problems can be solved as lower dimensional vector optimization
problems. As a consequence, we establish that a class of rank minimization prob-
lems have closed form solutions. Using this result, we then propose penalty de-
composition methods for general rank minimization problems. The convergence
results of the PD methods have been shown in the longer version of the paper
[19]. Finally, we test the performance of our methods by applying them to matrix
completion and nearest low-rank correlation matrix problems. The computational
results demonstrate that our methods generally outperform the existing methods
in terms of solution quality and/or speed.

1 Introduction

In this paper we consider the following rank minimization problems:
n}gn{f(X) s rank(X) <r, X € XNQY, (D)
rr%n{f(X)—l—Vrank(X):XeXﬁQ} 2

for some r, v > 0, where X is a closed convex set, 2 is a closed unitarily invariant set in &™*",
and f : R™>*™ — R is a continuously differentiable function (for the definition of unitarily invariant
set, see Section 2.1). In literature, there are numerous application problems in the form of (1) or
(2). For example, several well-known combinatorial optimization problems such as maximal cut
(MAXCUT) and maximal stable set can be formulated as problem (1) (see, for example, [11, 1, 5]).
More generally, nonconvex quadratic programming problems can also be cast into (2) (see, for
example, [1]). Recently, some image recovery and machine learning problems are formulated as (1)
or (2) (see, for example, [27, 31]). In addition, the problem of finding nearest low-rank correlation
matrix is in the form of (1), which has important application in finance (see, for example, [4, 29, 36,
38, 25, 30, 12]).

Several approaches have recently been developed for solving problems (1) and (2) or their special
cases. In particular, for those arising in combinatorial optimization (e.g., MAXCUT), one novel
method is to first solve the semidefinite programming (SDP) relaxation of (1) and then obtain an
approximate solution of (1) by applying some heuristics to the solution of the SDP (see, for example,
[11]). Despite the remarkable success on those problems, it is not clear about the performance of this
method when extended to solve more general problem (1). In addition, the nuclear norm relaxation
approach has been proposed for problems (1) or (2). For example, Fazel et al. [10] considered a
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special case of problem (2) with f = 0 and 2 = R™*". In their approach, a convex relaxation is
applied to (1) or (2) by replacing the rank of X by the nuclear norm of X and numerous efficient
methods can then be applied to solve the resulting convex problems. Recently, Recht et al. [27]
showed that under some suitable conditions, such a convex relaxation is tight when X is an affine
manifold. The quality of such a relaxation, however, remains unknown when applied to general
problems (1) and (2). Additionally, for some application problems, the nuclear norm stays constant
in feasible region. For example, as for nearest low-rank correlation matrix problem (see Subsection
3.2), any feasible point is a symmetric positive semidefinite matrix with all diagonal entries equal
to one. For those problems, nuclear norm relaxation approach is obviously inappropriate. Finally,
nonlinear programming (NLP) reformulation approach has been applied for problem (1) (see, for
example, [5]). In this approach, problem (1) is cast into an NLP problem by replacing the constraint
rank(X) < rby X = UV where U € R™*" and V € R7*", and then numerous optimization
methods can be applied to solve the resulting NLP. It is not hard to observe that such an NLP has
infinitely many local minima, and moreover it can be highly nonlinear, which might be challenging
for all existing numerical optimization methods for NLP. Also, it is not clear whether this approach
can be applied to problem (2).

In this paper we consider general rank minimization problems (1) and (2). We first show that a
class of matrix optimization problems can be solved as lower dimensional vector optimization prob-
lems. As a consequence, we establish that a class of rank minimization problems have closed form
solutions. Using this result, we then propose penalty decomposition methods for general rank mini-
mization problems in which each subproblem is solved by a block coordinate descend method. The
convergence of the PD methods has been shown in the longer version of the paper [19]. Finally, we
test the performance of our methods by applying them to matrix completion and nearest low-rank
correlation matrix problems. The computational results demonstrate that our methods generally
outperform the existing methods in terms of solution quality and/or speed.

The rest of this paper is organized as follows. In Subsection 1.1, we introduce the notation that is
used throughout the paper. In Section 2, we first establish some technical results on a class of rank
minimization problems and then use them to develop the penalty decomposition methods for solving
problems (1) and (2). In Section 3, we conduct numerical experiments to test the performance of
our penalty decomposition methods for solving matrix completion and nearest low-rank correlation
matrix problems. Finally, we present some concluding remarks in Section 4.

1.1 Notation

In this paper, the symbol ™ denotes the n-dimensional Euclidean space, and the set of all m x n
matrices with real entries is denoted by R™*"™. The spaces of n X n symmetric matrices will
be denoted by S™. If X € S™ is positive semidefinite, we write X > 0. The cone of positive
semidefinite matrices is denoted by S7. The Frobenius norm of a real matrix X is defined as

IX||F := +/Tr(XXT) where Tr(-) denotes the trace of a matrix, and the nuclear norm of X,
denoted by || X]||«, is defined as the sum of all singular values of X. The rank of a matrix X is
denoted by rank(X ). We denote by I the identity matrix, whose dimension should be clear from the
context. For a real symmetric matrix X, A(X) denotes the vector of all eigenvalues of X arranged
in nondecreasing order and A(X) is the diagonal matrix whose ith diagonal entry is A;(X) for all
i. Similarly, for any X € R™*", o(X) denotes the g-dimensional vector consisting of all singular
values of X arranged in nondecreasing order, where ¢ = min(m,n), and X(X) is the m X n matrix
whose ith diagonal entry is o;(X) for all ¢ and all off-diagonal entries are 0, that is, ¥;;(X) = 0;(X)
for1 <i<gandX,;;(X) = 0forall i # j. We define the operator 7 : 7 — R™*™ as follows:

Zij(z) = { 0 otherwise Vo € R,

where ¢ = min(m, n). For any real vector, || - o, || - |1 and || - ||2 denote the cardinality (i.e., the
number of nonzero entries), the standard 1-norm and the Euclidean norm of the vector, respectively.



2 Penalty decomposition methods

In this section, we first establish some technical results on a class of rank minimization problems.
Then we propose penalty decomposition (PD) methods for solving problems (1) and (2) by using
these technical results.

2.1 Technical results on special rank minimization

In this subsection we first show that a class of matrix optimization problems can be solved as lower
dimensional vector optimization problems. As a consequence, we establish a result that a class
of rank minimization problems have closed form solutions, which will be used to develop penalty
decomposition methods in Subsection 2.2. The proof of the result can be found in the longer version
of the paper [19]. Before proceeding, we introduce some definitions that will be used subsequently.

Let U™ denote the set of all unitary matrices in *”*™. A norm || - || is a unitarily invariant norm
on "> if [ UXV| = || X|[foral U € U™, V € U", X € R™*™. More generally, a function
F : R™*"™ — R is a unitarily invariant function if F(UXV) = F(X) foralU e U™,V € U",
X e RmX" A set X C R™*™ is a unitarily invariant set if

{UXV:UeU™Veld", XecX}=24x.

Similarly, a function F' : 8™ — R is a unitary similarity invariant function if F(UXUT) = F(X)
forallU e U™, X € S§™. A set X C S™ is a unitary similarity invariant set if

{UXUT .U cUu™, X c X} = X.

The following result establishes that a class of matrix optimization problems over a subset of R"**"
can be solved as lower dimensional vector optimization problems.

Proposition 2.1 Let || - || be a unitarily invariant norm on R™*", and let F' : R™*™ — R be a
unitarily invariant function. Suppose that X C R"*"™ is a unitarily invariant set. Let A € R™*" be
given, ¢ = min(m,n), and let ¢ be a non-decreasing function on [0, 00). Suppose that US(A)VT
is the singular value decomposition of A. Then, X* = UZ(x*)VT is an optimal solution of the
problem

min F(X) + (X - AJ)

st X € X, 3)
where x* € R is an optimal solution of the problem
min  F(Z(z)) + ¢(|Z(x) — Z(A)|)) @)
st P(x) e X.

As some consequences of Proposition 2.1, we next state that a class of rank minimization problems
on a subset of R "™ can be solved as lower dimensional vector minimization problems.

Corollary 2.2 Let v > 0 and A € R™*™ be given, and let ¢ = min(m,n). Suppose that X C
RMX" s a unitarily invariant set, and UX(A)VT is the singular value decomposition of A. Then,
X*=UP(x*)VT is an optimal solution of the problem

1
min{v rank(X) + §||X —Al%: X €&}, )
where x* € R is an optimal solution of the problem

1
min{v|zflo + 7|z ~ o(A)3: Z(x) € X}. (©)

Corollary 2.3 Let v > 0 and A € R™*" be given, and let ¢ = min(m,n). Suppose that X C
RMXM s q unitarily invariant set, and UX(A)VT is the singular value decomposition of A. Then,
X*=UP(x*)VT is an optimal solution of the problem

min{||X — A||r : rank(X) <r, X € X}, (7
where * € R? is an optimal solution of the problem
min{|lz - o(A)2 : [aflo < 7. 2() € XY} ®)



Remark. When X is simple enough, problems (5) and (7) have closed form solutions. In many
applications, X = {X € ™" : a < 0;(X) < bVi} for some 0 < a < b < co. For such X, one
can see that Z(x) € X if and only if a < |x;| < b for all 7. In this case, it is not hard to observe that
problems (6) and (8) have closed form solutions (see [20]). It thus follows from Corollaries 2.2 and
2.3 that problems (5) and (7) also have closed form solutions.

The following results are heavily used in [6, 22, 34] for developing algorithms for solving the nu-
clear norm relaxation of matrix completion problems. They can be immediately obtained from
Proposition 2.1.

Corollary 2.4 Let v > 0 and A € R™*™ be given, and let ¢ = min(m,n). Suppose that
US(A)VT is the singular value decomposition of A. Then, X* = U%(x*)V7T is an optimal
solution of the problem

, 1
minv|[ Xl + X ~ Al

where * € R is an optimal solution of the problem

) 1
minvljz[ + 3|z — o (A)]3.

Corollary 2.5 Letr > 0and A € R™*" be given, and let ¢ = min(m, n). Suppose that US(A)VT
is the singular value decomposition of A. Then, X* = UZ(x*)VT is an optimal solution of the
problem

min{|[X - Allp : [ X[. <,
where * € R? is an optimal solution of the problem

min{[lz — o (A)[l2 : [lzfy <7}
Clearly, the above results can be generalized to solve a class of matrix optimization problems over a
subset of S™. The details can be found in the longer version of the paper [19].

2.2 Penalty decomposition methods for solving (1) and (2)

In this subsection, we consider the rank minimization problems (1) and (2). In particular, we first
propose a penalty decomposition (PD) method for solving problem (1), and then extend it to solve
problem (2) at end of this subsection. Throughout this subsection, we make the following assump-
tion for problems (1) and (2).

Assumption 1 Problems (1) and (2) are feasible, and moreover, at least a feasible solution, denoted
by X feas s known.

Clearly, problem (1) can be equivalently reformulated as
r)]gig{f(X):X—YzO,XEX,YEy}, ©))
where Y := {Y € Q| rank(Y") < r}.
Given a penalty parameter o > 0, the associated quadratic penalty function for (9) is defined as
0
Qo(X,Y) = f(X) + SIIX = Y|, (10)
We now propose a PD method for solving problem (9) (or, equivalently, (1)) in which each penalty
subproblem is approximately solved by a block coordinate descent (BCD) method.
Penalty decomposition method for (9) (asymmetric matrices):
Let oo > 0, 0 > 1 be given. Choose an arbitrary Y € ) and a constant T >
max{ f(X%) minxex Q,, (X, YY)} Set k = 0.

1) Set! = 0 and apply the BCD method to find an approximate solution (X* Y*) € X x
for the penalty subproblem

min{Q,, (X,Y): X e X, Y € Y} an
by performing steps 1a)-1d):



la) Solve X[, | € Arg min, Qo (X, YF).
1b) Solve Y% | € Arg min Qo (XF 1, Y).
lc) Set (XF YF):= (Xﬁrl, YE).
2) Set 941 := 0Pk
3) If min Qp, ., (X, Y*) > T, set Y1 .= xfeas Otherwise, set Yo+t .= vk,
€
4) Setk < k+ 1 and gotostep 1).

end

Remark. We observe that the sequence {Q,, (XF,Y}*)} is non-increasing for any fixed k. Thus,
in practical implementation, it is reasonable to terminate the BCD method based on the relative
progress of {Q,, (X lk, sz)} In particular, given accuracy parameter €; > 0, one can terminate the

BCD method if - . N
Qi (X[, Y)¥) — Qo (X1, Y% < ¢ (12)
max(|Q,, (X, V)|, 1) B
Moreover, we can terminate the outer iterations of the above method once
max | Xf; — Y| < eo (13)
ij

for some €p > 0. In addition, given that problem (11) is nonconvex, the BCD method may converge
to a stationary point. To enhance the quality of approximate solutions, one may execute the BCD
method multiple times starting from a suitable perturbation of the current approximate solution. In
detail, at the kth outer iteration, let (X Ykz be a current approximate solution of (11) obtained
by the BCD method, and let r;, = rank . Assume that r;, > 1. Before starting the (k +
1)th outer iteration, one can apply the BCD method again starting from Y € Argmin{||Y —
Y*||p : rank(Y) < rj, — 1} (namely, a rank-one perturbation of Y'*) and obtain a new approximate
solution (X*, Y*) of (11). If Q,, (X*, Y'*) is “sufficiently” smaller than Q,, (X*, V"), one can set

(X*,Y*) := (X* Y*) and repeat the above process. Otherwise, one can terminate the kth outer
iteration and start the next outer iteration. Furthermore, in view of Corollary 2.3, the subproblem
in step 1b) can be reduced to the problem in form of (8), which has closed form solution when
Q is simple enough. Finally, the convergence results of this PD method has been shown in the
longer version of the paper [19]. Under some suitable assumptions, we have established that any
accumulation point of the sequence generated by our method when applied to problem (1) is a
stationary point of a nonlinear reformulation of the problem.

Before ending this section, we extend the PD method proposed above to solve problem (2). Clearly,
(2) can be equivalently reformulated as

r)r(li}rfl{f(X)—i—l/rank(Y): X-Y=0XeXx YeQ} (14)
Given a penalty parameter ¢ > 0, the associated quadratic penalty function for (14) is defined as

Py(X,Y) 1= f(X) + v rank(Y) + 2|.X = V3. (15)

Then we can easily adapt the PD method for solving (9) to solve (14) (or, equivalently, (2)) by setting
the constant T > max{ f(X%2) + v rank(X) minxer P,, (X, Yy)}. In addition, the set )
becomes (2.

In view of Corollary 2.2, the BCD subproblem in step 1b) when applied to minimize the penalty
function (15) can be reduced to the problem in form of (6), which has closed form solution when
Q) is simple enough. In addition, the practical termination criteria proposed for the previous PD
method can be suitably applied to this method as well. Moreover, given that problem arising in step
1) is nonconvex, the BCD method may converge to a stationary point. To enhance the quality of
approximate solutions, one may apply a similar strategy as described for the previous PD method
by executing the BCD method multiple times starting from a suitable perturbation of the current
approximate solution. Finally, by a similar argument as in the proof of [19, Theorem 3.1], we
can show that every accumulation point of the sequence {(X*,Y*)} is a feasible point of (14).
Nevertheless, it is not clear whether a similar convergence result as in [19, Theorem 3.1(b)] can be
established due to the discontinuity and nonconvexity of the objective function of (2).



3 Numerical results

In this section, we conduct numerical experiments to test the performance of our penalty decom-
position (PD) methods proposed in Section 2 by applying them to solve matrix completion and
nearest low-rank correlation matrix problems. All computations below are performed on an Intel
Xeon E5410 CPU (2.33GHz) and 8GB RAM running Red Hat Enterprise Linux (kernel 2.6.18).
The codes of all the compared methods in this section are written in Matlab.

3.1 Matrix completion problem

In this subsection, we apply our PD method proposed in Section 2 to the matrix completion problem,
which has numerous applications in control and systems theory, image recovery and data mining
(see, for example, [33, 24, 9, 16]). It can be formulated as

min  rank(X)
XeRmxn o (16)
S.t. Xij = Ml‘j, (Z,j) €0,

where M € R™>*™ and © is a subset of index pairs (i,7). Recently, numerous methods were
proposed to solve the nuclear norm relaxation or the variant of (16) (see, for example, [18, 6, 22, 8,
13, 14, 21, 23, 32, 17, 37, 35]).

It is not hard to see that problem (16) is a special case of the general rank minimization problem (2)
with f(X) =0, v =1, Q=R""and X = {X € R™*" : X;;, = M,;, (i,j) € ©}. Thus,
the PD method proposed in Subsection 2.2 for problem (2) can be suitably applied to (16). The
implementation details of the PD method can be found in [19].

Next we conduct numerical experiments to test the performance of our PD method for solving matrix
completion problem (16) on real data. In our experiment, we aim to test the performance of our PD
method for solving a grayscale image inpainting problem [2]. This problem has been used in [22, 35]
to test FPCA and LMaFit, respectively and we use the same scenarios as generated in [22, 35]. For
an image inpainting problem, our goal is to fill the missing pixel values of the image at given pixel
locations. The missing pixel positions can be either randomly distributed or not. As shown in
[33, 24], this problem can be solved as a matrix completion problem if the image is of low-rank.
In our test, the original 512 x 512 grayscale image is shown in Figure 1(a). To obtain the data for
problem (16), we first apply the singular value decomposition to the original image and truncate
the resulting decomposition to get an image of rank 40 shown in Figure 1(e). Figures 1(b) and
1(c) are then constructed from Figures 1(a) and 1(e) by sampling half of their pixels uniformly at
random, respectively. Figure 1(d) is generated by masking 6% of the pixels of Figure 1(e) in a non-
random fashion. We now apply our PD method to solve problem (16) with the data given in Figures
1(b), 1(c) and 1(d), and the resulting recovered images are presented in Figures 1(f), 1(g) and 1(h),
respectively. In addition, given an approximate recovery X * for M, we define the relative error as

| X* = M||r

rel_err :=
M|l F

We observe that the relative errors of three recovered images to the original images by our method
are 6.72e-2, 6.43e-2 and 6.77e-2, respectively, which are all smaller than those reported in [22, 35].

3.2 Nearest low-rank correlation matrix problem

In this subsection, we apply our PD method proposed in Section 2 to find the nearest low-rank
correlation matrix, which has important applications in finance (see, for example, [4, 29, 36, 38, 30]).
It can be formulated as .
. 1 X _ 2
fnin 51X = ClE
s.t. diag(X) =e, A7)

rank(X) <r, X =0
for some correlation matrix C' € S and some integer r € [1, n], where diag(X') denotes the vector

consisting of the diagonal entries of X and e is the all-ones vector. Recently, a few methods have
been proposed for solving problem (17) (see, for example, [28, 26, 3, 25, 12, 15]).



(a) original image (b) 50% masked original (c) 50% masked rank 40 (d) 6.34% masked rank 40
image image image

(e) rank 40 image (f) recovered image by PD (g) recovered image by PD (h) recovered image by PD

Figure 1: Image inpainting

It is not hard to see that problem (17) is a special case of the general rank constraint problem (2)
with f(X) = 3| X = C||2,Q = S?,and X = {X € 8" : diag(X) = e}. Thus, the PD method
proposed in Subsection 2.2 for problem (2) can be suitably applied to (17). The implementation

details of the PD method can be found in [19].

Next we conduct numerical experiments to test the performance of our method for solving (17) on
three classes of benchmark testing problems. These problems are widely used in literature (see, for
example, [3, 29, 25, 15]) and their corresponding data matrices C' are defined as follows:

(P1) C;5 = 0.5+ 0.5exp(—0.05|i — j|) for all 4, j (see [3]).
(P2) C;; = exp(—|i — j]|) forall 4, j (see [3]).

(P3) C;; = LongCorr + (1 — LongCorr) exp(k|i — j|) for all 7, j, where LongCorr = 0.6 and
k = —0.1 (see [29]).

We first generate an instance for each (P1)-(P3) by letting 500. Then we apply our PD method and
the method named as Major developed in [25] to solve problem (17) on the instances generated
above. To fairly compare their performance, we choose the termination criterion for Major to be the
one based on the relative error rather than the (default) absolute error. More specifically, it terminates
once the relative error is less than 10~5. The computational results of both methods on the instances
generated above with » = 5,10, ...,25 are presented in Table 1. The names of all problems are
given in column one and they are labeled in the same manner as described in [15]. For example,
P1n500r5 means that it corresponds to problem (P1) with n = 500 and » = 5. The results of
both methods in terms of number of iterations, objective function value and CPU time are reported
in columns two to seven of Table 1, respectively. We observe that the objective function values
for both methods are comparable though the ones for Major are slightly better on some instances.
In addition, for small r (say, » = 5), Major generally outperforms PD in terms of speed, but PD
substantially outperforms Major as 7 gets larger (say, 7 = 15).

4 Concluding remarks

In this paper we proposed penalty decomposition (PD) methods for general rank minimization prob-
lems in which each subproblem is solved by a block coordinate descend method. In the longer
version of the paper [20], we have showed that under some suitable assumptions any accumulation
point of the sequence generated by our method when applied to the rank constrained minimization
problem is a stationary point of a nonlinear reformulation of the problem. The computational re-
sults on matrix completion and nearest low-rank correlation matrix problems demonstrate that our



Table 1: Comparison of Major and PD

Problem Major PD

Iter Obj Time | Iter Obj Time
P1n500r5 488  3107.0 229 | 2514 31072  80.7
P1n500r10 || 836 748.2 51.5 1220 748.2 48.4
P1n500rl5 || 1690 270.2 137.0 | 804  270.2 37.3
P1n500r20 || 3106 1234 329.1 | 581 1234 31.5
P1n500r25 || 5444 65.5 722.0 | 480  65.5 29.4
P2n500r5 2126 242485 97.8 3465 242485 1123
P2n500r10 || 3264 11749.5 199.6 | 1965 11749.5 76.6
P2n500r15 || 5061 7584.4  409.9 | 1492 75844 704
P2n500r20 || 4990 5503.2  532.0 | 1216 5503.2 67.2
P2n500r25 || 2995 4256.0  404.1 | 1022 4256.0  69.2
P3n500r5 2541  2869.3 116.4 | 2739 2869.4 904
P3n500r10 || 2357 981.8 1442 | 1410 981.8 554
P3n500r15 || 2989 446.9 2419 | 923  446.9 41.6
P3n500r20 || 4086 234.7 4384 | 662 2347 33.0
P3n500r25 || 5923 135.9 788.3 | 504  135.9 29.5

methods generally outperform the existing methods in terms of solution quality and/or speed. More
computational results of the PD method can be found in the longer version of the paper [19].
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