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Abstract

A number of recent scientific and engineering problems reggignals to be de-
composed into a product of a slowly varying positive envelapd a quickly vary-
ing carrier whose instantaneous frequency also variedslover time. Although
signal processing provides algorithms for so-called atumgdi- and frequency-
demodulation (AFD), there are well known problems with dlltlee existing
methods. Motivated by the fact that AFD is ill-posed, we aggh the problem
using probabilistic inference. The new approach, callexbabilistic amplitude
and frequency demodulation (PAFD), models instantanemeiéncy using an
auto-regressive generalization of the von Mises distidoiand the envelopes us-
ing Gaussian auto-regressive dynamics with a positivityst@int. A novel form
of expectation propagation is used for inference. We detratesthat although
PAFD is computationally demanding, it outperforms pregiapproaches on syn-
thetic and real signals in clean, noisy and missing datangstt

1 Introduction

Amplitude and frequency demodulation (AFD) is the procgswhich a signal ¥;) is decomposed
into the product of a slowly varying envelope or amplitudenponent §;) and a quickly varying
sinusoidal carrierdos(¢,)), that isy; = a; cos(¢¢). In its general form this is an ill-posed problem
[1], and so algorithms must impose implicit or explicit asgtions about the form of carrier and
envelope to realise a solution. In this paper we make thedatdrassumption that the amplitude
variables are slowly varying positive variables, and thevdéves of the carrier phasey = ¢; —
¢, called the instantaneous frequencies (IFs), are alsoghavying variables.

It has been argued that the subbands of speech are well tdrégsad by such a representation [2, 3]
and so AFD has found a range of applications in audio praegsacluding audio coding [4, 2],
speech enhancement [5] and source separation [6], andsedin hearing devices [5]. AFD has
been used as a scientific tool to investigate the perceptisaumds [7]. AFD is also of importance

in neural signal processing applications. Aggregate fiddsurements such as those collected at the
scalp by electroencephalography (EEG) or within tissueeal lfield potentials often exhibit tran-
sient sharp spectral lines at characteristic frequentigthin each such band, both the amplitude of
the oscillation and the precise center frequencies maywiahytime; and both of these phenomena
may reveal important elements of the mechanism by which éhe discillation arises.
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Despite the fact that AFD has found a wide range of importaptieations, there are well-known
problems with existing AFD algorithms [8, 1, 9, 10, 5]. Besauwf these problems, the Hilbert
method, which recovers an amplitude from the magnitude @fthalytic signal, is still considered
to be the benchmark despite a number of limitations [11, thZhis paper, we show examples of de-
modulation of synthetic, audio, and hippocampal thetammysignals using various AFD techniques
that highlights some of the anomalies associated withiagishethods.

Motivated by the deficiencies in the existing methods thisegpalevelops a probabilistic form of
AFD. This development begins in the next section where wategdret two existing probabilistic

algorithms in the context of AFD. The limitations of thesethwls suggest an improved model
(section 2) which we demonstrate on a range of synthetic ahdal signals (sections 4 and 5).

1.1 Simplemodelsfor probabilistic amplitude and frequency demodulation

In this paper, we view demodulation as an estimation prolatewhich a signal is fit with a sinusoid
of time-varying amplitude and phase,

vi = R (agexp (i) + . (1)
The expression also includes a noise term which will be neztlek a zero-mean Gaussian with
varianceo?, that isp(e;) = Norm(e;;0,07). We are interested in the situation where the IF of the
sinusoid varies slowly around a mean vadlueln this case, the phase can be expressed in terms of
the integrated mean frequency and a small perturbatios; wt + 6.

Clearly, the problem of inferring,; and 8, from y; is ill-posed, and results will depend on the
specification of prior distributions over the amplitude quichse perturbation variables. Our goal in
this paper is to specify such prior distributions diredblyt this will require the development of new
techniques to handle the resulting non-linearities. A $&malternative is to generate the sinusoidal
signal from a rotating two-dimensional phasor. For exampmeparametrizing the likelihood in
terms of the components ;, = a, cos(6;) andxs ;, = a, sin(6,), yields a linear likelihood function

vt = a; (cos(@t) cos(6;) — sin(wt) sin(6;)) + € = cos(wt)xy s — sin(Wt)xa s + € = WiX¢ + €.
Here the phasor components, which have been collected tttarx] = [x; ¢, x2 ¢, are multiplied
by time-varying weightsw{ = [cos(wt), — sin(wt)]. To complete the model, prior distributions can
be now be specified over;. One choice that results in a particularly simple inferealg@rithm is
a Gaussian one-step auto-regressive (AR(1)) prior,

P(Xk,t|Xk,t—1) = Norm(xp i3 AxXp,¢—1, 02). (2)
When the dynamical parameter tends to uniXy-¢ 1) and the dynamical noise variance to zero
(02 — 0), the dynamics become very slow, and this slowness is itdteiy the phase perturbations
and amplitudes. This model is an instance of the Bayesiant&pe Estimation (BSE) model [13]
(when\ = 1), but re-interpreted in terms of amplitude- and frequemmydulated sinusoids, rather
than fixed frequency basis functions. As the model is a liganssian state space model, exact
inference proceeds via the Kalman smoothing algorithm.

Before discussing the properties of BSE in the context afifiiamplitude- and frequency-modulated
sinusoids, we derive an equivalent model by returning tdiketihood function (eq. 1). Now the
full complex representation of the sinusoid is retained.ba®re, the real part corresponds to the
observed data, but the imaginary part is now treated efyles missing data,

ve = R (x1,1 cos(wt) — xo4 sin(wt) 4 ixq ¢ sin(wt) + ixg s cos(wt)) + €. (©)]
The new form of the likelihood function can be expressed ttaeform,y; = [1,0]z; + €, using a
new set of variable%,, which are rotated versions of the original variablgs+ R(&t)x; where
cos(f) —sin(0)
sin(f)  cos(f) |- “)
An auto-regressive expression for the new varialkdgg;an now be found using the fact that rotation
matrices commuteR (6, + 62) = R(61)R(A2) = R(#2)R(61), together with expression for the
dynamics of the original variables; (eq. 2),

z¢ = A\R(@)R(0(t — 1))x—1 + R(w0t)e; = AR(w)z1—1 + € (5)

where the noise is a zero mean Gaussian with covariaded) = R(wt)(e.€])RT(wt) = o2l

This equivalent formulation of the BSE model is called thelfabilistic Phase Vocoder (PPV) [14].
Again exact inference is possible using the Kalman smogtaigorithm.

R(0) =



1.2 Problemswith ssmple modelsfor probabilistic amplitude and frequency demodulation

BSE-PPV is used to demodulate synthetic and natural signklgs. 1, 2 and 7. The decomposition
is compared to the Hilbert method. These examples immeyliateeal several problems with BSE-
PPV. Perhaps most unsatisfactory is the fact that the Imaggs are often ill behaved, to the extent
that they go negative, especially in regions where the dugdi of the signal is low. It is easy to
understand why this occurs by considering the prior distiitm over amplitude and phase implied
by our choice of prior distribution ovet; (or equivalently over,),

a 1 A
ﬁ exp —ﬁ (af + )\Zaf_l) + U—Eatat_l cos(¢y — dp—1 —w)| . (6)
Phase and amplitude are dependent in the implied distibutivhich is conditionally a uniform
distribution over phase when the amplitude is zero and aaglygpeaked von Mises distribution
[15] when the amplitude is large. Consequently, the modelr&amore highly variable IFs at low
amplitudes. In some applications this may be desirablefdyusignals like sounds it presents a
problem. First it may assign substantial probability to lygical negative IFs. Second, the same
noiseless signal at different intensities will yield diffat estimated IF content. Third, the complex
coupling makes it difficult to select domain-appropriatediscale parameters. Consideration of
IF reveals yet another problem. When the phase-perturlsatiary slowly @ — 1), there is no
correlation between successive IRsgv:—1) — (wi){wi—1) — 0). One of the main goals of the
model was to capture correlated IFs through time, and theiealis to move to priors with higher
order temporal dependencies.

p(at7¢t|at—1v¢t—1) =

In the next section we will propose a new model for PAFD whidtiresses these problems, retaining
the same likelihood function, but modifying the prior to lunde independent distributions over the
phase and amplitude variables.
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Figure 1: Comparison of AFD methods on a sinusoidally amg@ét and frequency-modulated sinu-
soid in broad-band noise. Estimated values are shown inTteelgray areas show the region where
the true amplitude falls below the noise floar{ o) and the estimates become less accurate. See
section 4 for details.

2 PAFD using Auto-regressive and generalized von Mises distributions

We have argued that the amplitude and phase variables in alrfeydPAFD should be indepen-
dently parametrized, but that this introduces difficult@ssthe likelihood is highly non-linear in
these variables. This section and the next develop the nealsssary to handle this non-linearity.
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Figure 2: AFD of a starling song. Top: The original waveforrithaestimated envelopes, shifted
apart vertically to aid visualization. The light gray badicates the problematic low amplitude
region. Bottom panels: IF estimates superposed onto tharsepe of the signal. PAFD tracks the
FM/AM well, but the other methods have artifacts.

An important initial consideration is whether to use a repreation for phase which is wrappéds
(—m, ], or unwrappedd € R. Although the latter has the advantage of implying simplerainics,
it leads to a potential infinity of local modes at multiple2afmaking inference extremely difficult.
It is therefore necessary to work with wrapped phases andsilde starting point for a prior is thus
the von Mises distribution,

p(Olk, p) = 1 exp(kcos(f — p)) = vonMises(0; k, ). @)

27TI() (k)
The two parameters, the concentratidéi &nd the meany(), determine the circular variance and
mean of the distribution respectively. The normalizingstant is given by a modified Bessel func-
tion of the second kindjy (k). Crucially for our purposes, the von Mises distribution barobtained
by taking a bivariate isotropic Gaussian with an arbitragam, and conditioning onto the unit-circle
(this connects with BSE-PPV, see eq. 6). The Generalizedisas distribution is formed in an
identical way when the bivariate Gaussian is anisotro¢. [These constructions suggest a simple
extension to time-series data by conditioning a tempoxalriate Gaussian time-series onto the unit
circle at all sample times. For example, when two indepen@aussian AR(2) distributions are
used to construct the prior we have,

T 2
P(X1:2,1:T) X H I(Xit + Xgﬁt = 1) H NOI‘m(Xm,t; )\lxm.,tfl + )\ZXm,t7270)2<)~ (8)

t=1 m=1

wherel(xi, + x3, = 1) is an indicator function representing the unit circle ceaist. Upon a
change of variables; ; = cos(0), x2+ = sin(6;) this yields,
T
p(01.7lk1,ke) H exp (kq cos(0; — 0;—1) + ko cos(0y — 04—2)) , 9)

t=1



wherek; = \;(1—\2)/02 andk, = \o/02. One of the attractive features of this prior is that when
it is combined with the likelihood (eq. 1) the resulting p@br distribution over phase variables
is a temporal version of the Generalized von Mises distidiout That is, it can be expressed as a
bivariate anisotropic Gaussian, which is constrainedeautiit circle. It is this representation which
will prove essential for inference.

Having established a candidate prior over phases, we tufretamplitude variables. With one eye
upon the fact that the prior over phases can be interpretprbdsict of a Gaussian and a constraint,
we employ a prior of a similar form for the amplitude variahla truncated Gaussian AR (process,

T T
p(ar.r| A1, 07) H 1(a; > 0) Norm (at; Z Aprdg_gr, 02) . (10)
t=1 t'=1
The model formed from equations 1, 9 and 10 will be termed &iistic Amplitude and Frequency
Demodulation. PAFD is closely related to the BSE-PPV mod&| [L4]. Moreover, when the
phase variables are drawn from a uniform distributign & ko = 0) it reduces to the convex
amplitude demodulation model [17], which itself is a formpobbabilistic amplitude demodulation

[18, 19, 20]. The AR prior over phases has also been used gresson setting [21].

3 Inferencevia expectation propagation

The PAFD model introduced in the last section contains teegmarate types of non-linearity: the
multiplicative interaction in the likelihood, the unit cle constraint, and the positivity constraint. Of
these, it is the circular constraint which is most challeggis the development of general purpose
machine learning methods for handling hard, non-convesttamts is an open research problem.
Following [22], we propose a hovel method which uses expiect@ropagation (EP) [23] to replace
the hard constraints with soft, local, Gaussian approxonatwhich are iteratively refined.

In order to apply EP, the model is first rewritten into a simplerm. Making use of the
fact that an ARf) process can be rewritten as an equivalent multi-dimeasi&iR(1) model
with 7 states, we concatenate the latent variables into an augthestate vectors] =

[ag, 84—1, ..., 8—r41,X1,¢,X24,X1,4-1,X2,—1), and express the model as a product of clique po-
tentials in terms of this variable,
T
p(vir,sir) o< [ [ me(se se-1)ve(s16,5147.0,52172), Wherem(sy, s, 1) = Norm(s; Asse 1, 5s),
t=1

i (as, X1,¢,X2,4) = Norm (yt; ay(cos(wt)xq ¢ — sin(c‘ut)xzt),oi) 1(a; > O)l(xit + Xg’t =1).

(See the supplementary material for details of the dyndmiedricesA andX,). In this new form
the constraints have been incorporated with the non-litikelihood into the potentiat),, leav-
ing a standard Gaussian dynamical potentidk,,s;_1). Using EP we approximate the posterior
distribution using a product of forward, backward and craieed-likelihood messages [24],

SlT

T
St 5t St ?/Jt(al ty X1ty X2, t HQt(St)~ (11)

||’,:]ﬂ

The messages should be mterpreted as followgs;) is the effect ofr;(s;—1,s:) andg(s¢—1)

on the beliefg(s;), whilst 5;(s;) is the effect ofr;;1(st, s:+1) andg(sq11) on the beliefq(s;).
Finally, 1:(a1.+,%1 ¢, x2,¢) IS the effect of the likelihood and the constraints on theeel(s;). All

of these messages will be un-normalized Gaussians. Theéagfta the messages can be found by
removing the messages frogiis;.7) that correspond to the effect of a particular potential. SEne
messages are replaced by the corresponding potential. éleeed messages are then updated by
moment matching the two distributions. The updates for thevdird and backward messages are
a straightforward application of EP and result in updates #ne nearly identical to those used for
Kalman smoothing. The updates for the constrained likelihpotential are more complicated:

MOM

Updatez/]t SUCh tha@(xt) = pw (St) = Oy (St)ﬂt (St)wt(at,}(l ty X2 t) (12)

The difficulty is the moment computation which we evaluatevim stages. First, we integrate
over the amplitude variable, which involves computing thenments of a truncated Gaussian and



is therefore computationally efficient. Second, we nunadigjantegrate over the one dimensional
phase variable. For the details we again refer the readbetsupplementary material.

A standard forward-backward message update schedule \eds Usdaptive damping improved
the numerical stability of the algorithm substantially. eTbomputational complexity of PAFD is
O(T(N + 73)) where N are the number of points used to compute the integral ovepliase
variable. For the experiments we used a second order proeesthe amplitude variables & 2)
and N = 1000 integration points. In this case, the 16-32 forward-back@asses required for
convergence took one minute on a modern laptop computergioals of lengthl” = 1000.

4 Application to synthetic signals

One of the main challenges posed by the evaluation of AFDrigiigos is that the ground truth
for real-world signals is unknown. This means that a quatig comparison of different schemes
must take an indirect approach. The first set of evaluatioesemted here uses synthetic signals, for
which the ground truth is known. In particular, we considepéitude- and frequency-modulated
sinusoidsy; = a; cos(f;) wherea; = 1 + sin(2m f,t) andig—f = f+ Aysin(27 fst), which have
been corrupted by Gaussian noise. Fig. 1 compares AFD ofuartessgnal { = 50Hz, f, = 8Hz,

fr = dHz andAy = 25Hz) by the Hilbert, BSE-PPV and PAFD methods. Fig. 3 sumnearihe
results at different noise levels in terms of the signal tizs@oatio (SNR) of the estimated variables
and the reconstructed signal, i.e. SNR= 10log,, 3°/_, a? — 10log;o 31—, (a: — &;)°. PAFD
consistently outperforms the other methods by this measunghermore, Fig. 4 demonstrates that
PAFD can be used to accurately reconstruct missing sedaifdhs signal, outperforming BSE-PPV.
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Figure 3: Noisy synthetic data. SNR of estimated variabsea function of the SNR of the signal.
Envelopes (left), IFs (center) and denoised signal (righd)id markers denote examples in Fig. 1.

5 Application toreal world signals

Having validated PAFD on simple synthetic examples, we nonsier real-world signals. Bird-
song is used as a prototypical signal as it has strong freyusdulation content. We isolate a
300ms component of a starling song using a bandpass filteagwig AFD. Fig. 2 shows that PAFD
can track the underlying frequency modulation even thobghetis noise in the signal which causes
the other methods to fail. This example forms the basis ofitmmortant robustness and consistency
tests. In the first, spectrally matched noise is added toigimakand the IFs and amplitudes are re-
estimated and compared to those derived from the cleanlskjga5 shows that the PAFD method
is considerably more robust to this manipulation than blagtHilbert and BSE-PPV methods. In the
second test, regions of the signal are removed and the rsqufeldictions for the missing regions
are compared to the estimates derived from the clean sigealfig. 6). Once again PAFD is more
accurate. As a final test of PAFD we consider the importantosientific task of estimating the
phase, equivalently the IF, of theta oscillations in an EE@a. The EEG signal typically contains
broadband noise and so a conventional analysis appliescepdzess filter before using the Hilbert
method to estimate the IF. Although this improves the edésianarkedly, the noise component
cannot be completely eradicated which leads to artifactiseniF estimates (see Fig. 7). In contrast
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Figure 4: Missing synthetic data experiments. TOP: SNR tifneded variables as a function of gap
duration in the input signal. Envelopes (left), IFs (ceh&rd denoised signal (right). Solid markers
indicate the examples shown in the bottom rows of the figu@TBOM: Two examples of PAFD
reconstruction. Light gray regions indicate missing setiof the signal.
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Figure 5: Noisy bird song experiments. SNR of estimatedadeis as compared to those estimated
from the clean signal, as a function of the SNR of the inputaigEnvelopes (left), IFs (right).

PAFD returns sensible estimates from both the filtered aigihal signal. Critically, both estimates
are similar to one another suggesting the new estimatioenselis reliable.

6 Conclusion

Amplitude and frequency demodulation is a difficult, illgeal estimation problem. We have devel-
oped a new inferential solution called probabilistic aryale and frequency demodulation which
employs a von Mises time-series prior over phase, consiiumy conditioning a bivariate Gaussian
auto-regressive distribution onto the unit circle. Thestarction naturally leads to an expectation
propagation inference scheme which approximates the farstraints using soft local Gaussians.
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Figure 7. Comparison of AFD methods on EEG data. The left Isdel shows estimates derived
from the raw EEG signal, whilst the right shows estimates/ddrfrom a band-pass filtered version.
The gray areas show the region where the true amplitudebfeliésv the noise floors( < o), where
conventional methods fail.

We have demonstrated the utility of the new method on syiathet natural signals, where it outper-
formed conventional approaches. Future research willidengxtensions of the model to multiple
sinusoids, and learning the model parameters so that tbethly can adapt to novel signals.
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