
Expressive Power and Approximation Errors of
Restricted Boltzmann Machines
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Abstract

We present explicit classes of probability distributions that can be learned by Re-
stricted Boltzmann Machines (RBMs) depending on the numberof units that they
contain, and which are representative for the expressive power of the model. We
use this to show that the maximal Kullback-Leibler divergence to the RBM model
with n visible andm hidden units is bounded from above by(n−1)− log(m+1).
In this way we can specify the number of hidden units that guarantees a sufficiently
rich model containing different classes of distributions and respecting a given er-
ror tolerance.

1 Introduction

A Restricted Boltzmann Machine (RBM) [24, 10] is a learning system consisting of two layers
of binary stochastic units, a hidden layer and a visible layer, with a complete bipartite interaction
graph. RBMs are used as generative models to simulate input distributions of binary data. They can
be trained in an unsupervised way and more efficiently than general Boltzmann Machines, which are
not restricted to have a bipartite interaction graph [11, 6]. Furthermore, they can be used as building
blocks to progressively train and study deep learning systems [13, 4, 16, 21]. Hence, RBMs have
received increasing attention in the past years.

An RBM with n visible andm hidden units generates a stationary distribution on the states of the
visible units which has the following form:

p
W,C,B

(v) =
1

Z
W,C,B

∑

h∈{0,1}m

exp
(

h⊤Wv + C⊤h + B⊤v
)

∀v ∈ {0, 1}n ,

whereh ∈ {0, 1}m denotes a state vector of the hidden units,W ∈ R
m×n, C ∈ R

m andB ∈
R

n constitute the model parameters, andZ
W,C,B

is a corresponding normalization constant. In
the sequel we denote byRBMn,m the set of all probability distributions on{0, 1}n which can be
approximated arbitrarily well by a visible distribution generated by the RBM withm hidden andn
visible units for an appropriate choice of the parameter values.

As shown in [21] (generalizing results from [15])RBMn,m contains any probability distribution if
m ≥ 2n−1 − 1. On the other hand, ifRBMn,m equals the setP of all probability distributions on
{0, 1}n, then it must have at leastdim(P) = 2n − 1 parameters, and thus at least⌈2n/(n + 1)⌉ − 1
hidden units [21]. In fact, in [8] it was shown that for most combinations ofm andn the dimension
of RBMn,m (as a manifold, possibly with singularities) equals eitherthe number of parameters or
2n − 1, whatever is smaller. However, the geometry ofRBMn,m is intricate, and even an RBM of
dimension2n−1 is not guaranteed to contain all visible distributions, see[20] for counterexamples.

In summary, an RBM that can approximate any distribution arbitrarily well must have a very large
number of parameters and hidden units. In practice, training such a large system is not desirable or
even possible. However, there are at least two reasons why inmany cases this is not necessary:
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• An appropriate approximation of distributions is sufficient for most purposes.

• The interesting distributions the system shall simulate belong to a small class of distribu-
tions. Therefore, the model does not need to approximate alldistributions.

For example, the set of optimal policies in reinforcement learning [25], the set of dynamics kernels
that maximize predictive information in robotics [26] or the information flow in neural networks [3]
are contained in very low dimensional manifolds; see [2]. Onthe other hand, usually it is very
hard to mathematically describe a set containing the optimal solutions to general problems, or a
set of interesting probability distributions (for examplethe class of distributions generating natural
images). Furthermore, although RBMs are parametric modelsand for any choice of the parameters
we have a resulting probability distribution, in general itis difficult to explicitly specify this resulting
probability distribution (or even to estimate it [18]). Dueto these difficulties the number of hidden
units m is often chosen on the basis of experience [12], orm is considered as a hyperparameter
which is optimized by extensive search, depending on the distributions to be simulated by the RBM.

In this paper we give an explicit description of classes of distributions that are contained inRBMn,m,
and which are representative for the expressive power of this model. Using this description, we
estimate the maximal Kullback-Leibler divergence betweenan arbitrary probability distribution and
the best approximation withinRBMn,m.

This paper is organized as follows: Section 2 discusses the different kinds of errors that appear when
an RBM learns. Section 3 introduces the statistical models studied in this paper. Section 4 studies
submodels ofRBMn,m. An upper bound of the approximation error for RBMs is found in Section 5.

2 Approximation Error

When training an RBM to represent a distributionp, there are mainly three contributions to the
discrepancy betweenp and the state of the RBM after training:

1. Usually the underlying distributionp is unknown and only a set of samples generated by
p is observed. These samples can be represented as an empirical distributionpData, which
usually is not identical withp.

2. The setRBMn,m does not contain every probability distribution, unless the number of
hidden units is very large, as we outlined in the introduction. Therefore, we have an ap-
proximation error given by the distance ofpData to the best approximationpData

RBM contained
in the RBM model.

3. The learning process may yield a solutionp̃Data
RBM in RBM which is not the optimumpData

RBM.
This occurs, for example, if the learning algorithm gets trapped in a local optimum, or if
it optimizes an objective different from Maximum Likelihood, e.g. contrastive divergence
(CD), see [6].

In this paper we study the expressive power of the RBM model and the Kullback-Leibler diver-
gence from an arbitrary distribution to its best representation within the RBM model. Estimating the
approximation error is difficult, because the geometry of the RBM model is not sufficiently under-
stood. Our strategy is to find subsetsM ⊆ RBMn,m that are easy to describe. Then the maximal
error when approximating probability distributions with an RBM is upper bounded by the maximal
error when approximating withM.

Consider a finite setX . A real valued function onX can be seen as a real vector with|X | entries.
The setP = P(X ) of all probability distributions onX is a (|X | − 1)-dimensional simplex in
R

|X |. There are several notions of distance between probabilitydistributions, and in turn for the
error in the representation (approximation) of a probability distribution. One possibility is to use the
induced distance of the Euclidian spaceR

|X |. From the point of view of information theory, a more
meaningful distance notion for probability distributionsis the Kullback-Leibler divergence:

D(p‖q) :=
∑

x

p(x) log
p(x)

q(x)
.

In this paper we use the basis2 logarithm. The Kullback-Leibler (KL) divergence is non-negative
and vanishes if and only ifp = q. If the support ofq does not contain the support ofp it is defined
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relative error

q = p q = 1

|X |

0 128
255 1

Figure 1: This figure gives an intuition on what the size of an error means for probability distri-
butions on images with16 × 16 pixels. Every column shows four samples drawn from the best
approximationq of the distributionp = 1

2 (δ(1...1) + δ(0...0)) within a partition model with 2 ran-
domly chosen cubical blocks, containing(0 . . . 0) and(1 . . . 1), of cardinality from1 (first column)
to |X |

2 (last column). As a measure of error ranging from0 to 1 we takeD(p‖q)/D
(

p‖ 1

|X |

)

. The
last column shows samples from the uniform distribution, which is, in particular, the best approxi-
mation ofp within RBMn,0. Note that an RBM with1 hidden unit can approximatep with arbitrary
accuracy, see Theorem 4.1.

as∞. The summands withp(x) = 0 are set to0. The KL-divergence is not symmetric, but it has
nice information theoretic properties [14, 7].

If E ⊆ P is a statistical model and ifp ∈ P, then any probability distributionpE ∈ E satisfying

D(p‖pE) = D(p‖E) := min{D(p‖q) : q ∈ E}

is called a(generalized) reversed information projection, or rI-projection. Here,E denotes the
closure ofE . If p is an empirical distribution, then one can show that anyrI-projection is a maximum
likelihood estimate.

In order to assess an RBM or some other modelM we use the maximal approximation error with
respect to the KL-divergence when approximating arbitraryprobability distributions usingM:

DM := max {D(p‖M) : p ∈ P} .

For example, the maximal KL-divergence to the uniform distribution 1

|X | is attained by any Dirac
delta distributionsδx, x ∈ X , and amounts to:

D{ 1

|X|}
= D(δx‖

1

|X | ) = log |X | . (1)

3 Model Classes

3.1 Exponential families and product measures

In this work we only need a restricted class of exponential families, namely exponential families on
a finite set with uniform reference measure. See [5] for more on exponential families. The boundary
of discrete exponential families is discussed in [23], which uses a similar notation.

Let A ∈ R
d×|X| be a matrix. The columnsAx of A will be indexed byx ∈ X . The rows ofA can

be interpreted as functions onR. Theexponential familyEA with sufficient statisticsA consists of
all probability distributions of the formpλ, λ ∈ R

d, where

pλ(x) =
exp(λ⊤Ax)

∑

x exp(λ⊤Ax)
, for all x ∈ X .

Note that any probability distribution inEA has full support. Furthermore,EA is in general not a
closed set. The closureEA (with respect to the usual topology onRX ) will be important in the
following. Exponential families behave nicely with respect to rI-projection: Anyp ∈ P has a
uniquerI-projectionpE to EA.
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The most important exponential families in this work are theindependence models. Theindepen-
dence modelof n binary random variables consists of all probability distributions on{0, 1}n that
factorize:

En =
{

p ∈ P(X ) : p(x1, . . . , xn) =

n
∏

i=1

pi(xi) for somepi ∈ P({0, 1})
}

.

It is the closure of ann-dimensional exponential familyEn. This model corresponds to the RBM
model with no hidden units. An element of the independence model is called aproduct distribution.

Lemma 3.1 (Corollary 4.1 of [1]) Let En be the independence model on{0, 1}n. If n > 0, then
DEn

= (n − 1). The global maximizers are the distributions of the form1
2 (δx + δy), wherex, y ∈

{0, 1}n satisfyxi + yi = 1 for all i.

This result should be compared with (1). Although the independence model is much larger than the
set{ 1

|X |}, the maximal divergence decreases only by1. As shown in [22], ifE is any exponential
family of dimensionk, thenDE ≥ log(|X |/(k + 1)). Thus, this notion of distance is rather strong.
The exponential families satisfyingDE = log(|X |/(k+1)) are partition models; they will be defined
in the following section.

3.2 Partition models and mixtures of products with disjoint supports

Themixtureof m modelsM1, . . . ,Mm ⊆ P is the set of all convex combinations

p =
∑

i

αipi , wherepi ∈ Mi, αi ≥ 0,
∑

i

αi = 1 . (2)

In general, mixture models are complicated objects. Even ifall modelsM1 = · · · = Mm are equal,
it is difficult to describe the mixture [17, 19]. The situation simplifies considerably if the models
have disjoint supports. Note that given any partitionξ = {X1, . . . ,Xm} of X , anyp ∈ P can be
written asp(x) = pXi(x)p(Xi) for all x ∈ Xi and i ∈ {1, . . . ,m}, wherepXi is a probability
measure inP(Xi) for all i.

Lemma 3.2 Let ξ = {X1, . . . ,Xm} be a partition ofX and letM1, . . . ,Mm be statistical models
such thatMi ⊆ P(Xi). Consider anyp ∈ P and correspondingpXi such thatp(x) = pXi(x)p(Xi)
for x ∈ Xi. Letpi be anrI-projection ofpXi toMi. Then therI-projectionpM of P to the mixture
M of M1, . . . ,Mm satisfies

pM(x) = p(Xi)pi(x), wheneverx ∈ Xi .

Therefore,D(p‖M) =
∑

i p(Xi)D(pXi‖Mi), and soDM = maxi=1,...,m DMi
.

Proof Let p ∈ M be as in (2). ThenD(q‖p) =
∑m

i=1 q(Xi)D(qXi‖pi) for all q ∈ P. For fixedq
this sum is minimal if and only if each term is minimal. �

If eachMi is an exponential family, then the mixture is also an exponential family (this is not true if
the supports of the modelsMi are not disjoint). In the rest of this section we discuss two examples.

If eachMi equals the set containing just the uniform distribution onXi, thenM is called the
partition modelof ξ, denoted withPξ. The partition modelPξ is given by all distributions with
constant value on each blockXi, i.e. those that satisfyp(x) = p(y) for all x, y ∈ Xi. This is the
closure of the exponential family with sufficient statistics

Ax = (χ1(x), χ2(x), . . . , χd(x))
⊤

,

whereχi := χ
Xi

is 1 on x ∈ Xi, and0 everywhere else. See [22] for interesting properties of
partition models.

The partition models include the set of finite exchangeable distributions (see e.g. [9]), where the
blocks of the partition are the sets of binary vectors which have the same number of entries equal to
one. The probability of a vectorv depends only on the number of ones, but not on their position.

Corollary 3.3 Let ξ = {X1, . . . ,Xm} be a partition ofX . ThenDPξ
= maxi=1,...,m log |Xi|.
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Figure 2: Models inP({0, 1}2). Left: The blue line represents the partition modelPξ with partition
ξ = {(11), (01)}∪{(00), (10)}. The dashed lines represent the set of KL-divergence maximizers for
Pξ. Right: The mixture of the product distributionsE1 andE2 with disjoint supports on{(11), (01)}
and{(00), (10)} corresponding to the same partitionξ equals the whole simplexP.

Now assume thatX = {0, 1}n is the set of binary vectors of lengthn. As a subset ofRn it consists
of the vertices (extreme points) of then-dimensional hypercube. The vertices of ak-dimensional
face of then-cube are given by fixing the values ofx in n − k positions:

{x ∈ {0, 1}n : xi = x̃i,∀i ∈ I, for someI ⊆ {1, . . . , n}, |I| = n − k}

We call such a subsetY ⊆ X cubicalor afaceof then-cube. A cubical subset of cardinality2k can
be naturally identified with{0, 1}k. This identification allows to define independence models and
product measures onP(Y) ⊆ P(X ). Note that product measures onY are also product measures
onX , and the independence model onY is a subset of the independence model onX .

Corollary 3.4 Let ξ = {X1, . . . ,Xm} be a partition ofX = {0, 1}n into cubical sets. For anyi let
Ei be the independence model onXi, and letM be the mixture ofE1, . . . , Em. Then

DM = max
i=1,...,m

log(|Xi|) − 1 .

See Figure 1 for an intuition on the approximation error of partition models, and see Figure 2 for
small examples of a partition model and of a mixture of products with disjoint support.

4 Classes of distributions that RBMs can learn

Consider a setξ = {Xi}
m
i=1 of m disjoint cubical setsXi in X . Such aξ is a partition of some subset

∪ξ = ∪iXi of X into m disjoint cubical sets. We writeGm for the collection of all such partitions.
We have the following result:

Theorem 4.1 RBMn,m contains the following distributions:

• Any mixture of one arbitrary product distribution,m−k product distributions with support
on arbitrary but disjoint faces of then-cube, andk arbitrary distributions with support on
any edges of then-cube, for any0 ≤ k ≤ m. In particular:

• Any mixture ofm + 1 product distributions with disjoint cubical supports. In consequence,
RBMn,m contains the partition model of any partition inGm+1.

Restricting the cubical sets of the second item to edges, i.e. pairs of vectors differing in one entry, we
see that the above theorem implies the following previouslyknown result, which was shown in [21].

Corollary 4.2 RBMn,m contains the following distributions:

• Any distribution with a support set that can be covered bym + 1 pairs of vectors differing
in one entry. In particular, this includes:

• Any distribution inP with a support of cardinality smaller than or equal tom + 1.
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Corollary 4.2 implies that an RBM withm ≥ 2n−1 − 1 hidden units is a universal approximator of
distributions on{0, 1}n, i.e. can approximate any distribution to an arbitrarily good accuracy.

Assumem + 1 = 2k and letξ be a partition ofX into m + 1 disjoint cubical sets of equal size. Let
us denote byPξ,1 the set of all distributions which can be written as a mixtureof m + 1 product
distributions with support on the elements ofξ. The dimension ofPξ,1 is given by

dimPξ,1 = (m+1) log

(

2n

m + 1

)

+m+1+n = (m+1) ·n+(m+1)+n−(m+1) log(m+1) .

The dimension of the set of visible distribution represented by an RBM is at most equal to the
number of paramters, see [21], this ism · n + m + n. This means that the class given above has
roughly the same dimension of the set of distributions that can be represented. In fact,

dimPξ,1 − dim RBMm−1 = n + 1 − (m + 1) log(m + 1) .

This means that the class of distributionsPξ,1 which by Theorem 4.1 can be represented byRBMn,m

is not contained inRBMn,m−1 when(m + 1)m+1 ≤ 2n+1.

Proof of Theorem 4.1 The proof draws on ideas from [15] and [21]. An RBM with no hidden units
can represent precisely the independence model, i.e. all product distributions, and in particular any
uniform distribution on a face of then-cube.

Consider an RBM withm − 1 hidden units. For any choice of the parametersW ∈ R
m−1×n, B ∈

R
n, C ∈ R

m−1 we can write the resulting distribution on the visible unitsas:

p(v) =

∑

h z(v, h)
∑

v′,h′ z(v′, h′)
, (3)

wherez(v, h) = exp(hWv + Bv + Ch). Appending one additional hidden unit, with connection
weightsw to the visible units and biasc, produces a new distribution which can be written as follows:

pw,c(v) =
(1 + exp(wv + c))

∑

h z(v, h)
∑

v′,h′(1 + exp(wv′ + c))z(v′, h′)
.

Consider now any setI ⊆ [n] := {1, . . . , n} and an arbitrary visible vectoru ∈ X . The values ofu
in the positions[n]\I define a faceF := {v ∈ X : vi = ui ,∀i 6∈ I} of then-cube of dimension|I|.
Let 1 := (1, . . . , 1) ∈ R

n and denote byuI,0 the vector with entriesuI,0
i = ui,∀i 6∈ I and

uI,0
i = 0,∀i ∈ I. Let λI ∈ R

n with λI
i = 0 ,∀i 6∈ I and letλc, a ∈ R. Define the connection

weightsw andc as follows:

w = a(uI,0 −
1

2
1

I,0) + λI ,

c = −a(uI,0 −
1

2
1

I,0)⊤u + λc .

For this choice anda → ∞ equation (4) yields:

pw,c(v) =







p(v)
1+

P

v′∈F exp (λI ·v′+λc)p(v′)
, ∀v 6∈ F

(1+exp(λI ·v+λc))p(v)
1+

P

v′∈F exp (λI ·v′+λc)p(v′)
, ∀v ∈ F

. (4)

If the initial p from equation (3) is such that its restriction toF is a product distribution, then
p(v) = K exp(ηI · v) ,∀v ∈ F , whereK is a constant andηI is a vector withηI

i = 0 ,∀i 6∈ I. We
can chooseλI = βI − ηI , andexp(λc) = α 1

K
P

v∈F exp(βI ·v)
. For this choice, equation (4) yields:

pw,c = (α − 1)p + αp̂ ,

wherep̂ is a product distribution with support inF and arbitrary natural parametersβI , andα is
an arbitrary mixture weight in[0, 1]. Finally, the product distributions on edges of the cube are
arbitrary, see [19] or [21] for details, and hence the restriction of anyp to any edge is a product
distribution. �
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Figure 3: This figure demonstrates our results forn = 3 andn = 4 visible units. The red curves
represent the bounds from Theorem 5.1. We fixedpparity as target distribution, the uniform distri-
bution on binary lengthn vectors with an even number of ones. The distributionpparity is not the
KL-maximizer fromRBMn,m, but it is in general difficult to represent. Qualitatively,samples from
pparity look like uniformly distributed, and representingpparity requires the maximal number of prod-
uct mixture components [20, 19]. For both values ofn and eachm = 0, . . . , 2n/2 we initialized
500 resp.1000 RBMs at parameter values chosen uniformly at random in the range[−10, 10]. The
inset of the left figure shows the resulting KL-divergenceD(pparity‖prand

RBM) (for n = 4 the resulting
KL-divergence was larger). Randomly chosen distributionsin RBMn,m are likely to be very far
from the target distribution. We trained these randomly initialized RBMs using CD for500 training
epochs, learning rate1 and a list of even parity vectors as training data. The resultafter training is
given by the blue circles. After training the RBMs the resultis often not better than the uniform
distribution, for whichD(pparity‖ 1

|{0,1}n| ) = 1. For eachm, the best set of parameters after train-
ing was used to initialize a further CD training with a smaller learning rate (green squares, mostly
covered) followed by a short maximum likelihood gradient ascent (red filled squares).

5 Maximal Approximation Errors of RBMs

Let m < 2n−1 − 1. By Theorem 4.1 all partition models for partitions of{0, 1}n into m+1 cubical
sets are contained inRBMn,m. Applying Corollary 3.3 to such a partition where the cardinality of
all blocks is at most2n−⌊log(m+1)⌋ yields the boundDRBMn,m

≤ n − ⌊log(m + 1)⌋. Similarly,
using mixtures of product distributions, Theorem 4.1 and Corollary 3.4 imply the smaller bound
DRBMn,m

≤ n − 1 − ⌊log(m + 1)⌋. In this section we derive an improved bound which strictly
decreases, asm increases, until0 is reached.

Theorem 5.1 Let m ≤ 2n−1 − 1. Then the maximal Kullback-Leibler divergence from any distri-
bution on{0, 1}n to RBMn,m is upper bounded by

max
p∈P

D(p‖RBMn,m) ≤ (n − 1) − log(m + 1) .

Conversely, given an error tolerance0 ≤ ǫ ≤ 1, the choicem ≥ 2(n−1)(1−ǫ) − 1 ensures a
sufficiently rich RBM model that satisfiesDRBMn,m

≤ ǫDRBMn,0 .

Form = 2n−1 − 1 the error vanishes, corresponding to the fact that an RBM with that many hidden
units is a universal approximator. In Figure 3 we use computer experiments to illustrate Theorem 5.1.
The proof makes use of the following lemma:

Lemma 5.2 Let n1, . . . , nm ≥ 0 such that2n1 + · · · + 2nm = 2n. LetM be the union of all mix-
tures of independent models corresponding to all cubical partitions ofX into blocks of cardinalities
2n1 , . . . , 2nm . ThenDM ≤

∑

i:ni>1
ni−1
2n−ni

.

Proof of Lemma 5.2 The proof is by induction onn. If n = 1, thenm = 1 or m = 2, and in both
cases it is easy to see that the inequality holds (both sides vanish). Ifn > 1, then order theni such
thatn1 ≥ n2 ≥ · · · ≥ nm ≥ 0. Without loss of generality assumem > 1.

Let p ∈ P(X ), and letY be a cubical subset ofX of cardinality2n−1 such thatp(Y) ≤ 1
2 . Since

the numbers2n1 + · · · + 2ni for i = 1, . . . ,m contain all multiples of2n1 up to2n and2n/2n1 is
even, there existsk such that2n1 + · · · + 2nk = 2n−1 = 2nk+1 + · · · + 2nm .
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Let M′ be the union of all mixtures of independence models corresponding to all cubical partitions
ξ = {X1, . . . ,Xm} of X into m blocks of cardinalitiesn1, . . . , nm such thatX1 ∪ · · · ∪ Xk = Y.
In the following, the symbol

∑′
i shall denote summation over all indicesi such thatni > 1. By

induction

D(p‖M) ≤ D(p‖M′) ≤ p(Y)

k
∑′

i=1

ni − 1

2n−1−ni
+ p(X \ Y)

m
∑′

j=k+1

nj − 1

2n−1−nj
. (5)

There existj1 = k + 1 < j2 < · · · < jk < jk+1 = m + 1 such that2ni = 2nji + · · · + 2nji+1−1

for all i ≤ k. Note that

ji+1
∑′

j=ji

nj − 1

2n−1−nj
≤

ni − 1

2n−1
(2nji + · · · + 2nji+1−1) =

ni − 1

2n−1−ni
,

and therefore

( 1
2 − p(Y))

ni − 1

2n−1−ni
+ (1

2 − p(X \ Y))

ji+1−1
∑′

j=ji

nj − 1

2n−1−nj
≥ 0 .

Adding these terms fori = 1, . . . , k to the right hand side of equation (5) yields

D(p‖M) ≤
1

2

k
∑′

i=1

ni − 1

2n−1−ni
+

1

2

m
∑′

j=k+1

nj − 1

2n−1−nj
,

from which the assertions follow. �

Proof of Theorem 5.1 From Theorem 4.1 we know thatRBMn,m contains the unionM of all
mixtures of independent models corresponding to all partitions with up tom + 1 cubical blocks.
Hence,DRBMn,m

≤ DM. Let k = n − ⌊log(m + 1)⌋ and l = 2m + 2 − 2n−k+1 ≥ 0; then
l2k−1 +(m+1− l)2k = 2n. Lemma 5.2 withn1 = · · · = nl = k−1 andnl+1 = · · · = nm+1 = k
implies

DM ≤
l(k − 2)

2n−k+1
+

(m + 1 − l)(k − 1)

2n−k
= k −

m + 1

2n−k
.

The assertion follows fromlog(m + 1) ≤ (n− k) + m+1
2n−k − 1, wherelog(1 + x) ≤ x for all x > 0

was used. �

6 Conclusion

We studied the expressive power of the Restricted BoltzmannMachine model withn visible andm
hidden units. We presented a hierarchy of explicit classes of probability distributions that an RBM
can represent. These classes include large collections of mixtures ofm + 1 product distributions. In
particular any mixture of an arbitrary product distribution andm further product distributions with
disjoint supports. The geometry of these submodels is easier to study than that of the RBM models,
while these subsets still capture many of the distributionscontained in the RBM models. Using
these results we derived bounds for the approximation errors of RBMs. We showed that it is always
possible to reduce the error to at most(n − 1) − log(m + 1). That is, given any target distribution,
there is a distribution within the RBM model for which the Kullback-Leibler divergence between
both is not larger than that number. Our results give a theoretical basis for selecting the size of an
RBM which accounts for a desired error tolerance.

Computer experiments showed that the bound captures the order of magnitude of the true approxi-
mation error, at least for small examples. However, learning may not always find the best approxi-
mation, resulting in an error that may well exceed our bound.
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