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Abstract

We introduce the Piecewise-Constant Conditional Intensity Model, a model for
learning temporal dependencies in event streams. We describe a closed-form
Bayesian approach to learning these models, and describe an importance sampling
algorithm for forecasting future events using these models, using a proposal distri-
bution based on Poisson superposition. We then use synthetic data, supercomputer
event logs, and web search query logs to illustrate that our learning algorithm can
efficiently learn nonlinear temporal dependencies, and that our importance sam-
pling algorithm can effectively forecast future events.

1 Introduction

The problem of modeling temporal dependencies in temporal streams of discrete events arises in
a wide variety of applications. For example, system error logs [14], web search query logs, the
firing patterns of neurons [18] and gene expression data [8], can all be viewed as streams of events
over time. Events carry both information about their timing and their type (e.g., the web query
issued or the type of error logged), and the dependencies between events can be due to both their
timing and their types. Modeling these dependencies is valuable for forecasting future events in
applications such as system failure prediction for preemptive maintenance or forecasting web users’
future interests for targeted advertising.

We introduce the Piecewise-Constant Conditional Intensity Model (PCIM), which is a class of
marked point processes [4] that can model the types and timing of events. This model captures
the dependencies of each type of event on events in the past through a set of piecewise-constant
conditional intensity functions. We use decision trees to represent these dependencies and give a
conjugate prior for this model, allowing for closed-form computation of the marginal likelihood and
parameter posteriors. Model selection then becomes a problem of choosing a decision tree. Decision
tree induction can be done efficiently because of the closed form for the marginal likelihood. Fore-
casting can be carried out using forward sampling for arbitrary finite duration queries. For episodic
sequence queries, that is, queries that specify particular sequences of events in given future time
intervals, we develop a novel approach for estimating the probability of rare queries, which we call
the Poisson Superposition Importance Sampler (PSIS).

We validate our learning and inference procedures empirically. Using synthetic data we show that
PCIMs can correctly learn the underlying dependency structure of event streams, and that the PSIS
leads to effective forecasting. We then use real supercomputer event log data to show that PCIMs
can be learned more than an order of magnitude faster than Poisson Networks [15, 18], and that they
have better test set likelihood. Finally, we show that PCIMs and the PSIS are useful in forecasting
future interests of real web search users.



2 Related Work

While graphical models such as Bayesian networks [2] and dependency networks [10] are widely
used to model the dependencies between variables, they do not model temporal dependencies (see
e.g., [8]). Dynamic Bayesian Networks (DBN) [5, 9] allow modeling of temporal dependencies in
discrete time. It is not clear how timestamps in our data should be discretized in order to apply the
DBN approach. At a minimum, too slow a sampling rate results in poor representation of the data,
and too fast a sampling rate increases the number of samples making learning and inference more
costly. In addition, allowing long term dependencies requires conditioning on multiple steps into
the past, and choosing too fast a sampling rate increases the number of such steps that need to be
conditioned on.

Recent progress in modeling continuous time processes include Continuous Time Bayesian Net-
works (CTBNs) [12, 13], Continuous Time Noisy-Or (CT-NOR) [16], Poisson Cascades [17], and
Poisson Networks [15, 18]. CTBNs are homogeneous Markov models of the joint trajectories of
discrete finite variables, rather than models of event streams in continuous time [15]. In contrast,
CT-NOR and Poisson Cascades model event streams, but require the modeler to choose a parametric
form for temporal dependencies. Simma et al [16, 17] describe how this choice significantly impacts
model performance, and depends strongly on the domain. In particular, the problem of model selec-
tion for CT-NOR and Poisson Cascades is unaddressed. PCIMs, in contrast to CT-NOR and Poisson
Cascades, perform structure learning to learn how different events in the past affect future events.
Poisson Networks, described in more detail below, are closely related to PCIMs, but PCIMs are over
an order of magnitude faster to learn and can model nonlinear temporal dependencies.

3 Conditional Intensity Models

In this section, we define Conditional Intensity Models, introduce the class of Piecewise-Constant
Conditional Intensity Models, and describe Poisson Networks. We assume that events of dif-
ferent types are distinguished by labels | drawn from a finite set £. An event is then com-
posed of a non-negative time-stamp ¢ and a label I. An event sequence x = {(t;,1;)}]_,
where 0 < ¢; < --- < t,. The history at time t of event sequence x is the sub-sequence
h(t,z) = {(t:, ;) | (ti,1;) € z,t; <t}. We write h; for h(t;_1,x) when it is clear from context
which « is meant. By convention ty = 0. We define the ending time t(x) of an event sequence x as
the time of the last event in z: t(z) = max ({t : (¢,1) € x}) so that t(h;) = t;_1.

A Conditional Intensity Model (CIM) is a set of non-negative conditional intensity functions indexed
by label {\;(t|z; 8) }icc. The data likelihood for this model is

p(33|9) = H H Al(tz|h“ 9)1l(li)e—Al(ti|hi§9) (1)
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where A (t|x; 0) = fioo Ai(7|x; 0)dr for each event sequence z and the indicator function 1;(1’) is
one if I’ = [ and zero otherwise. The conditional intensities are assumed to satisfy A;(¢|x; ) = 0 for
t < t(x) to ensure that t; > ¢;_1 = t(h;). These modeling assumptions are quite weak. In fact, any
distribution for x in which the timestamps are continuous random variables can be written in this
form. For more details see [4, 6]. Despite the fact that the modeling assumptions are weak, these
models offer a powerful approach for decomposing the dependencies of different event types on the
past. In particular, this per-label conditional factorization allows one to model detailed label-specific
dependence on past events.

3.1 Piecewise-Constant Conditional Intensity Models

Piecewise-Constant Conditional Intensity Models (PCIMs) are Conditional Intensity Models where
the conditional intensity functions are assumed to be piecewise-constant. As described below, this
assumption allows efficient learning and inference. PCIMs are defined in terms of local structures
S; for each label [, which specify regions in time where the corresponding conditional intensity
function is constant, and local parameters 6; for each label which specify the values taken in those
regions. Piecewise-Constant Conditional Intensity Models (PCIMs) are defined by local structures
Sy = (X, 01(t, z)) and local parameters 6; = {\;s}sex,, where ¥; denotes a set discrete states, A5



are non-negative constants, and o; denotes a state function that maps a time and an event sequence
to X; and is piecewise constant in time for every event sequence. The conditional intensity functions
are defined as A\;(t|z) = A5 with s = oy(¢, x), and thus are piecewise constant. The resulting data

likelihood can be written as
x|5 9 H H /\Ch _)\lsdls(x) )
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where S = {Si},c., 0 = {0i},c, , c1s(x) is the number of times label / occurs in = when the state
function for [ maps to state s (i.e., >, 1; (I;) 15 (0y(t;, hi))), and dj(x) is the total duration during

which the state function for [ maps to state s in the data z (i.e., fot @) q, (o (1,h(1,z)))dr).

3.2 Poisson Networks

Poisson networks[15, 18] are closely related to PCIMs. Given a basis set B of piecewise-constant
real-valued feature functions f(t,x), a feature vector o;(t,x) is defined for each ! by selecting
component feature functions from B. The resulting o;(t, z) are piecewise-constant in time. The
conditional intensity for [ is given by the regression \;(¢|x,0) = er'o1(h:7) with parameter w;. By
convention, the component oy ¢ (¢, ) = 1 so that w; ¢ is a bias parameter.

The resulting likelihood does not have a conjugate prior, and in our experiments we use iterative
MAP parameter estimates under a Gaussian prior, and use a Laplace approximation of the marginal
likelihood for structure learning (i.e., feature selection) [15]. In our experiments, each f € I3 is spec-

Cl,dy,do (t,;c))

ified by a label [ and a pair of time offsets 0 < d; < d2, and takes on the value log (1 + =32

where ¢; 4, .4, (¢, ) is the number of times [ occurs in z in the interval [t — do,t — d1).

4 Learning PCIMs

In this section, we present an efficient learning algorithm for PCIMs. We give a conjugate prior for
the parameters 6 which yields closed form formulas for the parameter posteriors and the marginal
likelihood of the data given a structure .S. We then give a decision tree based learning algorithm that
uses the closed-form marginal likelihood formula to learn the local structure S; for each label.

4.1 Closed-Form Parameter Posterior and Marginal Likelihood

In general, computing parameter posteriors for likelihoods of the form of equation (1) is compli-
cated. However, in the case of PCIMs, the Gamma distribution is a conjugate prior for \;s, despite
the fact that the data likelihood of equation (2) is not a product of exponential densities (i.e., when
¢is(x) # 1). The corresponding prior and posterior densities are given by
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Assuming the prior over 6 is a product of such p(\;s|ays, Bis), the marginal likelihood is
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In our experiments, we use the point estimate N = %gisg which is E [\ | z].

4.2 Structure Learning with Decision Trees

In this section, we specify the set of possible structures in terms of a set of basis state functions, a
set of decision trees built from them, and a greedy Bayesian model selection procedure for learning
a structure. Finally, we describe the particular set of basis state functions we use in our experiments.

We use B to denote the set of basis state functions f(t,x), each taking values in a basis state set
X ;. Given B, we specify S; through a decision tree whose interior nodes each have an associated
f € B and a child corresponding to each value in X ¢. The per-label state set 3; is then the set of



leaves in the tree. The state function o;(¢, ) is computed by recursively applying the basis state
functions in the tree until a leaf is reached. Note that the resulting mapping is a valid state function
by construction.

In order to carry out Bayesian model selection, we use a factored structural prior p(S)
[licc [lses, #its- Since the prior and the marginal likelihood both factor over /, the local struc-
tures S; can be chosen independently. We search for each ) as follows. We begin with S being the
trivial decision tree that maps all event sequences and times to the root. In this case, \;(t|z) = A;.
Given the current S;, we consider S] specified by choosing a leaf s € ¥; and a basis state function
f € B, and assigning f to s to get a set of new child leaves {s1,--- ,s,,} where m = |X|. Be-
cause the marginal likelihood factors over states, the gain in the posterior of the structure due to this
split is zgi}ig = m”w“gi;‘yﬂ;@‘%m(w). The next
with the largest gain. The search terminates if there is no gain larger than one. We note that the
local structure representation and search can be extended from decision trees to decision graphs in a

manner analogous to [3].

structure .S} is chosen by selecting the s and f

In our experiments, we wish to learn how events depend on the timing and type of prior events. We
therefore use a set of time and label specific basis state functions. In particular, we use binary basis
state functions fy 4, 4, - indexed by a label I € £, two time offsets 0 < d; < dy and a threshold
7 > 0. Such a f encodes whether or not the event sequence x contains at least 7 events with label [’
with timestamps in the window [t — da, t — d;). Examples of decision trees that use such basis state
functions are shown in Figure 1.

S Forecasting

In this section, we describe how to use PCIMs to forecast whether a sequence of target labels will
occur in a given order and in given time intervals. For example, we may wish to know the probability
that a computer system will experience a system failure in the next week and again in the following
week, or that an internet user will be shown a particular display ad and then visit the advertising
merchant’s website in the next month. We call such a sequence and set of associated intervals an

episodic sequence and denote it by e = {(I7, [a},b})) }f: L+ We call (I7, [a},b})) the 3™ episode.
We say that the episodic sequence e occurs in an event sequence  if Jiy < --- < iy : (t;,1;;) €

z b, =15t € [a;f, b;‘) The set of event sequences x in which e occurs is denoted X.

Given an event sequence h and a time ¢t* > ¢(h), we term any event sequence  whose history up
to t* agrees with h (i.e., h(t*,z) = h) an extension of h from t*. Our forecasting problem is, given
at observed sequence h at time t* > ¢(h), to compute the probability that e occurs in extensions of
h from ¢*. This probability is p (X € X, | h(t*, X) = h) and will be denoted using the shorthand
p(Xe|h, t*). Computing p(X,|h, t*) is hard in general because the probability of episodes of interest
can depend on arbitrary numbers of intervening events. We therefore give Monte Carlo estimates for
p(Xe|h, t*), first describing a forward sampling procedure for forecasting episodic sequences (also
applicable to other forecasting problems), and then introducing an importance sampling scheme
specifically designed for forecasting episodic sequences.

5.1 Forward Sampling

The probability of an episodic sequence can be estimated using a forward sampling approach by
sampling M extensions {x(™}M_, of h from t* and using the estimate Pgya(Xc|h,t*; M) =
LM 14 (20™). By Hoeffding’s inequality, P([ppwa(Xe|h, t*; M) — p(Xe|h,t*)] > €) <
2¢=2°M  Thus, the error in prya(X.|h, t*; M) falls as O(1/y/M). It is important to note that
1x, () only depends on x up to b}, and thus we need only sample finite extensions x such that
t(z) < by fromp (z | h(t*,2) = h, tjz41 > b)),

The forward sampling algorithm for Poisson Networks [15] can be easily adapted for PCIMs. Here
we outline how to forward sample an extension x of h from t* to b} given a general CIM. Forward
sampling consists of iteratively obtaining a sample sequence x; of length ¢ by sampling (¢;,(;) and
appending to a prior sampled sequence x;_; of length ¢ — 1. The CIM likelihood (Equation 1) of
an arbitrary event sequence x can be written as [/, p(;, ;|h;; 8). Thus, we begin with x)p = h,



and iteratively sample (¢;,!;) from p(t;,{;|h; = x;—1;0) and append to x;_; to obtain z;. Note
that one needs to use rejection sampling during the first iteration to ensure ¢,41 > t*. The finite
extension up to b} is obtained by terminating when ¢; > b} and rejecting ¢;. To sample (¢;,1;) we
note that p(t;, li|hi; 0) = A, (ti|hi, ) ElhsO T e~ M1(ilhif) has a competing risks form
[1, 11], so that we can sample |£| candidate times ¢! independently from the non-homogeneous
exponential densities \; (| h;, 0)e = (t:1h:3%) and then let ¢; be the smallest of these candidate times
and [; be the corresponding /. A more detailed description of sampling ¢! from a piecewise constant
conditional intensities is given in [15]. Finally, we note that the basic sampling procedure can be
made more efficient using the techniques described in [15] and [7].

5.2 Importance Sampling

When using a forward sampling approach to forecast unlikely episodic sequences, the episodes
of interest will not occur in most of the sampled extensions and our estimate of p(X,|h,t*) will
be noisy. In fact, due to the fact that absolute error in pgwq falls as the square root of the num-
ber of sequences sampled, we would need O(1/p(X.|h,t*)?) sample sequences to get non-trivial
lower bounds on p(X,|h,t*) using a forward sampling approach. To mitigate this problem we
develop an importance sampling approach, where sequences are drawn from a proposal distribu-
tion ¢(-) that has an increased likelihood of generating extensions in which X, occurs, and then
uses a weighted empirical estimate. In particular, we will sample extensions (") of h from t*
from g (z | h(t*,z) = h,tjz41 > b)) instead of p (z | A(t*,z) = h,t)y+1 > b}), and will esti-
mate p(X,|h,t*) through

M

1
S w1, (2,

Sy w(@m) 4=

~ p(z [ At x) = By tyge1 > b))

w(zw) = ”
q (l’ | h(t*,l’) = hat|x|+1 2 bk)

ﬁlmp(Xe‘hwt*; M) =

The Poisson Superposition Importance Sampler (PSIS) is an importance sampler whose proposal
distribution ¢ is based on Poisson superposition. This proposal distribution is defined to be a CIM
whose conditional intensity functions are given by \;(t|x; 6) + A (t|) where X;(t|x; 6) is the con-
ditional intensity function of [ under the model and A} (¢|x) is given by

(i) = {W forl =15t € aj@)(x), b)), and j(x) # 0.

0 otherwise,

where the active episode j(x) is 0 if t(z) > b;(z),j = 1,--- ,k and is min ({j : b;(z) > t(x)})
otherwise. The time b;(z) when the j™ episode ceases to be active is the time at which the j®
episode occurs in z, or b} if it does not occur. If the episodic intervals [a;?7 b;‘) do not overlap,
aj(z) = aj. In general a;(z) and b;(z) are given by the recursion

a;(x) = max ({a;, bj_l(x)})
bj(xz) = min ({b;} U{(ts, i) ezl =15t € [aj(x),b;f)}) .
This choice of ¢ makes it likely that the j™ episode will occur after the j — 1™ episode.

As the proposal distribution is also a CIM, importance sampling can be done using the forward
sampling procedure above. If the model is a PCIM, the proposal distribution is also a PCIM, since
Af(t|x) are piecewise constant in ¢. In practice the computation of j(x), a;(z), and b;(z) can be
done during forward sampling.

The importance weight corresponding to our proposal distribution is

T e (@) = (@) A (til:)
w(x)—geXp <b;k_aj(x) II N () + iy

(ti,li)EIi




In many problems, the importance weight w(x) of a sequence z of length n is a product of n small
terms. When n large, this can cause the importance weights to become degenerate, and this problem
is often solved using particle filtering [7]. Note that the second product in w(x) above has at most
one term for each j so that w(x) has k terms corresponding to the k episodes, which is independent
of n. Thus, we do not experience the problem of degenerate weights when k is small, regardless of
the number of events sampled.

6 Experimental Results

We first validate that PCIMs can learn temporal dependencies and that the PSIS gives faster fore-
casting than forward sampling using a synthetic data set. We then show that PCIMs are more than
an order of magnitude faster to train than Poisson Networks, and better model unseen test data using
real supercomputer log data. Finally we show that PCIMs and the PSIS allow the forecasting future
interests of web search users using real log data from a major commercial search engine.

6.1 Validation on Synthetic Data

In order to evaluate the ability of PCIMs to learn nonlinear temporal dependencies we sampled data
from a known model and verified that the dependencies learned were correct. Data was sampled
from a PCIM with £ = {A, B, C}. The known model is shown in Figure 1.

Ain Bin Cin
[t-1,0) [t-1,8) [t-1,8)

no yes no yes

no yes
Ain Ain Bin Bin Cin
[t-2,t-1) [t-5.t) [t-2,t-1) [t-5,1) [t-2,t-1)
no yes no yes no yes no yes no yes

(a) Event type A (b) Event type B (c) Event type C

Figure 1: Decision trees representing .S and 6 for events of type A, B and C.

We sampled 100 time units of data, observing 97 instances of A, 58 instances of B, and 71 instances
of C. We then learn a PCIM from the sampled data. We used basis state functions that tested for the
presence of each label in windows with boundaries at t — 0,1,2,--- , 10, and +oo time units. We
used a common prior with a mean rate of 0.1 and a equivalent sample size of one time unit for all
s, and the structural prior described above with x;; = 0.1 for all s.

The learned PCIM perfectly recovered the correct model structure. We repeated the experiment by
sampling data from a model with fifteen labels, consisting of five independent copies of the model
above. Thatis, £L = {Ay,B1,Cy, - ,A5,Bs,C5} with each triple A;, B;, C; independent of other
labels, and dependent on each other as specified by Figure 1. Once again, the model structure was
recovered perfectly.

We evaluated the PSIS in forecasting event sequences with the model shown in Figure 1. The
convergence of importance sampling is compared with that of forward sampling in Figure 2. We
give results for forecasting three different episodic sequences, consisting of the label sequences
{c}, {c,B}, and {C, B, A}, all in the interval [0, 1], given an empty history. The three queries are
given in order of decreasing probability, so that inference becomes harder. We show how estimates
of the probabilities of given episodic sequences vary as a function of the number of sequences
sampled, giving the mean and variance of the trajectories of the estimates computed over ten runs.
For all three queries, importance sampling converges faster and has lower variance. Since exact
inference is infeasible for this model, we forward sample 4,000,000 event sequences and display
this estimate. Note that despite the large sample size the Hoeffding bound gives a 95% confidence
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Figure 2: Trajectories of pimp and Prwa vs. the number of sequences sampled for three different
queries. The dashed and dotted lines show the empirical mean and standard deviation over ten runs
of Prmp and Pryg. The solid line shows pryg based on 4 million event sequences.

interval of +0.0006 for this estimate, which is large relative to the probabilities estimated. This
further suggests the need for importance sampling for rare label sequences.

6.2 Modeling Supercomputer Event Logs

We compared PCIM and Poisson Nets on the task of modeling system event logs from the Blue-
Gene/L supercomputer at Lawrence Livermore National Laboratory [14], available at the USENIX
Computer Failure Data Repository. We filtered out informational (non-alert) messages from the logs,
and randomly split the events by node into a training set with 311,060 alerts from 21,962 nodes, and
a test set with 68,502 alerts from 9,412 nodes. We learned dependencies between the 38 alert types
in the data. We treat the events from each node as separate sequences, and use a product of the
per-sequence likelihoods given in equation (1).

For both models, we used window boundaries at ¢ — 1/60, 1, 60, 3600, and oo seconds. The PCIM
used count threshold basis state functions with thresholds of 1,4, 16 and 64 while the Poisson Net
used log count feature vectors as described above. Both models used priors with a mean rate of an
event every 100 days, no dependencies, and an equivalent sample size of one second. Both used a
structural prior with ;s = 0.1. Table 1 shows the test set likelihood and the run time for the two
approaches. PCIM achieves better test set likelihood and is more than an order of magnitude faster.

Test Log Likelihood | Training Time
PCIM -85.3 11 min
Poisson Net -88.8 3 hr 33 min

Table 1: A comparison of the PCIM and Poisson Net in modeling supercomputer event logs. The
test set log likelihood reported has been divided by the number of test nodes (9,412). The training
time for the PCIM and Poisson Net are also shown.

6.3 Forecasting Future Interests of Web Search Users

We used the query logs of a major internet search engine to investigate the use of PCIMs in forecast-
ing the future interests of web search users. All queries are mapped to one of 36 different interest
categories using an automatic classifier. Thus, £ contains 36 labels, such as “Travel” or “Health &
Wellness.” Our training set contains event sequences for approximately 23k users consisting of about
385k timestamped labels recorded over a two month period. The test set contains event sequences
for approximately 11k users of about 160k timestamped labels recorded over the next month.

We trained a PCIM on the training data using window boundaries at ¢ — 1 hour, ¢ — 1 day, and ¢ — 1
week, and basis state functions that tested for the presence of one or more instance of each label in
each window, treating users as i.i.d. The prior had a mean rate of an event every year, an equivalent
sample size of one day. The structural prior had x;s = 0.1. The model took 1 day and 18 hours to
train on 3 GHz workstation. We did not compare to a Poisson network on this data since, as shown
above, Poisson networks take an order of magnitude longer to learn.
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Figure 3: Precision-recall curves for forecasting future Health & Wellness queries using a full PCIM,
a restricted PCIM that conditions only on past Health & Wellness queries, a baseline that takes into
account only past Health & Wellness queries and not their timing, and random guessing.

Given the first week of each test user’s event sequence, we forecasted whether they would issue a
query in a chosen target category in the second week. We used the PSIS with 100 sample sequences
for forecasting. Figure 3 shows the precision recall curve for one target category label. Also shown
is the result for restricted PCIMs that only model dependencies on prior occurrences of the target
category. This is compared to a baseline where the conditional intensity depends only on whether the
target label appeared in the history. This shows that modeling the temporal aspect of dependencies
does provide a large improvement. Modeling dependencies on past occurrences of other labels also
provides an improvement in the right-hand region of the precision-recall curve.

To better understand the performance of PCIMs we also examined the problem of predicting the first
occurrence of the target label. As Figure 3 suggests (but doesn’t show), the PCIM can model cross-
label dependencies to forecast the first occurrence of the target label. Forecasting new interests is
valuable in a variety of applications including advertising and the fact that PCIMs are able to forecast
first occurrences is promising. Results similar to Figure 3 were obtained for other target labels.

7 Discussion

We presented the Piecewise-Constant Conditional Intensity Model, which is a model of temporal
dependencies in continuous time event streams. We gave a conjugate prior and a greedy tree build-
ing procedure that allow for efficient learning of these models. Dependencies on the history are
represented through automatically learned combinations of a given set of basis state functions. One
of the key benefits of PCIMs is that they allow domain knowledge to be encoded in these basis
state functions. This domain knowledge is incorporated into the model during structure search in
situations where it is supported by the data. The fact that we use decision trees allows us to easily
interpret the learned dependencies.

In this paper, we focused on basis state functions indexed by a fixed set of time windows and labels.
Exploring alternative types of basis state functions is an area for future research. For example, basis
state functions could encode the most recent events that have occurred in the history rather than the
events that occurred in windows of interest. The capacity of the resulting model class depends on
the set of basis state functions chosen. Understanding how to choose the basis state functions and
how to adapt our learning procedure to control the resulting capacity is another open topic. We also
presented the Poisson Superposition Importance Sampler for forecasting episodic sequences with
PCIMs. Developing forecasting algorithms for more general queries is of interest.

Finally, we demonstrated the value of PCIMs in modeling the temporal behavior of web search users
and of supercomputer nodes. In many applications, we have access to richer event streams such as
spatio-temporal event streams and event streams with structured labels. It would be interesting to
extend PCIMs to handle such rich event streams.
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