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Abstract

In this paper, we give a new generalization error bound of Multiple Kernel Learn-
ing (MKL) for a general class of regularizations. Our main target in this paper is
dense type regularizations includifig-MKL that imposes/,,-mixed-norm regu-
larization instead of;-mixed-norm regularization. According to the recent nu-
merical experiments, the sparse regularization does not necessarily show a good
performance compared with dense type regularizations. Motivated by this fact,
this paper gives a general theoretical tool to derive fast learning rates that is ap-
plicable to arbitrary mixed-norm-type regularizations in a unifying manner. As

a by-product of our general result, we show a fast learning ratg-bfKL that

is tightest among existing bounds. We also show that our general learning rate
achieves the minimax lower bound. Finally, we show that, when the complexities
of candidate reproducing kernel Hilbert spaces are inhomogeneous, dense type
regularization shows better learning rate compared with sgansgularization.

1 Introduction

Multiple Kernel Learning (MKL) proposed by [20] is one of the most promising methods that adap-
tively select the kernel function in supervised kernel learning. A kernel method is widely used and
several studies have supported its usefulness [25]. However the performance of kernel methods
critically relies on the choice of the kernel function. Many methods have been proposed to deal
with the issue of kernel selection. [23] studied hyperkrenels as a kernel of kernel functions. [2]
considered DC programming approach to learn a mixture of kernels with continuous parameters.
Some studies tackled a problem to learn non-linear combination of kernels as in [4, 9, 34]. Among
them, learning a linear combination of finite candidate kernels with non-negative coefficients is the
most basic, fundamental and commonly used approach. The seminal work of MKL by [20] con-
sidered learning convex combination of candidate kernels. This work opened up the sequence of
the MKL studies. [5] showed that MKL can be reformulated as a kernel version of the group lasso
[36]. This formulation gives an insight that MKL can be described &smixed-norm regularized
method. As a generalization of MKE,-MKL that imposed,,-mixed-norm regularization has been
proposed [22, 14)¢,-MKL includes the original MKL as a special casef@asMKL. Another direc-

tion of generalizing MKL is elasticnet-MKL [26, 31] that imposes a mixturéefmixed-norm and
¢>-mixed-norm regularizations. Recently numerical studies have showrd KL with p > 1

and elasticnet-MKL show better performances tliasMKL in several situations [14, 8, 31]. An
interesting perception here is that béfAMKL and elasticnet-MKL produce denser estimator than

the original/;-MKL while they show favorable performances. One motivation of this paper is to
give a theoretical justification to these generalidedse typ&KL methods in a unifying manner.



In the pioneering paper of [20], a convergence rate of MKL is give()/dg, whereM is the number

of given kernels and is the number of samples. [27] gave improved learning bound utilizing the
pseudo-dimension of the given kernel class. [35] gave a convergence bound utilizing Rademacher
chaos and gave some upper bounds of the Rademacher chaos utilizing the pseudo-dimension of the
kernel class. [8] presented a convergence bound for a Iearning methofawiggularization on the

kernel weight. [10] gave the convergence raté,oMKL as - pva 08 for1 < p < 2. [15]

gave a similar convergence bound with improved constants. [16] generalized this bound to a variant
of the elasticnet type regularization and widened the effective rangéoddll range ofp > 1 while

in the existing bound$ < p < 2 was imposed. One concern about these bounds is that all bounds
introduced above are “global” bounds in a sense that the bounds are applicable to all candidates of
estimators. Consequently all convergence rate presented above are of Qydewith respect to

the number of samples. However, by utilizing thecalizationtechniques including so-called local
Rademacher complexity [6, 17] and peeling device [32], we can derive a faster learning rate. Instead
of uniformly bounding all candidates of estimators, the localized inequality focuses on a particular
estimator such as empirical risk minimizer, thus can gives a sharp convergence rate.

Localized bounds of MKL have been given mainly in sparse learning settings [18, 21, 19], and there
are only few studies for non-sparse settings in which the sparsity of the ground truth is not assumed.
Recently [13] gave a localized convergence bound,dfIKL. However, their analysis assumed a
strong condition where RKHSs have no-correlation to each other.

In this paper, we show a unified framework to derive fast convergence rates of MKL with various
regularization types. The framework is applicablatbitrary mixed-norm regularizations includ-

ing £,-MKL and elasticnet-MKL. Our learning rate utilizes the localization technique, thus is tighter
than global type learning rates. Moreover our analysis does not require no-correlation assumption
as in [13]. We apply our general framework to some examples and show our bound achieves the
minimax-optimal rate. As a by-product, we obtain a tighter convergence réteMKL than exist-

ing results. Finally, we show that dense type regularizations can outperforms &paagelarization

when thecomplexitieof the RKHSs are not uniformly same.

2 Preliminary

In this section, we give the problem formulation, the notations and the assumptions required for the
convergence analysis.

2.1 Problem Formulation

Suppose that we are giveni.i.d. samples(z;,y;)}?, distributed from a probability distribution
PonX x R whereX is an input space. We denote Hythe marglnal distribution of” on X'. We

are givenM reproducing kernel Hilbert spaces (RKHSY,,, })/_, each of which is associated with

a kernelk,,,. We consider a mixed-norm type regularlzatlon with respect to an arbitrary g|ven norm
[[]]4, that is, the regularization is given by the NOAN frn | 22,, ) _1 ||» OF the vectox || fin ||+, )M,

for fm € Hy (m = 1,..., M) *. For notational simplicity, we writd ., = [|(I| foll20,.) 21 ||

for f =S fin (fn € Hin).

The general formulation of MKL that we consider in this paper fits a funcfien 2%21 fm (fm €
‘H.,,) to the data by solving the following optimization problem:

M 2
f = fm = arg min — Yi — fm(xs) | + A I£112- Q)
,nz::l fm€Hm (m=1,...,M) T ; Z ! v
We call this %-norm MKL". This formulation covers many practically used MKL methods (e.g.,

¢,-MKL, elasticnet-MKL, variable sparsity kernel learning (see later for their definitions)), and is
solvable by a finite dimensional optimization procedure due to the representer theorem [12]. In this

*We assume that the mixed-nomf|| fin |+, )M—1|| satisfies the triangular |nequaI|ty with respect to

(P )y, that i, [ (| Fmn + Frallse, )oi—slls < (11| fonll3 ) 5=slli + (11 Fn 1,0 ) s |- To satisfy this
condltlon it is sufficient if the norm is monotone, i.éa||, < ||a + b, foralla,b > 0.



paper, we focus on the regression problem (the squared loss). However the discussion presented
here can be generalized to Lipschitz continuous and strongly convex losses [6].

Example 1: /,-MKL  The first motivating example af-norm MKL is £,,-MKL [14] that employs

1

fy-norm for1 < p < oo as the regularizer flly = I|(| flls,)h=1lle, = (s [ fmllf, )7
If pis strictly greater than {p > 1), the solution of/,,-MKL becomes dense. In particular,= 2
corresponds to averaging candidate kernels with uniform weight [22]. It is reported, VL
\[/X|(t)r]1 p greater than 1, sgy = %, often shows better performance than the original spardéKkL
Example 2: Elasticnet-MKL The second example is elasticnet-MKL [26, 31] that employs mix-
ture of ¢/, and/; norms as the regularizelfif |, = 7| flle, + (1 — 7)||fllex = TZ,,A,{:I | frnll2e,. +
1 —7) (M 1 fmll3,)? with 7 € [0,1]. Elasticnet-MKL shares the same spirit withMKL in

a sense that it bridges sparseregularization and dengg-regularization. An efficient optimization
method for elasticnet-MKL is proposed by [30].

Example 3: Variable Sparsity Kernel Learning Variable Sparsity Kernel Learning (VSKL) pro-
posed by [1] divides the RKHSs infa’ groups{?—lj7k}2§1, (j=1,...,M') and imposes a mixed

norm regularization| f|ly = [ f|l(p.) = {Zj]\il(ZQQl ”fj,k”é)_[j’k)i}q wherel < p,q, and
fik € H;,. An advantageous point of VSKL is that by adjusting the parametersg, various
levels of sparsity can be introduced, that is, the parameters can control the level of spiingity
group andbetweengroups. This point is beneficial especially for multi-modal tasks like object
categorization.

2.2 Notations and Assumptions

Here, we prepare notations and assumptions that are used in the analy$i€Met H, & --- ®
‘H s Throughout the paper, we assume the following technical conditions (see also [3]).

Assumption 1. (Basic Assumptions)

(A1) There exists’™ = (ff,..., fi;) € H®M such thatB[Y|X] = f*(X) = M| fx(X),
and the noise := Y — f*(X) is bounded a$| < L.

(A2) For eachm = 1,...,M, H,, is separable (with respect to the RKHS norm) and
SUp e v [k (X, X)| < 1.

The first assumption in (A1) ensures the mo@ét? is correctly specified, and the technical as-
sumption|e| < L allowsef to be Lipschitz continuous with respect fo The noise boundedness
can be relaxed to unbounded situation as in [24], but we don’t pursue that direction for simplicity.

Let an integral operatdfy, , : Lo (IT) — Lo(IT) corresponding to a kernel functidn, be

Ty f = / 2)dTI(z).

It is known that this operator is compact, positive, and self-adjoint (see Theorem 4.27 of [28]). Thus
it has at most countably many non-negative eigenvalues. We denqig,pye thel-th largest
eigenvalue (with possible multiplicity) of the integral operdt®r, . Then we assume the following
assumption on the decreasing rate:of,,.

Assumption 2. (Spectral Assumption)There exisd < s, < 1 and0 < ¢ such that

(A3) P < el7m, (W21, 1<VYm < M),

where{ .., } 72, is the spectrum of the operat@,, corresponding to the kerné,,.

It was shown that the spectral assumption (A3) is equivalent to the classical covering number as-
sumption [29]. Recall that the.covering numbeiV (e, By, Lo(II)) with respect tal»(II) is the

minimal number of balls with radiusneeded to cover the unit bafl,  in H,, [33]. If the spectral
assumption (A3) holds, there exists a constanhat depends only onandc such that

log N (e, By,,, La(I1)) < Ce=2sm, @)



Table 1: Summary of the constants we use in this article.
n | The number of samples.
M | The number of candidate kernels.
sm | The spectral decay coefficient; see (A3).
kar | The smallest eigenvalue of the design matrix (see Eq. (3)).

and the converse is also true (see [29, Theorem 15] and [28] for details). Theretgrasifarge,
the RKHSs are regarded as “complex”, and,if is small, the RKHSs are “simple”.

An important class of RKHSs wherg, is known is Sobolev space. (A3) holds with, = % for
Sobolev space af-times continuously differentiability on the Euclidean ballist [11]. Moreover,

for a-times continuously differentiable kernels on a closed Euclidean b&H jthat holds fors,,, =

% [28, Theorem 6.26]. According to Theorem 7.34 of [28], for Gaussian kernels with compact
support distribution, that holds for arbitrary small< s,,. The covering number of Gaussian
kernels withunboundedupport distribution is also described in Theorem 7.34 of [28].

Let ks be defined as follows:

=Ny fll3, om
St 1ml3, o)
Kk represents the correlation of RKHSs. We assume all RKHSs are not completely correlated to
each other.

Assumption 3. (Incoherence Assumption),, is strictly bounded from below; there exists a con-
stantCy > 0 such that

(A4) 0<Cyt <k

KMtzsup{fiZO‘Hg ,meEHm(mzl,...,]V[)}. 3)

This condition is motivated by thiacoherence conditiof18, 21] considered in sparse MKL settings.

This ensures the uniqueness of the decomposition- Zﬁle £ of the ground truth. [3] also
assumed this condition to show the consistencg; efIKL.

Finally we give a technical assumption with respecitenorm.

Assumption 4. (Embedded Assumption)Under the Spectral Assumption, there exists a constant
C1 > 0 such that

(A5) I fmlloo < Cull fm iz,

Sm

Lo(I1)*

Jm

This condition is met when the input distributibhhas a density with respect to the uniform distri-
bution onX’ that is bounded away from 0 and the RKHSs are continuously embedded in a Sobolev
spacelV*2(Xx) wheres,,, = %, d is the dimension of the input spadéand« is the “smoothness”

of the Sobolev space. Many practically used kernels satisfy this condition (A5). For example, the
RKHSs of Gaussian kernels can be embedded in all Sobolev spaces. Therefore the condition (A5)
seems rather common and practical. More generally, there is a clear characterization of the condi-
tion (A5) in terms ofreal interpolation of spacesOne can find detailed and formal discussions of
interpolations in [29], and Proposition 2.10 of [7] gives the necessary and sufficient condition for
the assumption (A5).

Constants we use later are summarized in Table 1.

3 Convergence Rate Analysis of-norm MKL

Here we derive the learning rate gfnorm MKL in a most general setting. We suppose that the
number of kerneld\/ can increase along with the number of samplesThe motivation of our
analysis is summarized as follows:

¢ Give a unifying frame work to derive a sharp convergence rate-nbrm MKL.

e (homogeneous complexity) Show the convergence rate of some examples using our general
frame work, and prove its minimax-optimality under conditions that the complexities
of all RKHSs are same.



e (inhomogeneous complexity) Discuss how the dense type regularization outperforms the
sparse type regularization, when the complexitig®of all RKHSs arenotuniformly same.

Now we define;(t) := n,(t) = max(1,/%,t/y/n) fort > 0, and, for given positive reals-,,, }._,
and givenn, we definexy, as, 51, B2 as follows:

1

o mon((rd) =3 ( 557 n = anllrd) =3 | (225)

m=1 m=1

)
w *
M

Mo - EZemEoem) 2 Qem)®
Bi = P1({rm}) =3 < > M) B2 = Ba({rm}) = (Wlm> , (4)
m=1 P

m=1 nltsm nltsm

(note thatay, az, B1, 32 implicitly depends on the realg-,, }22_,). Then the following theorem
gives the general form of the learning rateyghorm MKL.

Theorem 1. Suppose Assumptions 1-4 are satisfied. {-gt}/_, be arbitrary positive reals that
2 2
can depend on, and assuma(”) = (%) + (%) . Then for alln and?’ that satisfyl% <1

[e5]
and 2% max{a?, 57, 2180 ¢y < L and for allt > 1, we have

2
17~ F B < W(a?+ﬂf+ﬂﬂc§())+4l(al) +(§2)]||f 2 ©

with probability 1 — exp(—t) — exp(—t’).

The proof will be given in Appendix D in the supplementary material. One can also find an outline
of the proof in Appendix A in the supplementary material.

The statement of Theorem 1 itself is complicated. Thus we will show later concrete learning rates on
some examples such §sMKL. The convergence rate (5) depends on the positive feglg?’_,,
but the choice ofr,, }}_, are arbitrary. Thus by minimizing the right hand side of Eq. (5), we

obtain tight convergence bound as follows:
ﬂ2) M log(M)
— +————>]. (6
<a1> (52) |11 + 28 ©)

ff*|%2<n>0p<{ iy ,{ama
20
There is a trade-off between the first two terfag := of + 32 and the third term(b) :=
2 2
[(g’;’) + <%) } 1£*]7, that is, if we take{r,,},, large, then the term (a) becomes small and

m

the term (b) becomes large, on the other hand, if we {akg},, small, then it results in large (a)
and small (b). Therefore we need to balance the two terms (a) and (b) to obtain the minimum in

Eq. (6).

We discuss the obtained learning rate in two situationg)dihogeneous complexgituation, and
(i) inhomogeneous complexgituation:
(i) (homogeneous) Alk,,,s are same: there exidis< s < 1 such thats,,, = s (Vm) (Sec.3.1).
(i) (inhomogeneous) Alk,,,s arenotsame: there exish, m’ such thats,, # s,, (Sec.3.2).

3.1 Analysis on Homogeneous Settings

Here we assume al,,s are same, say,, = s for all m (homogeneous setting). If we further restrict
the situation as all,,,s are samer(, = r (¥m) for somer), then the minimization in Eq. (6) can
be easily carried out as in the following lemma. llete theM -dimensional vector each element of
whichis1: 1:=(1,...,1)T € R™ and|| - ||~ be the dual norm of the-norni'.

Lemma 2. Whens,,, = s (¥m) with some) < s < 1 andn > ( |lo/M) ™5 the bound
(6) indicates that

~ « _2s __1
If =7 II%Q(m:@p(Ml e (

1]

flly) T+ + ()

25 Mlog(M)
11)* s - .

TThe dual of the nornj| - |, is defined agb||,+ := sup,{b"a | |la|ls < 1}.



The proofis given in Appendix G.1 in the supplementary material. Lemma 2 is derived by assuming
rm = 1 (Vm), which might make the bound loose. However, when the nprnfj,, is isotropic
(whose definition will appear later), that restriction,(= r (Vm)) does not make the bound loose,
that is, the upper bound obtained in Lemma 2 is tight and achieves the minimax optimal rate (the
minimax optimal rate is the one that cannot be improved by any estimator). In the following, we
investigate the general result of Lemma 2 through some important examples.

Convergence Rate o¥,-MKL Here we derive the convergence rate/gfMKL (1 < p < o0)
where|| f||y = Zﬁf:l(ﬂfm\\% )¥ (for p = oo, it is defined asnax,, | fnll 22, )- Itis well known

m

that the dual norm of,-norm is given ag,-norm wherey is the real satisfying, + { = 1. For

notational simplicity, let?,, := (Zn]‘f_l Il ) " Then substituting f*||, = R, and||1]|,- =
1le, = M = M™% into the bound (7), the learning rate @EMKL is given as
P s g2 2 Mlog(M
”f - f ||%2(H) :Op (n e Ml pite) RZ%JF + n( )) (8)

If we further assume is sufficiently large so that > M%R 2(log M) *, the leading term is the
first term, and thus we have

1 __2s P2
||f f ||L2(H) P (TL 1+s ]\4‘1 p(1+s) R£+ > . (9)

Note that as the complexity of RKHSs becomes small the convergence rate becomes fast. It is
known thatn™ T+ is the minimax optimal learning rate for single kernel learning. The derived
rate of¢,-MKL is obtained by multiplying a coefficient depending d# and R, to the optimal

rate of single kernel learning. To investigate the dependencl,ofo the learning rate, let us
consider two extreme settlngs i.e., sparse settif, |+, ), = (1,0,...,0) and dense setting
(Il )My = (1., 1) as in [15],

(||f* HHm)m ;= (1,0,...,0): R, = 1 for all p. Therefore the convergence rate
n~ T MR s fast for smallp and the minimum is achieved at= 1. This means

that/, regulanzatlon is preferred for sparse truth.
o (Ifill )M = (1,...,1): R, = M, thus the convergence rateign~ 7+ for all

p. Interestingly for dense ground truth, there is no dependency of the convergence rate
on the parameter (later we will show that this is not the case in inhomogeneous settings

(Sec.3.2)). That is, the convergence ratédstimes the optimal learning rate of single

kernel Iearningﬂ‘ﬁls) for all p. This means that for the dense settings, the complexity of
solving MKL problem is equivalent to that of solving single kernel learning problems.

Comparison with Existing Bounds Here we compare the bound féy-MKL we derived above
with the existing bounds. Left, (R) be the/,-mixed norm ball with radiugk: H,, (R) := {f =

fo:l fm | (Zn]‘le I fmllf m)% < R}.[10, 16, 15] gave “global” type bounds féy-MKL as

R(f) < B(f) + C M valOg(M)R forall f € Hy, (R), (10)

where R(f) and E(f) is the population risk and the empirical risk. First observation is that the
bounds by [10] and [15] are restricted to the situatiod p < 2. On the other hand, our analysis
and that of [16] covers alp > 1. Second, since our bound is specialized to the regularized risk

minimizer f defined at Eq. (1) while the existing bound (10) is applicable tqf af He, (R), our
bound is sharper than theirs for sufficiently large To see this, suppose > M%R;Q, then we

haven™ T M50 < n—3M'"». Moreover we should note thatcan be large as long as
Spectral Assumption (A3) is satisfied. Thus the bound (10) is formally recovered by our analysis by
approaching to 1.

Recently [13] gave a tighter convergence rate utilizing the localization techniq|qé@§* ||2Lz(n) =

. A __2s 25 " .
Op(mmplzp {ﬁn T MY R }), under a strong condition,; = 1 that imposes all

6



RKHSs are completely uncorrelated to each other. Comparing our bound with their result, there are
not miny, >, and —__ in our bound (if there is not the termL, then the minimum ofnin,, >,

is attained ap’ = p, thus our bound is tighter), moreover our analysis doesn't need the strong
assumptions; = 1.

Convergence Rate of Elasticnet-MKL Elasticnet-MKL employs a mixture @f, and/; norm as

the regularizer:|| f||, = 7| flle, + (1 — 7)||f|le, Wwherer € [0,1]. Then its dual norm is given
by ||blly« = mingegm {max (%, %)} Therefore by a simple calculation, we have

[11]ps = % Hence Eq. (7) gives the convergence rate of elasticnet-MKL as

; X 1 -1 . N 25 M log(M
1 = 130y = O (n T Nl + (L= D)) T ”)

Note that, whenr = 0 or 7 = 1, this rate is identical to that ai-MKL or ¢;-MKL obtained in
Eq. (8) respectively.

3.1.1 Minimax Lower Bound

In this section, we show that the derived learning rate (7) achieves the minimax-learning rate on the
1-norm ball
M
Hy(B) = {1 = S0l fu | 16 < R
when the norm igsotropic. We say the-norm || - ||, is isotropic when there exits a universal
constant such that
eM = c|1lle, = [ 2lp-1Llly, (bl < By (f 0 < by < b, (¥m)), 11
(note that the inverse inequalifyf < ||1],-||1|, of the first condition always holds by the defi-

nition of the dual norm). Practically used regularizations usually satisfy this isotropic property. In
fact, £,-MKL, elasticnet-MKL and VSKL satisfy the isotropic property with= 1.

We derive the minimax learning rate in a simpler situation. First we assume that each RKHS is same
as others. That is, the input vector is decomposed Mitcomponents like: = (z(), ... z(M))

where {z m>}m , are M iid copies of a random variabl&, and#,, = {fm | fm(z) =
fn(a®D, L a@®Dy = f (™), f,. € H} whereH is an RKHS shared by ali,,. Thus

fe H@M is decomposed a(x) = fz™M,, L) = M Fn(2(™) where eachfm is

a member of the common RKHB. We denote byc the kernel associated with the RKH&

In addition to the condition about the upper bound of spectrum (Spectral Assumption (A3)), we
assume that the spectrum of all the RKH$g have the same lower bound of polynomial rate.

Assumption 5. (Strong Spectral Assumption)There exist < s < 1 and0 < ¢, ¢’ such that
(AB) UTE < <elmE, (1<),

where{/i;}32, is the spectrum of the integral operatdf corresponding to the kernél In partic-
ular, the spectrum df,, also satisfiegi, ,,, ~ I (Ve¢,m).

m

Without loss of generality, we may assume thaf(X)] =0 (Vf € H). Since eacly,, receives
i.i.d. copy of X, H,,,s are orthogonal to each other:

Elfn () frrr () = B[ (X ™) o (XN =0 (Von € Huny Vit € Hor, Yim 2 0).
We also assume that the noigg}?_, is an i.i.d. normal sequence with standard deviatian 0.
Under the assumptions described above, we have the following minizidX)-error.

Theorem 3. Supposer > 0 is given ancdh, > W
on 4, (R) for isotropic norm|| - ||,, is lower bounded as

min max E[ f— 17113 }ZCMI_%n_ﬁls 1|« R 12+Ss’ 12
7 fre€HH(R) ||f f ||L2(H) (” ‘w ) ( )

whereinf is taken over all measurable functionsrofamples{(z;, y;)}7,

is satisfied. Then the minimax-learning rate




The proof will be given in Appendix F in the supplementary material. One can see that the con-
vergence rate derived in Eq. (7) achieves the minimax rate onytherm ball (Theorem 3) up

to %g(l\l) that is negligible when the number of samples is large. This means that tioem
regularization is well suited to make the estimator included in/threorm ball.

3.2 Analysis on Inhomogeneous Settings
In the previous section (analysis on homogeneous settings), we have not seen any theoretical justifi-
cation supporting the fact that dense MKL methodsﬂgeMKL can outperform the sparge-MKL

[10]. In this section, we show dense type regularizations can outperform the sparse regularization
in inhomogeneous settings (there existsm’ such thats,,, # s,,/). For simplicity, we focus on
¢,-MKL, and discuss the relation between the learning rate and the norm parameter

Let us consider an extreme situation where= s for some0 < s < 1 ands,, = 0 (m > 1)*. In
this situation, we have

_2s(8—s) a-s?

1
1 1
—2s b 1—s 1+s 2 T+s
r +M—-1)\2 sr r +M-1 sr
011:3(71 - ) yag =3 \}57513<1 > > P2 =3

nits nI+s

for all p. Note that theser;, as, 81 and 3, have no dependency @n Therefore the learning bound
(6) is smallest whep = oo becausd|f*|,.. < | f*[l¢, forall1 < p < oco. In particular, when
(£ 12 )M, = 1, we have| f*||,, = M||f*|¢., and thus obviously the learning ratefof -MKL
given by Eq. (6) is faster than that éf-MKL. In fact, through a bit cumbersome calculation, one

can check thatf..,-MKL can be M 1= times faster tharf;-MKL in a worst case. This indicates

that, when the complexities of RKHSs are inhomogeneous, the generalization abilierssafype
regularizations (e.g/4..-MKL) can be better than theparsetype regularization4;-MKL). In real
settings, it is likely that one uses various types of kernels and the complexities of RKHSs become
inhomogeneous. As mentioned above, it has been often reported tW¢L is outperformed by
dense type MKL such a&s:-MKL in numerical experiments [10]. Our theoretical analysis explains

well this experimental results.

4 Conclusion

We have shown a unified framework to derive the learning rate of MKL with arbitrary mixed-norm-
type regularization. To analyze the general result, we considered two situations: homogeneous
settings and inhomogeneous settings. We have seen that the convergencg, i bobtained in
homogeneous settings is tighter and require less restrictive condition than existing results. We have
also shown the convergence rate of elasticnet-MKL, and proved the derived learning rate is minimax
optimal. Furthermore, we observed that our bound well explains the favorable experimental results
for dense type MKL by considering the inhomogeneous settings. This is the first result that strongly
justifies the effectiveness of dense type regularizations in MKL.
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