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Abstract

This manuscript considers the convergence rate of boosting under a large class of
losses, including the exponential and logistic losses, where the best previous rate
of convergence was O(exp(1/✏

2

)). First, it is established that the setting of weak
learnability aids the entire class, granting a rate O(ln(1/✏)). Next, the (disjoint)
conditions under which the infimal empirical risk is attainable are characterized
in terms of the sample and weak learning class, and a new proof is given for the
known rate O(ln(1/✏)). Finally, it is established that any instance can be de-
composed into two smaller instances resembling the two preceding special cases,
yielding a rate O(1/✏), with a matching lower bound for the logistic loss. The
principal technical hurdle throughout this work is the potential unattainability of
the infimal empirical risk; the technique for overcoming this barrier may be of
general interest.

1 Introduction

Boosting is the task of converting inaccurate weak learners into a single accurate predictor. The
existence of any such method was unknown until the breakthrough result of Schapire [1]: under
a weak learning assumption, it is possible to combine many carefully chosen weak learners into a
majority of majorities with arbitrarily low training error. Soon after, Freund [2] noted that a single
majority is enough, and that O(ln(1/✏)) iterations are both necessary and sufficient to attain accu-
racy ✏. Finally, their combined effort produced AdaBoost, which attains the optimal convergence
rate (under the weak learning assumption), and has an astonishingly simple implementation [3].

It was eventually revealed that AdaBoost was minimizing a risk functional, specifically the expo-
nential loss [4]. Aiming to alleviate perceived deficiencies in the algorithm, other loss functions
were proposed, foremost amongst these being the logistic loss [5]. Given the wide practical suc-
cess of boosting with the logistic loss, it is perhaps surprising that no convergence rate better than
O(exp(1/✏

2

)) was known, even under the weak learning assumption [6]. The reason for this de-
ficiency is simple: unlike SVM, least squares, and basically any other optimization problem con-
sidered in machine learning, there might not exist a choice which attains the minimal risk! This
reliance is carried over from convex optimization, where the assumption of attainability is generally
made, either directly, or through stronger conditions like compact level sets or strong convexity [7].

Convergence rate analysis provides a valuable mechanism to compare and improve of minimiza-
tion algorithms. But there is a deeper significance with boosting: a convergence rate of O(ln(1/✏))

means that, with a combination of just O(ln(1/✏)) predictors, one can construct an ✏-optimal clas-
sifier, which is crucial to both the computational efficiency and statistical stability of this predictor.

The contribution of this manuscript is to provide a tight convergence theory for a large class of
losses, including the exponential and logistic losses, which has heretofore resisted analysis. The goal
is a general analysis without any assumptions (attainability of the minimum, or weak learnability),
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however this manuscript also demonstrates how the classically understood scenarios of attainability
and weak learnability can be understood directly from the sample and the weak learning class.

The organization is as follows. Section 2 provides a few pieces of background: how to encode the
weak learning class and sample as a matrix, boosting as coordinate descent, and the primal objective
function. Section 3 then gives the dual problem, max entropy. Given these tools, section 4 shows
how to adjust the weak learning rate to a quantity which is useful without any assumptions. The first
step towards convergence rates is then taken in section 5, which demonstrates that the weak learning
rate is in fact a mechanism to convert between the primal and dual problems.

The convergence rates then follow: section 6 and section 7 discuss, respectively, the conditions
under which classical weak learnability and (disjointly) attainability hold, both yielding the rate
O(ln(1/✏)), and finally section 8 shows how the general case may be decomposed into these two,
and the conflicting optimization behavior leads to a degraded rate of O(1/✏). The last section will
also exhibit an ⌦(1/✏) lower bound for the logistic loss.

1.1 Related Work

The development of general convergence rates has a number of important milestones in the past
decade. The first convergence result, albeit without any rates, is due to Collins et al. [8]; the work
considered the improvement due to a single step, and as its update rule was less aggressive than the
line search of boosting, it appears to imply general convergence. Next, Bickel et al. [6] showed a
rate of O(exp(1/✏

2

)), where the assumptions of bounded second derivatives on compact sets are
also necessary here.

Many extremely important cases have also been handled. The first is the original rate of O(ln(1/✏))

for the exponential loss under the weak learning assumption [3]. Next, Rätsch et al. [9] showed, for
a class of losses similar to those considered here, a rate of O(ln(1/✏)) when the loss minimizer is
attainable. The current manuscript provides another mechanism to analyze this case (with the same
rate), which is crucial to being able to produce a general analysis. And, very recently, parallel to this
work, Mukherjee et al. [10] established the general convergence under the exponential loss, with a
rate of ⇥(1/✏). The same matrix, due to Schapire [11], was used to show the lower bound there as
for the logistic loss here; their upper bound proof also utilized a decomposition theorem.

It is interesting to mention that, for many variants of boosting, general convergence rates were
known. Specifically, once it was revealed that boosting is trying to be not only correct but also
have large margins [12], much work was invested into methods which explicitly maximized the
margin [13], or penalized variants focused on the inseparable case [14, 15]. These methods generally
impose some form of regularization [15], which grants attainability of the risk minimizer, and allows
standard techniques to grant general convergence rates. Interestingly, the guarantees in those works
cited in this paragraph are O(1/✏

2

).

2 Setup

A view of boosting, which pervades this manuscript, is that the action of the weak learning class
upon the sample can be encoded as a matrix [9, 15]. Let a sample S := {(x

i

, y

i

)}m
1

✓ (X ⇥ Y)

m

and a weak learning class H be given. For every h 2 H, let S|
h

denote the projection onto S
induced by h; that is, S|

h

is a vector of length m, with coordinates (S|
h

)

i

= y

i

h(x

i

). If the set
of all such columns {S|

h

: h 2 H} is finite, collect them into the matrix A 2 Rm⇥n. Let a
i

denote the i

th row of A, corresponding to the example (x

i

, y

i

), and let {h
j

}n
1

index the set of weak
learners corresponding to columns of A. It is assumed, for convenience, that entries of A are within
[�1,+1]; relaxing this assumption merely scales the presented rates by a constant.

The setting considered in this manuscript is that this finite matrix can be constructed. Note that this
can encode infinite classes, so long as they map to only k < 1 values (in which case A has at most
k

m columns). As another example, if the weak learners are binary, and H has VC dimension d,
then Sauer’s lemma grants that A has at most (m + 1)

d columns. This matrix view of boosting is
thus similar to the interpretation of boosting performing descent on functional space, but the class
complexity and finite sample have been used to reduce the function class to a finite object [16, 5].
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Routine BOOST.
Input Convex function f �A.
Output Approximate primal optimum �.

1. Initialize �
0

:= 0
n

.
2. For t = 1, 2, . . ., while r(f �A)(�

t�1

) 6= 0
n

:
(a) Choose column j

t

:= argmax

j

|r(f �A)(�

t�1

)

>e
j

|.
(b) Line search: ↵

t

apx. minimizes ↵ 7! (f �A)(�

t�1

+ ↵e
jt).

(c) Update �
t

:= �

t�1

+ ↵

t

e
jt .

3. Return �
t�1

.

Figure 1: l1 steepest descent [17, Algorithm 9.4] applied to f �A.

To make the connection to boosting, the missing ingredient is the loss function. Let G
0

denote the
set of loss functions g satisfying: g is twice continuously differentiable, g00 > 0 (which implies
strict convexity), and lim

x!1 g(x) = 0. (A few more conditions will be added in section 5 to prove
convergence rates, but these properties suffice for the current exposition.) Crucially, the exponential
loss exp(�x) from AdaBoost and the logistic loss ln(1+ exp(�x)) are in G

0

(and the eventual G).

Boosting determines some weighting � 2 Rn of the columns of A, which correspond to weak
learners in H. The (unnormalized) margin of example i is thus ha

i

,�i = e>
i

A�, where e
i

is an
indicator vector. Since the prediction on x

i

is 1[ha
i

,�i � 0], it follows that A� > 0
m

(where 0
m

is
the zero vector) implies a training error of zero. As such, boosting solves the minimization problem

inf

�2Rn

m

X

i=1

g(ha
i

,�i) = inf

�2Rn

m

X

i=1

g(e>
i

A�) = inf

�2Rn
f(A�) = inf

�2Rn
(f �A)(�) =:

¯

f

A

, (2.1)

where f : Rm ! R is the convenience function f(x) =

P

i

g((x)

i

), and in the present problem
denotes the (unnormalized) empirical risk. ¯

f

A

will denote the optimal objective value.

The infimum in eq. (2.1) may well not be attainable. Suppose there exists �0 such that A�0 > 0
m

(theorem 6.1 will show that this is equivalent to the weak learning assumption). Then

0  inf

�2Rn
f(A�)  inf {f(A�) : � = c�

0
, c > 0} = inf

c>0

f(c(A�

0
)) = 0.

On the other hand, for any � 2 Rn, f(A�) > 0. Thus the infimum is never attainable when weak
learnability holds.

The template boosting algorithm appears in fig. 1, formulated in terms of f �A to make the connec-
tion to coordinate descent as clear as possible. To interpret the gradient terms, note that

(r(f �A)(�))

j

= (A

>rf(A�))

j

=

m

X

i=1

g

0
(ha

i

,�i)h
j

(x

i

)y

i

,

which is the expected correlation of h

j

with the target labels according to an unnormalized dis-
tribution with weights g

0
(ha

i

,�i). The stopping condition r(f � A)(�) = 0
m

means: either the
distribution is degenerate (it is exactly zero), or every weak learner is uncorrelated with the target.

As such, eq. (2.1) represents an equivalent formulation of boosting, with one minor modification:
the column (weak learner) selection has an absolute value. But note that this is the same as closing
H under complementation (i.e., for any h 2 H, there exists h

0 with h(x) = �h

0
(x)), which is

assumed in many theoretical treatments of boosting.

In the case of the exponential loss with binary weak learners, the line search step has a conve-
nient closed form; but for other losses, or even for the exponential loss but with confidence-rated
predictors, there may not be a closed form. Moreover, this univariate search problem may lack a
minimizer. To produce the eventual convergence rates, this manuscript utilizes a step size minimiz-
ing an upper bounding quadratic (which is guaranteed to exist); if instead a standard iterative line
search guarantee were used, rates would only degrade by a constant factor [17, section 9.3.1].
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As a final remark, consider the rows {a
i

}m
1

of A as a collection of m points in Rn. Due to the form
of g, BOOST is therefore searching for a halfspace, parameterized by a vector �, which contains
all of the points. Sometimes such a halfspace may not exist, and g applies a smoothly increasing
penalty to points that are farther and farther outside it.

3 Dual Problem

This section provides the convex dual to eq. (2.1). The relevance of the dual to convergence rates is
as follows. First, although the primal optimum may not be attainable, the dual optimum is always
attainable—this suggests a strategy of mapping the convergence strategy to the dual, where there
exists a clear notion of progress to the optimum. Second, this section determines the dual feasible
set—the space of dual variables or what the boosting literature typically calls unnormalized weights.
Understanding this set is key to relating weak learnability, attainability, and general instances.

Before proceeding, note that the dual formulation will make use of the Fenchel conjugate h

⇤
(�) =

sup

x2dom(h)

hx,�i � h(x), a concept taking a central place in convex analysis [18, 19]. Interest-
ingly, the Fenchel conjugates to the exponential and logistic losses are respectively the Boltzmann-
Shannon and Fermi-Dirac entropies [19, Commentary, section 3.3], and thus the dual is explicitly
performing entropy maximization (cf. lemma C.2). As a final piece of notation, denote the kernel of
a matrix B 2 Rm⇥n by Ker(B) = {� 2 Rn

: B� = 0
m

}.
Theorem 3.1. For any A 2 Rm⇥n and g 2 G

0

with f(x) =

P

i

g((x)

i

),

inf {f(A�) : � 2 Rn} = sup {�f

⇤
(��) : � 2 �

A

} , (3.2)

where �
A

:= Ker(A>
)\Rm

+

is the dual feasible set. The dual optimum  

A

is unique and attainable.
Lastly, f⇤

(�) =

P

m

i=1

g

⇤
((�)

i

).

The dual feasible set �
A

= Ker(A>
) \ Rm

+

has a strong interpretation. Suppose  2 �

A

; then  
is a nonnegative vector (since  2 Rm

+

), and, for any j, 0 = (�

>
A)

j

=

P

m

i=1

�

i

y

i

h

j

(x

i

). That
is to say, every nonzero feasible dual vector provides a (an unnormalized) distribution upon which
every weak learner is uncorrelated! Furthermore, recall that the weak learning assumption states that
under any weighting of the input, there exists a correlated weak learner; as such, weak learnability
necessitates that the dual feasible set contains only the zero vector.

There is also a geometric interpretation. Ignoring the constraint, �f

⇤ attains its maximum at some
rescaling of the uniform distribution (for details, please see lemma C.2). As such, the constrained
dual problem is aiming to write the origin as a high entropy convex combination of the points {a

i

}m
1

.

4 A Generalized Weak Learning Rate

The weak learning rate was critical to the original convergence analysis of AdaBoost, providing a
handle on the progress of the algorithm. Recall that the quantity appeared in the denominator of the
convergence rate, and a weak learning assumption critically provided that this quantity is nonzero.
This section will generalize the weak learning rate to a quantity which is always positive, without
any assumptions.

Note briefly that this manuscript will differ slightly from the norm in that weak learning will be a
purely sample-specific concept. That is, the concern here is convergence, and all that matters is the
sample S = {(x

i

, y

i

)}m
1

, as encoded in A; it doesn’t matter if there are wild points outside this
sample, because the algorithm has no access to them.

This distinction has the following implication. The usual weak learning assumption states that there
exists no uncorrelating distribution over the input space. This of course implies that any training
sample S used by the algorithm will also have this property; however, it suffices that there is no
distribution over the input sample S which uncorrelates the weak learners from the target.

Returning to task, the weak learning assumption posits the existence of a constant, the weak learning
rate �, which lower bounds the correlation of the best weak learner with the target for any distribu-
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tion. Stated in terms of the matrix A,

0 < � = inf

�2Rm
+

k�k=1

max

j2[n]

�

�

�

�

�

m

X

i=1

(�)

i

y

i

h

j

(x

i

)

�

�

�

�

�

= inf

�2Rm
+ \{0m}

kA>
�k1

k�k
1

= inf

�2Rm
+ \{0m}

kA>
�k1

k�� 0
m

k
1

.

(4.1)
The only way this quantity can be positive is if � 62 Ker(A>

) \ Rm

+

= �

A

, meaning the dual
feasible set is exactly {0

m

}. As such, one candidate adjustment is to simply replace {0
m

} with the
dual feasible set:

�

0
:= inf

�2Rm
+ \�A

kA>
�k1

inf

 2�A k��  k
1

.

Indeed, by the forthcoming proposition 4.3, �0 > 0 as desired. Due to technical considerations
which will be postponed until the various convergence rates, it is necessary to tighten this definition
with another set.
Definition 4.2. For a given matrix A 2 Rm⇥n and set S ✓ Rm, define

�(A,S) := inf

⇢

kA>
�k1

inf

 2S\Ker(A>
)

k��  k
1

: � 2 S \ Ker(A>
)

�

. ⌃

Crucially, for the choices of S pertinent here, this quantity is always positive.
Proposition 4.3. Let A 6= 0

m⇥n

and polyhedron S be given. If S \ Ker(A>
) 6= ; and S has

nonempty interior, �(A,S) 2 (0,1).

To simplify discussion, the following projection and distance notation will be used in the sequel:
Pp

C

(x) 2 Argmin

y2C

ky � xk
p

, Dp

C

(x) = kx� Pp

C

(x)k
p

,

with some arbitrary choice made when the minimizer is not unique.

5 Prelude to Convergence Rates: Three Alternatives

The pieces are in place to finally sketch how the convergence rates may be proved. This section
identifies how the weak learning rate �(A,S) can be used to convert the standard gradient guarantees
into something which can be used in the presence of no attainable minimum. To close, three basic
optimization scenarios are identified, which lead to the following three sections on convergence
rates. But first, it is a good time to define the final loss function class.
Definition 5.1. Every g 2 G satisfies the following properties. First, g 2 G

0

. Next, for any x 2 Rm

satisfying f(x)  f(A�

0

), and for any coordinate (x)

i

, there exist constants ⌘ > 0 and � > 0 such
that g00((x)

i

)  ⌘g((x)

i

) and g((x)

i

)  ��g0((x)
i

). ⌃

The exponential loss is in this class with ⌘ = � = 1 since exp(·) is a fixed point with respect to
the differentiation operator. Furthermore, as is verified in remark F.1 of the full version, the logistic
loss is also in this class, with ⌘ = 2

m

/(m ln(2)) and �  1 + 2

m. Intuitively, ⌘ and � encode
how similar some g 2 G is to the exponential loss, and thus these parameters can degrade radically.
However, outside the weak learnability case, the other terms in the bounds here will also incur a
penalty of the form e

m for the exponential loss, and there is some evidence that this is unavoidable
(see the lower bounds in Mukherjee et al. [10] or the upper bounds in Rätsch et al. [9]).

Next, note how the standard guarantee for coordinate descent methods can lead to guarantees on the
progress of the algorithm in terms of dual distances, thanks to �(A,S).
Proposition 5.2. For any t, A 6= 0m⇥n, S ◆ {�rf(A�

t

)} with �(A,S) > 0, and g 2 G,

f(A�

t+1

)� ¯

f

A

 f(A�

t

)� ¯

f

A

�
�(A,S)

2D1

S\Ker(A>
)

(�rf(A�

t

))

2

2⌘f(A�

t

)

.

Proof. The stopping condition grants �rf(A�

t

) 62 Ker(A>
). Thus, by definition of �(A,S),

�(A,S) = inf

�2S\Ker(A>
)

kA>
�k1

D1

S\Ker(A>
)

(�)

 kA>rf(A�

t

)k1
D1

S\Ker(A>
)

(�rf(A�

t

))

.
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(a) Weak learnability. (b) Attainability. (c) General case.

Figure 2: Viewing the rows {a
i

}m
1

of A as points in Rn, boosting seeks a homogeneous halfspace,
parameterized by a normal � 2 Rn, which contains all m points. The dual, on the other hand, aims
to express the origin as a high entropy convex combination of the rows. The convergence rate and
dynamics of this process are controlled by A, which dictates one of the three above scenarios.

Combined with a standard guarantee of coordinate descent progress (cf. lemma F.2),

f(A�

t

)� f(A�

t+1

) � kA>rf(A�

t

)k21
2⌘f(A�

t

)

�
�(A,S)

2D1

S\Ker(A>
)

(�rf(A�

t

))

2

2⌘f(A�

t

)

.

Subtracting ¯

f

A

from both sides and rearranging yields the statement.

Recall the interpretation of boosting closing section 2: boosting seeks a halfspace, parameterized by
� 2 Rn, which contains the points {a

i

}m
1

. Progress onward from proposition 5.2 will be divided
into three cases, each distinguished by the kind of halfspace which boosting can reach.

These cases appear in fig. 2. The first case is weak learnability: positive margins can be attained
on each example, meaning a halfspace exists which strictly contains all points. Boosting races to
push all these margins unboundedly large, and has a convergence rate O(ln(1/✏)). Next is the case
that no halfspace contains the points within its interior: either any such halfspace has the points on
its boundary, or no such halfspace exists at all (the degenerate choice � = 0

n

). This is the case of
attainability: boosting races towards finite margins at the rate O(ln(1/✏)).

The final situation is a mix of the two: there exists a halfspace with some points on the boundary,
some within its interior. Boosting will try to push some margins to infinity, and keep others finite.
These two desires are at odds, and the rate degrades to O(1/✏). Less metaphorically, the analysis
will proceed by decomposing this case into the previous two, applying the above analysis in parallel,
and then stitching the result back together. It is precisely while stitching up that an incompatibility
arises, and the rate degrades. This is no artifact: a lower bound will be shown for the logistic loss.

6 Convergence Rate under Weak Learnability

To start this section, the following result characterizes weak learnability, including the earlier rela-
tionship to the dual feasible set (specifically, that it is precisely the origin), and, as analyzed by many
authors, the relationship to separability [1, 9, 15].
Theorem 6.1. For any A 2 Rm⇥n and g 2 G the following conditions are equivalent:

9� 2 Rn ⇧A� 2 Rm

++

, (6.2)
inf

�2Rn
f(A�) = 0, (6.3)

 

A

= 0
m

, (6.4)
�

A

= {0
m

}. (6.5)

The equivalence means the presence of any of these properties suffices to indicate weak learnability.
The last two statements encode the usual distributional version of the weak learning assumption.
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The first encodes the fact that there exists a homogeneous halfspace containing all points within
its interior; this encodes separability, since removing the factor y

i

from the definition of a

i

will
place all negative points outside the halfspace. Lastly, the second statement encodes the fact that the
empirical risk approaches zero.
Theorem 6.6. Suppose A� > 0

m

and g 2 G; then �(A,Rm

+

) > 0, and for all t,

f(A�

t

)� ¯

f

A

 f(A�

0

)

✓

1� �(A,Rm

+

)

2

2�

2

⌘

◆

t

.

Proof. By theorem 6.1, Rm

+

\ Ker(A>
) = �

A

= {0
m

}, which combined with g  ��g0 gives

D1

�A
(�rf(A�

t

)) = inf

 2�A

k � rf(A�

t

)�  k
1

= krf(A�

t

)k
1

� f(A�

t

)/�.

Plugging this and ¯

f

A

= 0 (again by theorem 6.1) along with polyhedron Rm

+

◆ �rf(Rm

) (whereby
�(A,Rm

+

) > 0 by proposition 4.3 since  
A

2 Rm

+

) into proposition 5.2 gives

f(A�

t+1

)  f(A�

t

)� �(A,Rm

+

)

2

f(A�

t

)

2�

2

⌘

= f(A�

t

)

✓

1� �(A,Rm

+

)

2

2�

2

⌘

◆

,

and recursively applying this inequality yields the result.

Since the present setting is weak learnability, note by (4.1) that the choice of polyhedron Rm

+

grants
that �(A,Rm

+

) is exactly the original weak learning rate. When specialized for the exponential loss
(where ⌘ = � = 1), the bound becomes (1� �(A,Rm

+

)

2

/2)

t, which exactly recovers the bound of
Schapire and Singer [20], although via different analysis.

In general, solving for t in the expression ✏ = f(A�t)� ¯

fA

f(A�0)� ¯

fA

⇣

1� �(f,A)

2

2�

2
⌘

⌘

t

 exp

⇣

��(f,A)

2
t

2�

2
⌘

⌘

reveals that t  2�

2
⌘

�(A,S)

2 ln(1/✏) iterations suffice to reach error ✏. Recall that � and ⌘, in the case of
the logistic loss, have only been bounded by quantities like 2

m. While it is unclear if this analysis
of � and ⌘ was tight, note that it is plausible that the logistic loss is slower than the exponential loss
in this scenario, as it works less in initial phases to correct minor margin violations.

7 Convergence Rate under Attainability

Theorem 7.1. For any A 2 Rm⇥n and g 2 G, the following conditions are equivalent:

8� 2 Rn ⇧A� 62 Rm

+

\ {0
m

}, (7.2)
f �A has minimizers, (7.3)
 

A

2 Rm

++

, (7.4)
�

A

\ Rm

++

6= ;. (7.5)

Interestingly, as revealed in (7.4) and (7.5), attainability entails that the dual has fully interior points,
and furthermore that the dual optimum is interior. On the other hand, under weak learnability,
eq. (6.4) provided that the dual optimum has zeros at every coordinate. As will be made clear in
section 8, the primal and dual weights have the following dichotomy: either the margin ha

i

,�i goes
to infinity and ( 

A

)

i

goes to zero, or the margin stays finite and ( 

A

)

i

goes to some positive value.
Theorem 7.6. Suppose A 6= 0

m⇥n

, g 2 G, and the infimum of eq. (2.1) is attainable. Then there
exists a (compact) tightest axis-aligned retangle C containing the initial level set, and f is strongly
convex with modulus c > 0 over C. Finally, �(A,�rf(C)) > 0, and for all t,

f(A�

t

)� ¯

f

A

 (f(0
m

)� ¯

f

A

)

✓

1� c�(A,�rf(C))2
⌘f(A�

0

)

◆

t

.

In other words, t  ⌘f(A�0)

c�(A,�rf(C))2 ln(
1

✏

) iterations suffice to reach error ✏. The appearance of a
modulus of strong convexity c (i.e., a lower bound on the eigenvalues of the Hessian of f ) may seem
surprising, and sketching the proof illuminates its appearance and subsequent function.
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When the infimum is attainable, every margin ha
i

,�i converges to some finite value. In fact, they all
remain bounded: (7.2) provides that no halfspace contains all points, so if one margin becomes pos-
itive and large, another becomes negative and large, giving a terrible objective value. But objective
values never increase with coordinate descent. To finish the proof, strong convexity (i.e., quadratic
lower bounds in the primal) grants quadratic upper bounds in the dual, which can be used to bound
the dual distance in proposition 5.2, and yield the desired convergence rate. This approach fails
under weak learnability—some primal weights grow unboundedly, all dual weights shrink to zero,
and no compact set contains all margins.

8 General Convergence Rate

The final characterization encodes two principles: the rows of A may be partitioned into two matri-
ces A

0

, A

+

which respectively satisfy theorem 6.1 and theorem 7.1, and that these two subproblems
affect the optimization problem essentially independently.
Theorem 8.1. Let A

0

2 Rz⇥n, A
+

2 Rp⇥n, and g 2 G be given. Set m := z + p, and A 2 Rm⇥n

to be the matrix obtained by stacking A

0

on top of A
+

. The following conditions are equivalent:
(9� 2 Rn ⇧A

0

� 2 Rz

++

^A

+

� = 0
p

) ^ (8� 2 Rn ⇧A
+

� 62 Rp

+

\ {0
p

}), (8.2)
( inf

�2Rn
f(A�) = inf

�2Rn
f(A

+

�)) ^ ( inf

�2Rn
f(A

0

�) = 0) ^ f �A
+

has minimizers, (8.3)

 

A

=

h

 A0
 A+

i

with  
A0 = 0

z

^  
A+ 2 Rp

++

, (8.4)

(�

A0 = {0
z

}) ^ (�

A+ \ Rp

++

6= ;) ^ (�

A

= �

A0 ⇥ �

A+). (8.5)

To see that any matrix A falls into one of the three scenarios here, fix a loss function g, and recall
from theorem 3.1 that  

A

is unique. In particular, the set of zero entries in  
A

exactly specifies
which of the three scenarios hold, the current scenario allowing for simultaneous positive and zero
entries. Although this reasoning made use of  

A

, note that it is A which dictates the behavior: in
fact, as is shown in remark I.1 of the full version, the decomposition is unique.

Returning to theorem 8.1, the geometry of fig. 2c is provided by (8.2) and (8.5). The analysis
will start from (8.3), which allows the primal problem to be split into two pieces, which are then
individually handled precisely as in the preceding sections. To finish, (8.5) will allow these pieces
to be stitched together.
Theorem 8.6. Suppose A 6= 0

m⇥n

, g 2 G,  
A

2 Rm

+

\ Rm

++

\ {0
m

}, and the notation from
theorem 8.1. Set w := sup

t

krf(A

+

�

t

) + P1

�A+
(�rf(A

+

�

t

))k
1

. Then w < 1, and there exists
a tightest cube C

+

so that C
+

◆ {x 2 Rp

: f(x)  f(A�

0

)}, and let c > 0 be the modulus of
strong convexity of f over C

+

. Then �(A,Rz

+

⇥ �rf(C
+

)) > 0, and for all t, f(A�
t

) � ¯

f

A


2f(A�

0

)/

�

(t+ 1)min

�

1, �(A,Rz

+

⇥�rf(C
+

))

2

/((� + w/(2c))

2

⌘)

 �

.

(In the case of the logistic loss, w  sup

x2Rm krf(x)k
1

 m.)

As discussed previously, the bounds deteriorate to O(1/✏) because the finite and infinite margins
sought by the two pieces A

0

, A

+

are in conflict. For a beautifully simple, concrete case of this,
consider the following matrix, due to Schapire [11]:

S :=

"�1 +1

+1 �1

+1 +1

#

.

The optimal solution here is to push both coordinates of � unboundedly positive, with margins
approaching (0, 0,1). But pushing any coordinate �

i

too quickly will increase the objective value,
rather than decreasing it. In fact, this instance will provide a lower bound, and the mechanism of the
proof shows that the primal weights grow extremely slowly, as O(ln(t)).
Theorem 8.7. Using the logistic loss and exact line search, for any t � 1, f(S�

t

)� ¯

f

S

� 1/(8t).
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