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Abstract

In this paper, we give a new generalization error bound of Multiple Kernel Learn-
ing (MKL) for a general class of regularizations. Our main target in this paper is
dense type regularizations includingℓp-MKL that imposesℓp-mixed-norm regu-
larization instead ofℓ1-mixed-norm regularization. According to the recent nu-
merical experiments, the sparse regularization does not necessarily show a good
performance compared with dense type regularizations. Motivated by this fact,
this paper gives a general theoretical tool to derive fast learning rates that is ap-
plicable to arbitrary mixed-norm-type regularizations in a unifying manner. As
a by-product of our general result, we show a fast learning rate ofℓp-MKL that
is tightest among existing bounds. We also show that our general learning rate
achieves the minimax lower bound. Finally, we show that, when the complexities
of candidate reproducing kernel Hilbert spaces are inhomogeneous, dense type
regularization shows better learning rate compared with sparseℓ1 regularization.

1 Introduction

Multiple Kernel Learning (MKL) proposed by [20] is one of the most promising methods that adap-
tively select the kernel function in supervised kernel learning. A kernel method is widely used and
several studies have supported its usefulness [25]. However the performance of kernel methods
critically relies on the choice of the kernel function. Many methods have been proposed to deal
with the issue of kernel selection. [23] studied hyperkrenels as a kernel of kernel functions. [2]
considered DC programming approach to learn a mixture of kernels with continuous parameters.
Some studies tackled a problem to learn non-linear combination of kernels as in [4, 9, 34]. Among
them, learning a linear combination of finite candidate kernels with non-negative coefficients is the
most basic, fundamental and commonly used approach. The seminal work of MKL by [20] con-
sidered learning convex combination of candidate kernels. This work opened up the sequence of
the MKL studies. [5] showed that MKL can be reformulated as a kernel version of the group lasso
[36]. This formulation gives an insight that MKL can be described as aℓ1-mixed-norm regularized
method. As a generalization of MKL,ℓp-MKL that imposesℓp-mixed-norm regularization has been
proposed [22, 14].ℓp-MKL includes the original MKL as a special case asℓ1-MKL. Another direc-
tion of generalizing MKL is elasticnet-MKL [26, 31] that imposes a mixture ofℓ1-mixed-norm and
ℓ2-mixed-norm regularizations. Recently numerical studies have shown thatℓp-MKL with p > 1
and elasticnet-MKL show better performances thanℓ1-MKL in several situations [14, 8, 31]. An
interesting perception here is that bothℓp-MKL and elasticnet-MKL produce denser estimator than
the originalℓ1-MKL while they show favorable performances. One motivation of this paper is to
give a theoretical justification to these generalizeddense typeMKL methods in a unifying manner.
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In the pioneering paper of [20], a convergence rate of MKL is given as
√

M
n , whereM is the number

of given kernels andn is the number of samples. [27] gave improved learning bound utilizing the
pseudo-dimension of the given kernel class. [35] gave a convergence bound utilizing Rademacher
chaos and gave some upper bounds of the Rademacher chaos utilizing the pseudo-dimension of the
kernel class. [8] presented a convergence bound for a learning method withL2 regularization on the

kernel weight. [10] gave the convergence rate ofℓp-MKL as
M

1− 1
p ∨

√
log(M)√

n
for 1 ≤ p ≤ 2. [15]

gave a similar convergence bound with improved constants. [16] generalized this bound to a variant
of the elasticnet type regularization and widened the effective range ofp to all range ofp ≥ 1 while
in the existing bounds1 ≤ p ≤ 2 was imposed. One concern about these bounds is that all bounds
introduced above are “global” bounds in a sense that the bounds are applicable to all candidates of
estimators. Consequently all convergence rate presented above are of order1/

√
n with respect to

the numbern of samples. However, by utilizing thelocalizationtechniques including so-called local
Rademacher complexity [6, 17] and peeling device [32], we can derive a faster learning rate. Instead
of uniformly bounding all candidates of estimators, the localized inequality focuses on a particular
estimator such as empirical risk minimizer, thus can gives a sharp convergence rate.

Localized bounds of MKL have been given mainly in sparse learning settings [18, 21, 19], and there
are only few studies for non-sparse settings in which the sparsity of the ground truth is not assumed.
Recently [13] gave a localized convergence bound ofℓp-MKL. However, their analysis assumed a
strong condition where RKHSs have no-correlation to each other.

In this paper, we show a unified framework to derive fast convergence rates of MKL with various
regularization types. The framework is applicable toarbitrary mixed-norm regularizations includ-
ing ℓp-MKL and elasticnet-MKL. Our learning rate utilizes the localization technique, thus is tighter
than global type learning rates. Moreover our analysis does not require no-correlation assumption
as in [13]. We apply our general framework to some examples and show our bound achieves the
minimax-optimal rate. As a by-product, we obtain a tighter convergence rate ofℓp-MKL than exist-
ing results. Finally, we show that dense type regularizations can outperforms sparseℓ1 regularization
when thecomplexitiesof the RKHSs are not uniformly same.

2 Preliminary

In this section, we give the problem formulation, the notations and the assumptions required for the
convergence analysis.

2.1 Problem Formulation

Suppose that we are givenn i.i.d. samples{(xi, yi)}ni=1 distributed from a probability distribution
P onX × R whereX is an input space. We denote byΠ the marginal distribution ofP onX . We
are givenM reproducing kernel Hilbert spaces (RKHS){Hm}Mm=1 each of which is associated with
a kernelkm. We consider a mixed-norm type regularization with respect to an arbitrary given norm
∥·∥ψ, that is, the regularization is given by the norm∥(∥fm∥Hm)

M
m=1∥ψ of the vector(∥fm∥Hm)

M
m=1

for fm ∈ Hm (m = 1, . . . ,M ) ∗. For notational simplicity, we write∥f∥ψ = ∥(∥fm∥Hm)
M
m=1∥ψ

for f =
∑M
m=1 fm (fm ∈ Hm).

The general formulation of MKL that we consider in this paper fits a functionf =
∑M
m=1 fm (fm ∈

Hm) to the data by solving the following optimization problem:

f̂ =
M∑
m=1

f̂m = argmin
fm∈Hm (m=1,...,M)

1

n

n∑
i=1

(
yi −

M∑
m=1

fm(xi)

)2

+ λ
(n)
1 ∥f∥2ψ. (1)

We call this “ψ-norm MKL”. This formulation covers many practically used MKL methods (e.g.,
ℓp-MKL, elasticnet-MKL, variable sparsity kernel learning (see later for their definitions)), and is
solvable by a finite dimensional optimization procedure due to the representer theorem [12]. In this

∗We assume that the mixed-norm∥(∥fm∥Hm)Mm=1∥ψ satisfies the triangular inequality with respect to
(fm)Mm=1, that is,∥(∥fm + f ′

m∥Hm)Mm=1∥ψ ≤ ∥(∥fm∥Hm)Mm=1∥ψ + ∥(∥f ′
m∥Hm)Mm=1∥ψ. To satisfy this

condition, it is sufficient if the norm is monotone, i.e.,∥a∥ψ ≤ ∥a+ b∥ψ for all a, b ≥ 0.
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paper, we focus on the regression problem (the squared loss). However the discussion presented
here can be generalized to Lipschitz continuous and strongly convex losses [6].

Example 1: ℓp-MKL The first motivating example ofψ-norm MKL is ℓp-MKL [14] that employs

ℓp-norm for1 ≤ p ≤ ∞ as the regularizer:∥f∥ψ = ∥(∥fm∥Hm)
M
m=1∥ℓp = (

∑M
m=1 ∥fm∥pHm

)
1
p .

If p is strictly greater than 1(p > 1), the solution ofℓp-MKL becomes dense. In particular,p = 2
corresponds to averaging candidate kernels with uniform weight [22]. It is reported thatℓp-MKL
with p greater than 1, sayp = 4

3 , often shows better performance than the original sparseℓ1-MKL
[10].

Example 2: Elasticnet-MKL The second example is elasticnet-MKL [26, 31] that employs mix-
ture ofℓ1 andℓ2 norms as the regularizer:∥f∥ψ = τ∥f∥ℓ1 + (1− τ)∥f∥ℓ2 = τ

∑M
m=1 ∥fm∥Hm +

(1− τ)(
∑M
m=1 ∥fm∥2Hm

)
1
2 with τ ∈ [0, 1]. Elasticnet-MKL shares the same spirit withℓp-MKL in

a sense that it bridges sparseℓ1-regularization and denseℓ2-regularization. An efficient optimization
method for elasticnet-MKL is proposed by [30].

Example 3: Variable Sparsity Kernel Learning Variable Sparsity Kernel Learning (VSKL) pro-
posed by [1] divides the RKHSs intoM ′ groups{Hj,k}

Mj

k=1, (j = 1, . . . ,M ′) and imposes a mixed

norm regularization∥f∥ψ = ∥f∥(p,q) =
{∑M ′

j=1(
∑Mj

k=1 ∥fj,k∥
p
Hj,k

)
q
p

} 1
q

where1 ≤ p, q, and

fj,k ∈ Hj,k. An advantageous point of VSKL is that by adjusting the parametersp andq, various
levels of sparsity can be introduced, that is, the parameters can control the level of sparsitywithin
group andbetweengroups. This point is beneficial especially for multi-modal tasks like object
categorization.

2.2 Notations and Assumptions

Here, we prepare notations and assumptions that are used in the analysis. LetH⊕M = H1 ⊕ · · · ⊕
HM . Throughout the paper, we assume the following technical conditions (see also [3]).

Assumption 1. (Basic Assumptions)

(A1) There existsf∗ = (f∗1 , . . . , f
∗
M ) ∈ H⊕M such thatE[Y |X] = f∗(X) =

∑M
m=1 f

∗
m(X),

and the noiseϵ := Y − f∗(X) is bounded as|ϵ| ≤ L.

(A2) For eachm = 1, . . . ,M , Hm is separable (with respect to the RKHS norm) and
supX∈X |km(X,X)| < 1.

The first assumption in (A1) ensures the modelH⊕M is correctly specified, and the technical as-
sumption|ϵ| ≤ L allows ϵf to be Lipschitz continuous with respect tof . The noise boundedness
can be relaxed to unbounded situation as in [24], but we don’t pursue that direction for simplicity.

Let an integral operatorTkm : L2(Π) → L2(Π) corresponding to a kernel functionkm be

Tkmf =

∫
km(·, x)f(x)dΠ(x).

It is known that this operator is compact, positive, and self-adjoint (see Theorem 4.27 of [28]). Thus
it has at most countably many non-negative eigenvalues. We denote byµℓ,m be theℓ-th largest
eigenvalue (with possible multiplicity) of the integral operatorTkm . Then we assume the following
assumption on the decreasing rate ofµℓ,m.

Assumption 2. (Spectral Assumption)There exist0 < sm < 1 and0 < c such that

(A3) µℓ,m ≤ cℓ−
1
sm , (∀ℓ ≥ 1, 1 ≤ ∀m ≤M),

where{µℓ,m}∞ℓ=1 is the spectrum of the operatorTkm corresponding to the kernelkm.

It was shown that the spectral assumption (A3) is equivalent to the classical covering number as-
sumption [29]. Recall that theϵ-covering numberN(ϵ,BHm , L2(Π)) with respect toL2(Π) is the
minimal number of balls with radiusϵ needed to cover the unit ballBHm in Hm [33]. If the spectral
assumption (A3) holds, there exists a constantC that depends only ons andc such that

logN(ε,BHm , L2(Π)) ≤ Cε−2sm , (2)
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Table 1: Summary of the constants we use in this article.
n The number of samples.
M The number of candidate kernels.
sm The spectral decay coefficient; see (A3).
κM The smallest eigenvalue of the design matrix (see Eq. (3)).

and the converse is also true (see [29, Theorem 15] and [28] for details). Therefore, ifsm is large,
the RKHSs are regarded as “complex”, and ifsm is small, the RKHSs are “simple”.

An important class of RKHSs wheresm is known is Sobolev space. (A3) holds withsm = d
2α for

Sobolev space ofα-times continuously differentiability on the Euclidean ball ofRd [11]. Moreover,
for α-times continuously differentiable kernels on a closed Euclidean ball inRd, that holds forsm =
d
2α [28, Theorem 6.26]. According to Theorem 7.34 of [28], for Gaussian kernels with compact
support distribution, that holds for arbitrary small0 < sm. The covering number of Gaussian
kernels withunboundedsupport distribution is also described in Theorem 7.34 of [28].

Let κM be defined as follows:

κM := sup

{
κ ≥ 0

∣∣∣ κ ≤ ∥
∑M
m=1 fm∥2

L2(Π)∑M
m=1 ∥fm∥2

L2(Π)

, ∀fm ∈ Hm (m = 1, . . . ,M)

}
. (3)

κM represents the correlation of RKHSs. We assume all RKHSs are not completely correlated to
each other.

Assumption 3. (Incoherence Assumption)κM is strictly bounded from below; there exists a con-
stantC0 > 0 such that

(A4) 0 < C−1
0 < κM .

This condition is motivated by theincoherence condition[18, 21] considered in sparse MKL settings.
This ensures the uniqueness of the decompositionf∗ =

∑M
m=1 f

∗
m of the ground truth. [3] also

assumed this condition to show the consistency ofℓ1-MKL.

Finally we give a technical assumption with respect to∞-norm.

Assumption 4. (Embedded Assumption)Under the Spectral Assumption, there exists a constant
C1 > 0 such that

(A5) ∥fm∥∞ ≤ C1∥fm∥1−smHm
∥fm∥smL2(Π).

This condition is met when the input distributionΠ has a density with respect to the uniform distri-
bution onX that is bounded away from 0 and the RKHSs are continuously embedded in a Sobolev
spaceWα,2(X ) wheresm = d

2α , d is the dimension of the input spaceX andα is the “smoothness”
of the Sobolev space. Many practically used kernels satisfy this condition (A5). For example, the
RKHSs of Gaussian kernels can be embedded in all Sobolev spaces. Therefore the condition (A5)
seems rather common and practical. More generally, there is a clear characterization of the condi-
tion (A5) in terms ofreal interpolation of spaces. One can find detailed and formal discussions of
interpolations in [29], and Proposition 2.10 of [7] gives the necessary and sufficient condition for
the assumption (A5).

Constants we use later are summarized in Table 1.

3 Convergence Rate Analysis ofψ-norm MKL
Here we derive the learning rate ofψ-norm MKL in a most general setting. We suppose that the
number of kernelsM can increase along with the number of samplesn. The motivation of our
analysis is summarized as follows:

• Give a unifying frame work to derive a sharp convergence rate ofψ-norm MKL.

• (homogeneous complexity) Show the convergence rate of some examples using our general
frame work, and prove its minimax-optimality under conditions that the complexitiessm
of all RKHSs are same.
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• (inhomogeneous complexity) Discuss how the dense type regularization outperforms the
sparse type regularization, when the complexitiessm of all RKHSs arenotuniformly same.

Now we defineη(t) := ηn(t) = max(1,
√
t, t/

√
n) for t > 0, and, for given positive reals{rm}Mm=1

and givenn, we defineα1, α2, β1, β2 as follows:

α1 := α1({rm}) = 3

(
M∑
m=1

r−2sm
m

n

) 1
2

, α2 := α2({rm}) = 3

∥∥∥∥( smr1−smm√
n

)M
m=1

∥∥∥∥
ψ∗
,

β1 := β1({rm}) =3

(
M∑
m=1

r
− 2sm(3−sm)

1+sm
m

n
2

1+sm

) 1
2

, β2 := β2({rm}) =3

∥∥∥∥∥∥
(
smr

(1−sm)2

1+sm
m

n
1

1+sm

)M
m=1

∥∥∥∥∥∥
ψ∗

, (4)

(note thatα1, α2, β1, β2 implicitly depends on the reals{rm}Mm=1). Then the following theorem
gives the general form of the learning rate ofψ-norm MKL.
Theorem 1. Suppose Assumptions 1-4 are satisfied. Let{rm}Mm=1 be arbitrary positive reals that

can depend onn, and assumeλ(n)1 =
(
α2

α1

)2
+
(
β2

β1

)2
. Then for alln andt′ that satisfylog(M)√

n
≤ 1

and 4ϕ
√
n

κM
max{α2

1, β
2
1 ,

M log(M)
n }η(t′) ≤ 1

12 and for all t ≥ 1, we have

∥f̂ − f∗∥2L2(Π) ≤
24η(t)2ϕ2

κM

(
α2
1 + β2

1 +
M log(M)

n

)
+ 4

[(
α2

α1

)2

+

(
β2
β1

)2
]
∥f∗∥2ψ. (5)

with probability1− exp(−t)− exp(−t′).

The proof will be given in Appendix D in the supplementary material. One can also find an outline
of the proof in Appendix A in the supplementary material.

The statement of Theorem 1 itself is complicated. Thus we will show later concrete learning rates on
some examples such asℓp-MKL. The convergence rate (5) depends on the positive reals{rm}Mm=1,
but the choice of{rm}Mm=1 are arbitrary. Thus by minimizing the right hand side of Eq. (5), we
obtain tight convergence bound as follows:

∥f̂ − f∗∥2L2(Π)=Op

(
min

{rm}Mm=1:
rm>0

{
α2
1 + β2

1 +

[(
α2

α1

)2

+

(
β2
β1

)2
]
∥f∗∥2ψ +

M log(M)

n

})
. (6)

There is a trade-off between the first two terms(a) := α2
1 + β2

1 and the third term(b) :=[(
α2

α1

)2
+
(
β2

β1

)2]
∥f∗∥2ψ, that is, if we take{rm}m large, then the term (a) becomes small and

the term (b) becomes large, on the other hand, if we take{rm}m small, then it results in large (a)
and small (b). Therefore we need to balance the two terms (a) and (b) to obtain the minimum in
Eq. (6).

We discuss the obtained learning rate in two situations, (i)homogeneous complexitysituation, and
(ii) inhomogeneous complexitysituation:

(i) (homogeneous) Allsms are same: there exists0 < s < 1 such thatsm = s (∀m) (Sec.3.1).
(ii) (inhomogeneous) Allsms arenotsame: there existm,m′ such thatsm ̸= sm′ (Sec.3.2).

3.1 Analysis on Homogeneous Settings

Here we assume allsms are same, saysm = s for allm (homogeneous setting). If we further restrict
the situation as allrms are same (rm = r (∀m) for somer), then the minimization in Eq. (6) can
be easily carried out as in the following lemma. Let1 be theM -dimensional vector each element of
which is1: 1 := (1, . . . , 1)⊤ ∈ RM , and∥ · ∥ψ∗ be the dual norm of theψ-norm†.

Lemma 2. Whensm = s (∀m) with some0 < s < 1 andn ≥ (∥1∥ψ∗∥f∗∥ψ/M)
4s

1−s , the bound
(6) indicates that

∥f̂ − f∗∥2L2(Π) = Op

(
M1− 2s

1+sn−
1

1+s (∥1∥ψ∗∥f∗∥ψ)
2s

1+s +
M log(M)

n

)
. (7)

†The dual of the norm∥ · ∥ψ is defined as∥b∥ψ∗ := supa{b⊤a | ∥a∥ψ ≤ 1}.
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The proof is given in Appendix G.1 in the supplementary material. Lemma 2 is derived by assuming
rm = r (∀m), which might make the bound loose. However, when the norm∥ · ∥ψ is isotropic
(whose definition will appear later), that restriction (rm = r (∀m)) does not make the bound loose,
that is, the upper bound obtained in Lemma 2 is tight and achieves the minimax optimal rate (the
minimax optimal rate is the one that cannot be improved by any estimator). In the following, we
investigate the general result of Lemma 2 through some important examples.

Convergence Rate ofℓp-MKL Here we derive the convergence rate ofℓp-MKL ( 1 ≤ p ≤ ∞)

where∥f∥ψ =
∑M
m=1(∥fm∥pHm

)
1
p (for p = ∞, it is defined asmaxm ∥fm∥Hm ). It is well known

that the dual norm ofℓp-norm is given asℓq-norm whereq is the real satisfying1p + 1
q = 1. For

notational simplicity, letRp :=
(∑M

m=1 ∥f∗m∥pHm

) 1
p

. Then substituting∥f∗∥ψ = Rp and∥1∥ψ∗ =

∥1∥ℓq =M
1
q =M1− 1

p into the bound (7), the learning rate ofℓp-MKL is given as

∥f̂ − f∗∥2L2(Π) =Op

(
n−

1
1+sM1− 2s

p(1+s)R
2s

1+s
p +

M log(M)

n

)
. (8)

If we further assumen is sufficiently large so thatn ≥M
2
pR−2

p (logM)
1+s
s , the leading term is the

first term, and thus we have

∥f̂ − f∗∥2L2(Π) = Op

(
n−

1
1+sM1− 2s

p(1+s)R
2s

1+s
p

)
. (9)

Note that as the complexitys of RKHSs becomes small the convergence rate becomes fast. It is
known thatn−

1
1+s is the minimax optimal learning rate for single kernel learning. The derived

rate of ℓp-MKL is obtained by multiplying a coefficient depending onM andRp to the optimal
rate of single kernel learning. To investigate the dependency ofRp to the learning rate, let us
consider two extreme settings, i.e., sparse setting(∥f∗m∥Hm)

M
m=1 = (1, 0, . . . , 0) and dense setting

(∥f∗m∥Hm)
M
m=1 = (1, . . . , 1) as in [15].

• (∥f∗m∥Hm)
M
m=1 = (1, 0, . . . , 0): Rp = 1 for all p. Therefore the convergence rate

n−
1

1+sM1− 2s
p(1+s) is fast for smallp and the minimum is achieved atp = 1. This means

thatℓ1 regularization is preferred for sparse truth.

• (∥f∗m∥Hm)
M
m=1 = (1, . . . , 1): Rp = M

1
p , thus the convergence rate isMn−

1
1+s for all

p. Interestingly for dense ground truth, there is no dependency of the convergence rate
on the parameterp (later we will show that this is not the case in inhomogeneous settings
(Sec.3.2)). That is, the convergence rate isM times the optimal learning rate of single
kernel learning (n−

1
1+s ) for all p. This means that for the dense settings, the complexity of

solving MKL problem is equivalent to that of solvingM single kernel learning problems.

Comparison with Existing Bounds Here we compare the bound forℓp-MKL we derived above
with the existing bounds. LetHℓp(R) be theℓp-mixed norm ball with radiusR: Hℓp(R) := {f =∑M
m=1 fm | (

∑M
m=1 ∥fm∥pHm

)
1
p ≤ R}. [10, 16, 15] gave “global” type bounds forℓp-MKL as

R(f) ≤ R̂(f) + C
M

1− 1
p ∨

√
log(M)√

n
R for all f ∈ Hℓp(R), (10)

whereR(f) and R̂(f) is the population risk and the empirical risk. First observation is that the
bounds by [10] and [15] are restricted to the situation1 ≤ p ≤ 2. On the other hand, our analysis
and that of [16] covers allp ≥ 1. Second, since our bound is specialized to the regularized risk
minimizer f̂ defined at Eq. (1) while the existing bound (10) is applicable to allf ∈ Hℓp(R), our

bound is sharper than theirs for sufficiently largen. To see this, supposen ≥ M
2
pR−2

p , then we

haven−
1

1+sM1− 2s
p(1+s) ≤ n−

1
2M1− 1

p . Moreover we should note thats can be large as long as
Spectral Assumption (A3) is satisfied. Thus the bound (10) is formally recovered by our analysis by
approachings to 1.

Recently [13] gave a tighter convergence rate utilizing the localization technique as∥f̂−f∗∥2L2(Π) =

Op

(
minp′≥p

{
p′

p′−1n
− 1

1+sM
1− 2s

p′(1+s)R
2s

1+s

p′

})
, under a strong conditionκM = 1 that imposes all
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RKHSs are completely uncorrelated to each other. Comparing our bound with their result, there are
not minp′≥p and p′

p′−1 in our bound (if there is not the termp
′

p′−1 , then the minimum ofminp′≥p
is attained atp′ = p, thus our bound is tighter), moreover our analysis doesn’t need the strong
assumptionκM = 1.

Convergence Rate of Elasticnet-MKL Elasticnet-MKL employs a mixture ofℓ1 andℓ2 norm as
the regularizer:∥f∥ψ = τ∥f∥ℓ1 + (1 − τ)∥f∥ℓ2 whereτ ∈ [0, 1]. Then its dual norm is given

by ∥b∥ψ∗ = mina∈RM
{
max

(
∥a∥ℓ∞
τ ,

∥a−b∥ℓ2
1−τ

)}
. Therefore by a simple calculation, we have

∥1∥ψ∗ =
√
M

1−τ+τ
√
M
. Hence Eq. (7) gives the convergence rate of elasticnet-MKL as

∥f̂ − f∗∥2L2(Π) = Op

(
n−

1
1+s M

1− s
1+s

(1−τ+τ
√
M)

2s
1+s

(τ∥f∗∥ℓ1 + (1− τ)∥f∗∥ℓ2)
2s

1+s + M log(M)
n

)
.

Note that, whenτ = 0 or τ = 1, this rate is identical to that ofℓ2-MKL or ℓ1-MKL obtained in
Eq. (8) respectively.

3.1.1 Minimax Lower Bound

In this section, we show that the derived learning rate (7) achieves the minimax-learning rate on the
ψ-norm ball

Hψ(R) :=
{
f =

∑M
m=1 fm

∣∣ ∥f∥ψ ≤ R
}
,

when the norm isisotropic. We say theψ-norm ∥ · ∥ψ is isotropic when there exits a universal
constant̄c such that

c̄M = c̄∥1∥ℓ1 ≥ ∥1∥ψ∗∥1∥ψ, ∥b∥ψ ≤ ∥b′∥ψ (if 0 ≤ bm ≤ b′m (∀m)), (11)

(note that the inverse inequalityM ≤ ∥1∥ψ∗∥1∥ψ of the first condition always holds by the defi-
nition of the dual norm). Practically used regularizations usually satisfy this isotropic property. In
fact,ℓp-MKL, elasticnet-MKL and VSKL satisfy the isotropic property with̄c = 1.

We derive the minimax learning rate in a simpler situation. First we assume that each RKHS is same
as others. That is, the input vector is decomposed intoM components likex = (x(1), . . . , x(M))

where{x(m)}Mm=1 areM i.i.d. copies of a random variablẽX, andHm = {fm | fm(x) =

fm(x(1), . . . , x(M)) = f̃m(x(m)), f̃m ∈ H̃} where H̃ is an RKHS shared by allHm. Thus
f ∈ H⊕M is decomposed asf(x) = f(x(1), . . . , x(M)) =

∑M
m=1 f̃m(x(m)) where eachf̃m is

a member of the common RKHS̃H. We denote bỹk the kernel associated with the RKHS̃H.

In addition to the condition about the upper bound of spectrum (Spectral Assumption (A3)), we
assume that the spectrum of all the RKHSsHm have the same lower bound of polynomial rate.
Assumption 5. (Strong Spectral Assumption)There exist0 < s < 1 and0 < c, c′ such that

(A6) c′ℓ−
1
s ≤ µ̃ℓ ≤ cℓ−

1
s , (1 ≤ ∀ℓ),

where{µ̃ℓ}∞ℓ=1 is the spectrum of the integral operatorTk̃ corresponding to the kernel̃k. In partic-
ular, the spectrum ofTkm also satisfiesµℓ,m ∼ ℓ−

1
s (∀ℓ,m).

Without loss of generality, we may assume thatE[f(X̃)] = 0 (∀f ∈ H̃). Since eachfm receives
i.i.d. copy ofX̃, Hms are orthogonal to each other:

E[fm(X)fm′(X)] = E[f̃m(X(m))f̃m′(X(m′))] = 0 (∀fm ∈ Hm, ∀fm′ ∈ Hm′ , ∀m ̸= m′).

We also assume that the noise{ϵi}ni=1 is an i.i.d. normal sequence with standard deviationσ > 0.

Under the assumptions described above, we have the following minimaxL2(Π)-error.

Theorem 3. SupposeR > 0 is given andn > c̄2M2

R2∥1∥2
ψ∗

is satisfied. Then the minimax-learning rate

onHψ(R) for isotropic norm∥ · ∥ψ is lower bounded as

min
f̂

max
f∗∈Hψ(R)

E
[
∥f̂ − f∗∥2L2(Π)

]
≥ CM1− 2s

1+sn−
1

1+s (∥1∥ψ∗R)
2s

1+s , (12)

whereinf is taken over all measurable functions ofn samples{(xi, yi)}ni=1.
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The proof will be given in Appendix F in the supplementary material. One can see that the con-
vergence rate derived in Eq. (7) achieves the minimax rate on theψ-norm ball (Theorem 3) up
to M log(M)

n that is negligible when the number of samples is large. This means that theψ-norm
regularization is well suited to make the estimator included in theψ-norm ball.

3.2 Analysis on Inhomogeneous Settings
In the previous section (analysis on homogeneous settings), we have not seen any theoretical justifi-
cation supporting the fact that dense MKL methods likeℓ 4

3
-MKL can outperform the sparseℓ1-MKL

[10]. In this section, we show dense type regularizations can outperform the sparse regularization
in inhomogeneous settings (there existsm,m′ such thatsm ̸= sm′). For simplicity, we focus on
ℓp-MKL, and discuss the relation between the learning rate and the norm parameterp.

Let us consider an extreme situation wheres1 = s for some0 < s < 1 andsm = 0 (m > 1)‡. In
this situation, we have

α1 = 3
(
r−2s
1 +M−1

n

) 1
2

, α2 = 3
sr1−s1√

n
, β1 = 3

(
r
− 2s(3−s)

1+s
1 +M−1

n
2

1+s

) 1
2

, β2 = 3
sr

(1−s)2
1+s

1

n
1

1+s
.

for all p. Note that theseα1, α2, β1 andβ2 have no dependency onp. Therefore the learning bound
(6) is smallest whenp = ∞ because∥f∗∥ℓ∞ ≤ ∥f∗∥ℓp for all 1 ≤ p < ∞. In particular, when
(∥f∗m∥Hm)

M
m=1 = 1, we have∥f∗∥ℓ1 =M∥f∗∥ℓ∞ and thus obviously the learning rate ofℓ∞-MKL

given by Eq. (6) is faster than that ofℓ1-MKL. In fact, through a bit cumbersome calculation, one
can check thatℓ∞-MKL can beM

2s
1+s times faster thanℓ1-MKL in a worst case. This indicates

that, when the complexities of RKHSs are inhomogeneous, the generalization abilities ofdensetype
regularizations (e.g.,ℓ∞-MKL) can be better than thesparsetype regularization (ℓ1-MKL). In real
settings, it is likely that one uses various types of kernels and the complexities of RKHSs become
inhomogeneous. As mentioned above, it has been often reported thatℓ1-MKL is outperformed by
dense type MKL such asℓ 4

3
-MKL in numerical experiments [10]. Our theoretical analysis explains

well this experimental results.

4 Conclusion
We have shown a unified framework to derive the learning rate of MKL with arbitrary mixed-norm-
type regularization. To analyze the general result, we considered two situations: homogeneous
settings and inhomogeneous settings. We have seen that the convergence rate ofℓp-MKL obtained in
homogeneous settings is tighter and require less restrictive condition than existing results. We have
also shown the convergence rate of elasticnet-MKL, and proved the derived learning rate is minimax
optimal. Furthermore, we observed that our bound well explains the favorable experimental results
for dense type MKL by considering the inhomogeneous settings. This is the first result that strongly
justifies the effectiveness of dense type regularizations in MKL.
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hara Project, the FIRST program from JSPS, initiated by CSTP.

References

[1] J. Aflalo, A. Ben-Tal, C. Bhattacharyya, J. S. Nath, and S. Raman. Variable sparsity kernel learning.
Journal of Machine Learning Research, 12:565–592, 2011.

[2] A. Argyriou, R. Hauser, C. A. Micchelli, and M. Pontil. A DC-programming algorithm for kernel selec-
tion. In the 23st ICML, pages 41–48, 2006.

[3] F. R. Bach. Consistency of the group lasso and multiple kernel learning.Journal of Machine Learning
Research, 9:1179–1225, 2008.

[4] F. R. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. InAdvances in
Neural Information Processing Systems 21, pages 105–112, 2009.

[5] F. R. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm.
In the 21st ICML, pages 41–48, 2004.

[6] P. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities.The Annals of Statistics,
33:1487–1537, 2005.

‡In our assumptionsm should be greater than 0. However we formally putsm = 0 (m > 1) for simplicity
of discussion. For rigorous discussion, one might consider arbitrary smallsm ≪ s.

8



[7] C. Bennett and R. Sharpley.Interpolation of Operators. Academic Press, Boston, 1988.

[8] C. Cortes, M. Mohri, and A. Rostamizadeh.L2 regularization for learning kernels. InUAI 2009, 2009.

[9] C. Cortes, M. Mohri, and A. Rostamizadeh. Learning non-linear combinations of kernels. InAdvances
in Neural Information Processing Systems 22, pages 396–404, 2009.

[10] C. Cortes, M. Mohri, and A. Rostamizadeh. Generalization bounds for learning kernels. Inthe 27th
ICML, pages 247–254, 2010.

[11] D. E. Edmunds and H. Triebel.Function Spaces, Entropy Numbers, Differential Operators. Cambridge
University Press, Cambridge, 1996.

[12] G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.Journal of Mathemati-
cal Analysis and Applications, 33:82–95, 1971.

[13] M. Kloft and G. Blanchard. The local rademacher complexity ofℓp-norm multiple kernel learning, 2011.
arXiv:1103.0790.

[14] M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and A. Zien. Efficient and accurateℓp-norm
multiple kernel learning. InAdvances in Neural Information Processing Systems 22, pages 997–1005,
2009.

[15] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien.lp-norm multiple kernel learning.Journal of Machine
Learning Research, 12:953–997, 2011.

[16] M. Kloft, U. Rückert, and P. L. Bartlett. A unifying view of multiple kernel learning. InECML/PKDD,
2010.

[17] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization.The Annals
of Statistics, 34:2593–2656, 2006.

[18] V. Koltchinskii and M. Yuan. Sparse recovery in large ensembles of kernel machines. InCOLT, pages
229–238, 2008.

[19] V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning.The Annals of Statistics, 38(6):3660–
3695, 2010.

[20] G. Lanckriet, N. Cristianini, L. E. Ghaoui, P. Bartlett, and M. Jordan. Learning the kernel matrix with
semi-definite programming.Journal of Machine Learning Research, 5:27–72, 2004.
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[25] B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

[26] J. Shawe-Taylor. Kernel learning for novelty detection. InNIPS 2008 Workshop on Kernel Learning:
Automatic Selection of Optimal Kernels, Whistler, 2008.

[27] N. Srebro and S. Ben-David. Learning bounds for support vector machines with learned kernels. In
COLT, pages 169–183, 2006.

[28] I. Steinwart.Support Vector Machines. Springer, 2008.

[29] I. Steinwart, D. Hush, and C. Scovel. Optimal rates for regularized least squares regression. InCOLT,
2009.

[30] T. Suzuki and R. Tomioka. Spicymkl: A fast algorithm for multiple kernel learning with thousands of
kernels.Machine Learning, 85(1):77–108, 2011.

[31] R. Tomioka and T. Suzuki. Sparsity-accuracy trade-off in MKL. InNIPS 2009 Workshop: Understanding
Multiple Kernel Learning Methods, Whistler, 2009.

[32] S. van de Geer.Empirical Processes in M-Estimation. Cambridge University Press, 2000.

[33] A. W. van der Vaart and J. A. Wellner.Weak Convergence and Empirical Processes: With Applications to
Statistics. Springer, New York, 1996.

[34] M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. Inthe 26th ICML, pages
1065–1072, 2009.

[35] Y. Ying and C. Campbell. Generalization bounds for learning the kernel. InCOLT, 2009.

[36] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.Journal of The
Royal Statistical Society Series B, 68(1):49–67, 2006.

9


