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Abstract

We present explicit classes of probability distributiohattcan be learned by Re-
stricted Boltzmann Machines (RBMs) depending on the nurobenits that they
contain, and which are representative for the expressimeepof the model. We
use this to show that the maximal Kullback-Leibler diverceeto the RBM model
with n visible andm hidden units is bounded from above foy— 1) —log(m+1).

In this way we can specify the number of hidden units thataniaes a sufficiently
rich model containing different classes of distributionsl aespecting a given er-
ror tolerance.

1 Introduction

A Restricted Boltzmann Machine (RBM) [24, 10] is a learningtem consisting of two layers
of binary stochastic units, a hidden layer and a visible lay@th a complete bipartite interaction
graph. RBMs are used as generative models to simulate imgitibdtions of binary data. They can
be trained in an unsupervised way and more efficiently thaeigd Boltzmann Machines, which are
not restricted to have a bipartite interaction graph [11Féirthermore, they can be used as building
blocks to progressively train and study deep learning systd.3, 4, 16, 21]. Hence, RBMs have
received increasing attention in the past years.

An RBM with n visible andm hidden units generates a stationary distribution on thestaf the
visible units which has the following form:

1
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whereh € {0,1}™ denotes a state vector of the hidden units,c R™*",C € R™ andB €
R" constitute the model parameters, afig . . is a corresponding normalization constant. In
the sequel we denote BBM,, ,,, the set of all probability distributions ofD, 1}™ which can be
approximated arbitrarily well by a visible distributionrgrated by the RBM withn hidden andh
visible units for an appropriate choice of the parameteaues

Pwe s (U) =

As shown in [21] (generalizing results from [18})BM,, ,,, contains any probability distribution if
m > 2"~1 — 1. On the other hand, IRBM,, ., equals the seP of all probability distributions on
{0,1}™, then it must have at leadtm(P) = 2™ — 1 parameters, and thus at led2t /(n + 1)] — 1
hidden units [21]. In fact, in [8] it was shown that for mostaoinations ofim andn the dimension
of RBM,, ., (as a manifold, possibly with singularities) equals eitther number of parameters or
2" — 1, whatever is smaller. However, the geometnRd#M,, ,, is intricate, and even an RBM of
dimensior2™ — 1 is not guaranteed to contain all visible distributions, [268 for counterexamples.

In summary, an RBM that can approximate any distributiontetly well must have a very large
number of parameters and hidden units. In practice, trgisuth a large system is not desirable or
even possible. However, there are at least two reasons whwiity cases this is not necessary:



e An appropriate approximation of distributions is suffidiéar most purposes.

e The interesting distributions the system shall simulatermpto a small class of distribu-
tions. Therefore, the model does not need to approximatisatibutions.

For example, the set of optimal policies in reinforcemeatiéng [25], the set of dynamics kernels
that maximize predictive information in robotics [26] oetmformation flow in neural networks [3]
are contained in very low dimensional manifolds; see [2]. t@& other hand, usually it is very
hard to mathematically describe a set containing the optsolaitions to general problems, or a
set of interesting probability distributions (for exampie class of distributions generating natural
images). Furthermore, although RBMs are parametric madwlsor any choice of the parameters
we have a resulting probability distribution, in genera difficult to explicitly specify this resulting
probability distribution (or even to estimate it [18]). Dteethese difficulties the number of hidden
units m is often chosen on the basis of experience [12]yn0is considered as a hyperparameter
which is optimized by extensive search, depending on thallitions to be simulated by the RBM.

In this paper we give an explicit description of classes siributions that are containedRBM,, .,
and which are representative for the expressive power sfrttidel. Using this description, we
estimate the maximal Kullback-Leibler divergence betwaemrbitrary probability distribution and
the best approximation withiRBM,, .,

This paper is organized as follows: Section 2 discussesiffieeanht kinds of errors that appear when
an RBM learns. Section 3 introduces the statistical modal$iexd in this paper. Section 4 studies
submodels oRBM,, ,,,. An upper bound of the approximation error for RBMs is foun&ection 5.

2 Approximation Error

When training an RBM to represent a distributipnthere are mainly three contributions to the
discrepancy betweemand the state of the RBM after training:

1. Usually the underlying distributiop is unknown and only a set of samples generated by
p is observed. These samples can be represented as an ehaistichution pP22 which
usually is not identical withp.

2. The setRBM,, ,,, does not contain every probability distribution, unless ttumber of
hidden units is very large, as we outlined in the introduttidherefore, we have an ap-
proximation error given by the distancedf*®@to the best approximatiopR32, contained
in the RBM model.

3. The learning process may yield a solutjgd§ia, in RBM which is not the optimumpb32 .
This occurs, for example, if the learning algorithm getpped in a local optimum, or if
it optimizes an objective different from Maximum Likelihdpe.g. contrastive divergence
(CD), see [6].

In this paper we study the expressive power of the RBM moddlthe Kullback-Leibler diver-
gence from an arbitrary distribution to its best repreggoravithin the RBM model. Estimating the
approximation error is difficult, because the geometry efRIBM model is not sufficiently under-
stood. Our strategy is to find subséet$ C RBM,, ,,, that are easy to describe. Then the maximal
error when approximating probability distributions withRBM is upper bounded by the maximal
error when approximating witi 1.

Consider a finite se¥’. A real valued function o can be seen as a real vector wjifti| entries.
The setP = P(X) of all probability distributions on¥ is a (]X| — 1)-dimensional simplex in
RI¥I. There are several notions of distance between probablityibutions, and in turn for the
error in the representation (approximation) of a probshbilistribution. One possibility is to use the
induced distance of the Euclidian spae*!. From the point of view of information theory, a more
meaningful distance notion for probability distributiasghe Kullback-Leibler divergence:

= z)lo p(z)
D(pllq) == Zx:p( Jlog o -

In this paper we use the bagidogarithm. The Kullback-Leibler (KL) divergence is nongative
and vanishes if and only #f = ¢. If the support of; does not contain the support pfit is defined
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Figure 1: This figure gives an intuition on what the size of amremeans for probability distri-
butions on images with6 x 16 pixels. Every column shows four samples drawn from the best
approximationg of the distributionp = %(6(1,“1) + 0(0...0y) Within a partition model with 2 ran-
domly chosen cubical blocks, containif@. .. 0) and(1... 1), of cardinality from1 (first column)

to ‘Qﬁ (last column). As a measure of error ranging frorto 1 we takeD(qu)/D(le%l). The

last column shows samples from the uniform distributionicivhis, in particular, the best approxi-
mation ofp within RBM,, o. Note that an RBM with hidden unit can approximagewith arbitrary
accuracy, see Theorem 4.1.

asoco. The summands witp(z) = 0 are set td). The KL-divergence is not symmetric, but it has
nice information theoretic properties [14, 7].

If £ C P is a statistical model and jf € P, then any probability distributiops € £ satisfying
D(pllpe) = D(p||€) := min{D(pllq) : ¢ € £}

is called a(generalized) reversed information projectjoor rI-projection. Here£ denotes the
closure off. If pis an empirical distribution, then one can show thatahyrojection is a maximum
likelihood estimate.

In order to assess an RBM or some other motitlve use the maximal approximation error with

respect to the KL-divergence when approximating arbitpappability distributions using\1:
D= max {D(p|M) :p € P} .

For example, the maximal KL-divergence to the uniform distiion % is attained by any Dirac

delta distributions,,, x € X, and amounts to:

Dy = D(6: rzy) = log |X] - @

3 Model Classes

3.1 Exponential families and product measures

In this work we only need a restricted class of exponentiailias, namely exponential families on
a finite set with uniform reference measure. See [5] for marexgonential families. The boundary
of discrete exponential families is discussed in [23], vahises a similar notation.

Let A € R%*|¥l pe a matrix. The columnd,, of A will be indexed byz € X'. The rows of4 can
be interpreted as functions @. Theexponential familyf 4 with sufficient statisticsi consists of
all probability distributions of the form,, A € R?, where

N exp()\TAx)
S SRETP Y )

Note that any probability distribution ifi4 has full support. Furthermoré, is in general not a
closed set. The closu@, (with respect to the usual topology @) will be important in the
following. Exponential families behave nicely with respée »I-projection: Anyp € P has a
uniquerI-projectionpge to £ 4.

forallz € X.



The most important exponential families in this work are ithdependence models. Thedepen-
dence modedf n binary random variables consists of all probability dsitions on{0,1}™ that
factorize:

& = {p eEPX) :px1,...,2p) = Hpi(xi) for somep; € P({0, 1})} :

It is the closure of am-dimensional exponential familg,. This model corresponds to the RBM
model with no hidden units. An element of the independenceahis called groduct distribution

Lemma 3.1 (Corollary 4.1 of [1]) Let &, be the independence model fi 1}". If n > 0, then
D¢, = (n — 1). The global maximizers are the distributions of the faftd, + 6,), wherez,y €
{0,1}" satisfyz; + y; = 1 for all 7.

This result should be compared with (1). Although the indelemce model is much larger than the
set{l%l}, the maximal divergence decreases onlylbyAs shown in [22], if€ is any exponential

family of dimensionk, thenD¢ > log(|X'|/(k + 1)). Thus, this notion of distance is rather strong.
The exponential families satisfyings = log(|X'|/(k+1)) are partition models; they will be defined
in the following section.

3.2 Partition models and mixtures of products with disjoint supports

Themixtureof m modelsM,, ..., M,, C P is the set of all convex combinations
p= Zaipi , Wherep, € M;,a; > O,Zai =1. (2)
7 %
In general, mixture models are complicated objects. EvathimhodelsM; = --- = M,,, are equal,

it is difficult to describe the mixture [17, 19]. The situatisimplifies considerably if the models
have disjoint supports. Note that given any partitfos- {X3,...,X,,} of X, anyp € P can be
written asp(z) = pti(z)p(X;) for all z € &; andi € {1,...,m}, wherep?i is a probability
measure iP(Xx;) for all 4.

Lemma 3.2 Let{ = {X, ..., X, } be a partition of¥ and letM,, ..., M,, be statistical models
such thatM; C P(X;). Consider any € P and corresponding®: such thap(z) = p*i (z)p(&;)
for x € X;. Letp; be anrI-projection ofp™: to M;. Then the-I-projectionp ., of P to the mixture
Mof My, ..., M,, satisfies

pm(w) = p(Xi)pi(w), whenever: € X; .
Therefore,D(p||M) = >, p(X;) D(p™*i

M,), and soDxq = max;—1, . m D, -

Proof Letp € M be as in (2). TheD(q|lp) = >i~, ¢(X;)D(¢”||p;) for all ¢ € P. For fixedg
this sum is minimal if and only if each term is minimal. |

If each.M; is an exponential family, then the mixture is also an exptiakefamily (this is not true if
the supports of the modelst; are not disjoint). In the rest of this section we discuss twemeples.

If each M; equals the set containing just the uniform distributionn then M is called the
partition modelof £, denoted withP.. The partition modefP; is given by all distributions with
constant value on each blogk, i.e. those that satisfy(z) = p(y) for all z,y € A;. This is the
closure of the exponential family with sufficient statistic

Ay = (xa(2), x2(@), .- xa(2) "

wherey; := x,, islonz € &;, and( everywhere else. See [22] for interesting properties of
partition models.

The partition models include the set of finite exchangeald&idutions (see e.g. [9]), where the
blocks of the partition are the sets of binary vectors whiahehthe same number of entries equal to
one. The probability of a vectardepends only on the number of ones, but not on their position.

Corollary 3.3 Let{ = {X,..., &), } be a partition ofX'. ThenDp, = max;—1,... ., log|X;|.

4
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Figure 2: Models ir?({0, 1}?). Left: The blue line represents the partition mofelwith partition
¢ ={(11),(01)}u{(00), (10)}. The dashed lines represent the set of KL-divergence magisifor
P¢. Right: The mixture of the product distributio&is and&, with disjoint supports of(11), (01)}
and{(00), (10)} corresponding to the same partitiequals the whole simpleR.

Now assume that’ = {0, 1}" is the set of binary vectors of length As a subset oR" it consists
of the vertices (extreme points) of thedimensional hypercube. The vertices of-@imensional
face of then-cube are given by fixing the valuesoin n — k positions:

{r €{0,1}" : 2; = 2;,Vi e I, forsomel C {1,...,n},|I| =n—k}

We call such a subs@t C X cubicalor afaceof then-cube. A cubical subset of cardinalif can

be naturally identified witi{0, 1}*. This identification allows to define independence modets an
product measures dR()) C P(X). Note that product measures dhare also product measures
on X, and the independence model Bris a subset of the independence modehan

Corollary 3.4 Let¢ = {Xy,..., X} be apartition of¥ = {0, 1}" into cubical sets. For anylet
&; be the independence model &h and letM be the mixture ofy, ..., &,,. Then

D= max_log(|X]) ~ 1.

See Figure 1 for an intuition on the approximation error atian models, and see Figure 2 for
small examples of a partition model and of a mixture of praslwgth disjoint support.

4 Classes of distributions that RBMs can learn

Consider a sef = {X;}7*, of m disjoint cubical sets; in X'. Such & is a partition of some subset
u¢ = U X; of X into m disjoint cubical sets. We writ&',,, for the collection of all such partitions.
We have the following result:

Theorem 4.1 RBM,, ,,, contains the following distributions:

e Any mixture of one arbitrary product distributiom — k& product distributions with support
on arbitrary but disjoint faces of the-cube, andk arbitrary distributions with support on
any edges of the-cube, for anyd < k < m. In particular:

e Any mixture ofn + 1 product distributions with disjoint cubical supports. lartssequence,
RBM,, ,,, contains the partition model of any partition @, ;.

Restricting the cubical sets of the second item to edgegaies of vectors differing in one entry, we
see that the above theorem implies the following previokstywn result, which was shown in [21].

Corollary 4.2 RBM,, ,,, contains the following distributions:

e Any distribution with a support set that can be coveredrby- 1 pairs of vectors differing
in one entry. In particular, this includes:

e Any distribution in? with a support of cardinality smaller than or equal to + 1.



Corollary 4.2 implies that an RBM with > 27~! — 1 hidden units is a universal approximator of
distributions on{0, 1}", i.e. can approximate any distribution to an arbitrarilpda@ccuracy.

Assumem + 1 = 2* and let¢ be a partition oft into m + 1 disjoint cubical sets of equal size. Let
us denote byP ; the set of all distributions which can be written as a mixtofen + 1 product
distributions with support on the elementséofThe dimension of; ; is given by

n

dim P¢ 1 = (m+1)log ( )+m+1+n =(m+1)-n+(m+1)+n—(m+1)log(m+1).

m+1

The dimension of the set of visible distribution represdrity an RBM is at most equal to the
number of paramters, see [21], thisnis- n + m + n. This means that the class given above has
roughly the same dimension of the set of distributions thatlwe represented. In fact,

dimPe; —dimRBM,,,_1 =n+1—(m+1)log(m+1).
This means that the class of distributidhs; which by Theorem 4.1 can be represente®iBM,, .,
is not contained iRBM,, ,,, -1 when(m + 1)m*! < 2ntl,

Proof of Theorem 4.1 The proof draws on ideas from [15] and [21]. An RBM with no heéddunits
can represent precisely the independence model, i.e.aallupt distributions, and in particular any
uniform distribution on a face of the-cube.

Consider an RBM withn — 1 hidden units. For any choice of the parametéfsc R™ 1" B ¢
R"™,C € R™! we can write the resulting distribution on the visible urits

Zh Z(,Uﬂ h)
Do 2V

wherez(v, h) = exp(hWwv + Bv + Ch). Appending one additional hidden unit, with connection
weightsw to the visible units and bias produces a new distribution which can be written as foltows

p(v) = 3)

(1 +exp(wv +¢)) >, 2(v, h)
> ur (1 exp(wv’ 4 ¢))z(v', W) -

pw,c(v) =
Consider now any sdtC [n] := {1,...,n} and an arbitrary visible vectar € X'. The values of.
in the positiongn] \ I define afacé” := {v € X : v; = u; ,Vi ¢ I} of then-cube of dimensiofi|.

Let1 := (1,...,1) € R and denote by, the vector with entries;/* = u;,Vi ¢ I and
ul® = 0,vi € I. Let AT € R™with Al = 0,Vi ¢ I and let\.,a € R. Define the connection

weightsw andc as follows:
1
w = a(u’® — 5]11’0) + A
1
c=—a(u"® — 17 Tu4 A, .

For this choice and — oo equation (4) yields:

p(v)
1+, ep exp (A0 +Ac)p(v')’ v g E (4)

pw,c(v) = (1+exp(A-v+Xe))p(v) '
1+>° /e exp (Mo’ +Xe)p(v')? Yver

If the initial p from equation (3) is such that its restriction fois a product distribution, then

p(v) = Kexp(n! -v) ,Vv € F, whereK is a constant ang’ is a vector withy! =0 ,Vi ¢ I. We

can choose\! = 37 — 5!, andexp(\.) = O‘m' For this choice, equation (4) yields:
vEF

Pw,c = (05_ 1)]9"‘04157

wherep is a product distribution with support il and arbitrary natural parametes$, anda is

an arbitrary mixture weight ifi0, 1]. Finally, the product distributions on edges of the cube are
arbitrary, see [19] or [21] for details, and hence the retm of anyp to any edge is a product
distribution. O
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Figure 3: This figure demonstrates our resultsifor 3 andn = 4 visible units. The red curves
represent the bounds from Theorem 5.1. We fixt1V as target distribution, the uniform distri-
bution on binary lengtm vectors with an even number of ones. The distribufd® is not the
KL-maximizer fromRBM,, ,,,, but it is in general difficult to represent. Qualitativedgmples from
P2 Jook like uniformly distributed, and representiptf® requires the maximal number of prod-
uct mixture components [20, 19]. For both valueswodnd eachn = 0,...,2"/2 we initialized
500 resp.1000 RBMs at parameter values chosen uniformly at random in thgeg-10, 10]. The
inset of the left figure shows the resulting KL-diverger2ePd™||piand |y (for n = 4 the resulting
KL-divergence was larger). Randomly chosen distributisn®BM,, ,,, are likely to be very far
from the target distribution. We trained these randomlgiatized RBMs using CD fof00 training
epochs, learning rateand a list of even parity vectors as training data. The redtdt training is
given by the blue circles. After training the RBMs the resslbften not better than the uniform
distribution, for WhiChD(ppa”tyHW) = 1. For eachm, the best set of parameters after train-
ing was used to initialize a further CD training with a smalkarning rate (green squares, mostly
covered) followed by a short maximum likelihood gradierdeatt (red filled squares).

5 Maximal Approximation Errors of RBMs

Letm < 2"~! — 1. By Theorem 4.1 all partition models for partitions{®¥, 1} into m + 1 cubical
sets are contained IRBM,, ,,,. Applying Corollary 3.3 to such a partition where the cadiity of

all blocks is at mosg"~les(m+D] yields the boundrgwm,, ,, < n — |log(m + 1)]. Similarly,
using mixtures of product distributions, Theorem 4.1 andoCary 3.4 imply the smaller bound
DgpM,,,, < n —1— [log(m 4 1)]. In this section we derive an improved bound which strictly
decreases, as increases, unti) is reached.

Theorem 5.1 Letm < 2"~ — 1. Then the maximal Kullback-Leibler divergence from anyrdis
bution on{0,1}" to RBM,, ,,, is upper bounded by

mea%(D(pH RBM,, ,) < (n—1) —log(m+1).

p

Conversely, given an error tolerande < ¢ < 1, the choicem > 2(»~D(-¢) _ 1 ensures a
sufficiently rich RBM model that satisfi€ggn,, ,, < €DrBMm,, -

Form = 2"~! — 1 the error vanishes, corresponding to the fact that an RBM thiit many hidden
units is a universal approximator. In Figure 3 we use compaxeeriments to illustrate Theorem 5.1.
The proof makes use of the following lemma:

Lemmab5.2 Letny,...,n, > 0such tha™ + ... + 2"~ = 27 |Let M be the union of all mix-
tures of independent models corresponding to all cubicdiifpans of X into blocks of cardinalities
2m .., 2mm ThenDa < 34 o s

Proof of Lemma 5.2 The proof is by induction on. If n = 1, thenm = 1 or m = 2, and in both
cases it is easy to see that the inequality holds (both salgish). Ifn > 1, then order they; such
thatn, > ny > --- > n,, > 0. Without loss of generality assume > 1.

Letp € P(X), and let) be a cubical subset 6 of cardinality2”~! such thaip()) < 1. Since
the numberg™ 4 ... 4+ 2" fori = 1,...,m contain all multiples o™ up to2™ and2™ /2™ is
even, there existg such thaR™ + .. 4+ 2" = 271 = 2mk+1 4 ... 4 2"m,



Let M’ be the union of all mixtures of independence models cormedipg to all cubical partitions
& ={X,..., X} of X intom blocks of cardinalitiesi,, . ..,n,, such thatt; U--- U X, = ).

In the following, the symboE; shall denote summation over all indicesuch that,; > 1. By
induction

k m
Ion; — 1 1o —1
D(pl|M) < DEIM) <pW) Y i oY) D i )
i=1 j=k+1
There existjy = k +1 < jo < -+ < jr < jrr1 = m+ 1 such thaR™ = 2™ 4 ... 4 2Mi1—1
for all « < k. Note that

Jit1

/nj—l ni—l " ng ni—l
D ity S et (e 2t = S
J=Ji

and therefore
1 il 1
1 i — 1 nj —
(3 —P(y))m + (53 —p(X\ D)) Z onTn; >0
J=2i

Adding these terms far= 1, .. ., k to the right hand side of equation (5) yields

k m
1 'y —1 1 rong — 1
D(pHM)§§§ T T3 2 i
i=1 J=k+1

from which the assertions follow. O

Proof of Theorem 5.1 From Theorem 4.1 we know th&BM,, ,,, contains the uniom\ of all
mixtures of independent models corresponding to all pamtt with up tom + 1 cubical blocks.
Hence, DreM < Dp. Letk = n — |log(m + 1)] andl = 2m + 2 — 2"~%+1 > 0; then

n,m

1261 (m+1-10)2F =27, Lemma5.2with; = ---=ny=k—1landn;;1 = - =Ny = k
implies
(k=2) (m+1-0k-1) m+1
Dy = gn—k+1 T on—k =k- on—Fk
The assertion follows frortog(m + 1) < (n — k) + 24 — 1, wherelog(1 + z) < z forall z > 0

was used. O

6 Conclusion

We studied the expressive power of the Restricted Boltznhdachine model with visible andm
hidden units. We presented a hierarchy of explicit clas§@sabability distributions that an RBM
can represent. These classes include large collectionsxafnas ofm + 1 product distributions. In
particular any mixture of an arbitrary product distributiandm further product distributions with
disjoint supports. The geometry of these submodels is e@sgtudy than that of the RBM models,
while these subsets still capture many of the distributiomstained in the RBM models. Using
these results we derived bounds for the approximation®obRBMs. We showed that it is always
possible to reduce the error to at mést— 1) — log(m -+ 1). That is, given any target distribution,
there is a distribution within the RBM model for which the Kadck-Leibler divergence between
both is not larger than that number. Our results give a thieatebasis for selecting the size of an
RBM which accounts for a desired error tolerance.

Computer experiments showed that the bound captures tiee ardhagnitude of the true approxi-
mation error, at least for small examples. However, legrmiray not always find the best approxi-
mation, resulting in an error that may well exceed our bound.
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