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Abstract

In this paper, we consider the Précis problem of samplingepresentative yet
diverse data points from a large dataset. This problemsafreguently in ap-
plications such as video and document summarization, exoly data analysis,
and pre-filtering. We formulate a general theory which engasses not just tra-
ditional techniques devised for vector spaces, but alseEalidean manifolds,
thereby enabling these techniques to shapes, human iastivéxtures and many
otherimage and video based datasets. We propose intriasiatd measures for
measuring the quality of a selection of points with respedheir representative
power, and their diversity. We then propose efficient alfjpons to optimize the
cost function using a novel annealing-based iterativeradtton algorithm. The
proposed formulation is applicable to manifolds of knowmmetry as well as
to manifolds whose geometry needs to be estimated from ssmBkperimental
results show the strength and generality of the proposegaph.

1 Introduction

The problem of samplingl representative data points from a large dataset arisesengly in var-
ious applications. Consider analyzing large datasets ety objects, documents or large video
sequences, etc. Analysts spend a large amount of timegstfitough the acquired data to famil-
iarize themselves with the content, before using them feir thpplication specific tasks. This has
necessitated the problem of optimal selection of a few epr@tive exemplars from the dataset as
an important step in exploratory data analysis. Other apfitins include Internet-based video sum-
marization, where providing a quick overview of a video igpontant for improving the browsing
experience. Similarly, in medical image analysis, pickingubset ofK anatomical shapes from
a large population helps in identifying the variations withnd across shape classes, providing an
invaluable tool for analysts.

Depending upon the application, several subset selectitaria have been proposed in the liter-
ature. However, there seems to be a consensus in selectngptars that are representative of
the dataset while minimizing the redundancy between thenplas. Liuet al[1] proposed that
the summary of a document should satisfy the ‘coverage’ anthogonality’ criteria. Shrofet
al.[2] extended this idea to selecting exemplars from videas thaximize ‘coverage’ and ‘diver-
sity’. Simonet al[3] formulated scene summarization as one of picking irstiamg and important
scenes with minimal redundancy. Similarly, in statist&tsatified sampling techniques sample the
population by dividing the dataset into mutually exclusaral exhaustive ‘strata’ (sub-groups) fol-
lowed by a random selection of representatives from eaatag#]. The splitting of population into
stratas ensures that a diverse selection is obtained. Hittoeselect diverse subsets has also been
emphasized in information retrieval applications [5, 6].

Column Subset Selection (CSS) [7, 8, 9] has been one of thdg@dpechniques to address this prob-
lem. The goal of CSS is to select tih& most “well-conditioned” columns from the matrix of data
points. One of the key assumptions behind this and othenigoés is that the objects or their repre-
sentations, lie in the Euclidean space. Unfortunatelg, aissumption is not valid in many cases. In



applications like computer vision, images and videos gueasented by features/models like shapes
[10], bags-of-words, linear dynamical systems (LDS) [El¢. Many of these features/models have
been shown to lie in non-Euclidean spaces, implying thatitfterlying distance metric of the space
is not the usuaf, /¢, norm. Since these feature/model spaces have a non-triasifoid structure,
the distance metrics are highly non-linear functions. Epi@s of features/models - manifold pairs
include: shapes - complex spherical manifold [10], line#lbspaces - Grassmann manifold, co-
variance matrices - tensor space, histograms - simpl&iretc. Even the familiar bag-of-words
representation, used commonly in document analysis, i® maturally considered as a statistical
manifold than as a vector space [12]. The geometric praggeofithe non-Euclidean manifolds allow
one to develop accurate inference and classification akgosi[13, 14]. In this paper, we focus on
the problem of selecting a subset/idfexemplars from a dataset 8f points when the dataset has an
underlying manifold structure to it. We formulate the naotiof representational error and diversity
measure of exemplars while utilizing the non-Euclideancttire of the data points followed by the
proposal of an efficient annealing-based optimization ratigm.

Related Work: The problem of subset selection has been studied by the caitiesof numerical
linear algebra and theoretical computer science. Most wotke former community is related
to theRank Revealin@R factorization (RRQR) [7, 15, 16]. Given a data matfrix the goal of
RRQR factorization is to find a permutation matfixsuch that the QR factorization &fII reveals
the numerical rank of the matrix. The resultant matrikl has as its firstX columns the most
“well-conditioned” columns of the matriX”. On the other hand, the latter community has focused
on Column Subset Selection (CSS). The goal of CSS is to fidolumns forming a matrixC’ €
R™*K such that the residugl Y — PcY ||¢ is minimized over all possible choices for the matrix
C. HereP- = CC' denotes the projection onto tié-dimensional space spanned by the columns
of C and¢ can represent the spectral or Frobenius naffhindicates the pseudo inverse of matrix
C. Along these lines, different randomized algorithms haserbproposed [17, 18, 9, 8]. Various
approaches include a two-stage approach [9], subspacdisgmethods [8], etc.

Clustering techniques [19] have also been applied for sidedection [20, 21]. In order to selekt
exemplars, data points are clustered iftdusters with(¢ < K) followed by the selection of one
or multiple exemplars from each cluster to obtain the bgstesentation or low-rank approximation
of each cluster. Affinity Propagation [21], is a clusterithgaaithm that takes similarity measures as
input and recursively passes message between nodes Lettdfeexemplars emerges. As we discuss
in this paper, the problems with these approaches are fithg(abjective functions optimized by the
clustering functions do not incorporate the diversity af #xemplars, hence can be biased towards
denser clusters, and also by outliers, and (b) seeking &mk-approximation of the data matrix
or clusters individually is not always an appropriate stilsséection criterion. Furthermore, these
techniques are largely tuned towards addressing the probl@n Euclidean setting and cannot be
applied for datasets in non-Euclidean spaces.

Recently, advances have been made in utilizing non-Euwatidgructure for statistical inferences
and pattern recognition [13, 14, 22, 23]. These works hadesmsed inferences, clustering, dimen-
sionality reduction, etc. in non-Euclidean spaces. To th& bf our knowledge, the problem of
subset selection for analytic manifolds remains largelgddressed. While one could try to solve
the problem by obtaining an embedding of a given manifold &narger ambient Euclidean space, it
is desirable to have a solution that is more intrinsic in ratirhis is because the chosen embedding
is often arbitrary, and introduces peculiarities that tesom such extrinsic approaches. Further
manifolds such as the Grassmannian or the manifold of iefidiinensional diffeomorphisms do
not admit a natural embedding into a vector space.

Contributions: 1) We present the first formal treatment of subset selectiothie general case of
manifolds, 2) We propose a novel annealing-based altematgorithm to efficiently solve the opti-
mization problem, 3) We present an extension of the algorfibr data manifolds, and demonstrate
the favorable properties of the algorithm on real data.

2 Subset Selection on Analytic Manifolds

In this section, we formalize the subset selection problenmanifolds and propose an efficient
algorithm. First, we briefly touch upon the necessary basicepts.

Geometric Computations on Manifolds: Let M be anm-dimensional manifold and, for a point
p € M, consider a differentiable curve: (—¢,¢) — M such thaty(0) = p. The velocity5(0)



denotes the velocity of atp. This vector is an example of a tangent vectofbatp. The set of
all such tangent vectors is called the tangent spacef tat p. If M is a Riemannian manifold then
the exponential mapxp, : T,(M) — M is defined byexp,(v) = a, (1) wherea, is a specific
geodesic. The inverse exponentlal map (logarithmic nag) : M — T, takes a point on the
manifold and returns a point on the tangent space — which EBuafidean space.

Representational error on manifolds: Let us assume that we are given a set of poiXits=
{x1,z2,...2,} which belong to a manifold\{. The goal is to select a few exemplafs =
{e1,...ex} from the setX, such that the exemplars provide a good representationeogitren
data points, and are minimally redundant. For the speci&# o& vector spaces, two common ap-
proaches for measuring representational error is in tefiirse@r spans, and nearest-exemplar error.
The linear span error is given byiin,, || X — Ez||§7, whereX is the matrix form of the data, arid
is a matrix of chosen exemplars. The nearest-exemplar isrgiven by:> . >

wheree; is thei'” exemplar andb; corresponds to its Voronoi region.
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Of these two measures, the notion of linear span, while gpjate for matrix approximation, is
not particularly meaningful for general dataset approsiomgproblems since the ‘span’ of a dataset
item does not carry much perceptually meaningful infororatiFor example, the linear span of a
vectorz € R is the set of pointsux, « € R. However, ifz were an image, the linear spanof
would be the set of images obtained by varying the globalrashtevel. All elements of this set
however are perceptually equivalent, and one does notroatgi representational advantage from
considering the span of Further, points sampled from the linear span of few imagesid not be
meaningful images. This situation is further complicatedrhanifold-valued data such as shapes,
where the notion of linear span does not exist. One couldhattéo define the notion of linear spans
on the manifold as the set of points lying on the geodesicfsbot some fixed pole toward the given
dataset item. But, points sampled from this linear span tmighbe very meaningful e.g., samples
from the linear span of a few shapes would give physicallymregess shapes.

Hence, it is but natural to consider the representational ef a setX with respect to a set of

exemplars? as follows:
Trep(B) =Y D dy(wj.e )

iz ;€D
Here,d, is the geodesic distance on the manifold d@nds the Voronoi region of the/” exemplar.
This b0|Is down to the familiak’-means o#{-medoids cost function for Euclidean spaces. In order
to avoid combinatorial optimization involved in solvingstproblem, we use efficient approxima-
tions i.e., we first find the mean followed by the selectiore,0és data point that is closest to the
mean. The algorithm for optimizing,..,, is given in algorithm 1. Similar td{-means clustering,
a cluster label is assigned to eachfollowed by the computation of the mean for each cluster.
This is further followed by selecting representative extamg as the data point closest tq.

Diversity measures on manifolds: The next question we consider is to define the notion of diver-
sity of a selection of points on a manifold. We first begin bgmning equivalent constructions for
R™. One of the ways to measure diversity is simply to use the gaagpiance of the points. This is
similar to the construction used recently in [2]. For thescamanifolds, the sample variance can be
re_placed by the sample Karcher variance_, given by_ the funx:,bi(E_) = % Zfil d?](u, e_i), where

1 is the Karcher mean [24], and the function value is the Karghdance. However, this construc-
tion leads to highly inefficient optimization routines, essally boiling down to a combinatorial
search over all possiblE-sized subsets o .

An alternate formulation for vector spaces that resultsghlly efficient optimization routines is via
Rank-Revealing QR (RRQR) factorizations. For vector spageven a set of vectorX = {x;},
written in matrix formX, RRQR [7] aims to findy), R and a permutation matrid € R"*" such
thatXII = QR reveals the numerical rank of the matix This permutatioXIl = (X X, k)
givesX g, the K most linearly independent columnsXf This factorization is achieved by seeking
IT which maximizes\ (X g ) = [], oi(Xk ), the product of the singular values of the mafXix .

For the case of manifolds, we adopt an approximate approcafuer to measure diversity in terms
of the ‘well-conditioned’ nature of the set of exemplarsjpobed on the tangent space at the mean.
In particular, for the datasédt:;} C M, with intrinsic meary, and a given selection of exemplars



Algorithm 1 : Algorithm to minimize.Jc,

Input: X € M, k, index vectow, T’
Output: Permutation MatriXl
Initialize IT < Z,xn

for v+ 1toT'do

Algorithm 2 : Algorithm for Diversity Maximization

Input: Matrix V' € R4*", k, Tolerancetol
Output: Permutation MatriXl

Initialize IT < Z,,xn
repeat
Compute@ R decomposition ol to obtain

. Ri1 Rio
Ri1, Rio and Rz s.t.,V = Q ( 0 Ros )
By — /(B Riz)?, + || Rezay Bl B3
Bm «— max; Bij
(i,7) — arg mazi;By;
Update:IT « IT IL; (j4 k)
V= Vi (jr)
until B, < tol ;

Initialize TT) «— Z,,n
e; — o, fori ={1,2,... k}
for 1 +— 1to kdo
D, — {zp: arg min; dy(zp,e;) =i}
Wi < mean ofd;
j — arg min; dy(z;, 1)
Update:TT") «— I 11, _ -
end
Update:Il «— I 11, w — wII®
if 1) = Z,,x, then
break
end
end

{e;}, we measure the diversity of exemplars as follows: maltix = [log,(e;)] is obtained by
projecting the exemplafg:; } on the tangent space at mgarHere log() is the inverse exponential
map on the manifold and gives tangent vectors tiat point towards ;.

Diversity can then be quantified ds;,(E) = A(Tg), where, A(Tg) represents the product of the
singular values of the matri¥' . For vector spaces, this measure is related to the sampénuar
of the chosen exemplars. For manifolds, this measure iteckta the sample Karcheariance If
we denotel' y = [log,,(;)], the matrix of tangent vectors corresponding to all dataspand ifl1

is the permutation matrix that orders the columns such ttefitst X' columns ofT x correspond
to the most diverse selection, then

Ri1 R
0 R @)
Here,R;; € RX*X s the upper triangular matrix dt € R"*", R, € RE*X("=K) and Ry, €
R("—K)x(n—K) The advantage of viewing the required quantity as the oetemt of a sub-matrix
on the right hand-side of the above equation is
Algorithm 3: Annealing-based Alternation Algo-that one can obtain efficient techniques for op-
rithm for Subset Selection on Manifolds timizing this cost function. The algorithm for
Input: Data pointsX = {x1,72,...,2,} € M, optimizing J4;, is adopted from [7] and de-
Number of exemplark, Tolerance step scribed in algorithm 2. Input to the algorithm
Output: E'={e1,...ex} C X is a matrixV" created by the tangent-space pro-
Initial setup: jection of X and output is thex” most “well-

Jdm(E) = A(TE) = det(Ru),where,TXH = QR = Q

Compute intrinsic meap of X
Compute tangent vectots — log , (;)
V — [v1,v2,...,05]
w« [1,2,...,n] be thel x n index vector ofX
Tol +— 1
Initialize: IT +— Randomly permute columns @, «,
Update:V «— VII,w « wII.
while IT # Z,,x» do
Diversity: II < Div(V, k, tol) as in algorithm 2.
Update:V « VII, w « wII.
Representative Error: 1T «+ Rep(X, k, w,1) as
in algorithm 1
Update:V «— VII, w « wII.
tol < tol + ¢
end
e; — wo, fori ={1,2,... k}

conditioned” columns of/. This is achieved
by first decomposing” into @R and comput-
ing 8;;, which indicates the benefit of swapping
it" andj*" columns [7]. The algorithm then se-
lects pair(i,j’) corresponding to the maximum
benefit swaps,, and if 3,, > tol, this swap is
accepted. This is repeated until eitligy < tol

or maximum number of iterations is completed.

Representation and Diversity Trade-offs
for Subset Selection: From (1) and (2),
it can be seen that we seek a solution that
represents a trade-off between two conflicting
criteria. As an example, in figure 1(a) we
show two cases, wherd,., and Jg;, are

individually optimized. We can see that the

solutions look quite different in each case. One way to witite global cost function is as a
weighted combination of the two. However, such a formulatimes not lend itself to efficient
optimization routines (c.f. [2]). Further, the choice ofiglets is often left unjustified. Instead,
we propose an annealing-based alternating technique ohiaptg the conflicting criteria/,..,

4



Symbol Represents Computational Step Complexity

T Maximum number of iterations M Exponential Map (assume) O(v)
Tnxn Identity matrix M Inverse exponential Map (assume) [0]6%)

D; Voronoi region ofi’™ exemplar Intrinsic mean ofX’ O((nx +v)I)
IL; . Permutation matrix that swaps columnandj Projection ofX to tangent-space O(nx)
ISk IIin the~*" iteration Geodesic distances in alg. 1 O(nKx)

v Matrix obtained by tangent-space projection’of K intrinsic means O((nx + Kv)I)
H,; (i, ) element of matrixH Alg. 2 O(mnK logn)
a; 5" column of the identity matrix Gm.p EXponential Map o®’)

Haj, o] H 4™ column and row of matrix/ respectively Gm.p INverse exponential map o(p%)
Table 1:Notations used in Algorithm 1 - 3 Table 2:Complexity of various computational steps.

and Jg;,,. Optimization algorithms fot/,.., and Jg;, individually are given in algorithms 1 and

2 respectively. We first optimizd,;, to obtain an initial set of exemplars, and use this set as
an initialization for optimizingJ,.,. The output of this stage is used as the current solution to
further optimizeJy;,. However, with each iteration, we increase the tolerancarpatertol in
algorithm 2. This has the effect of accepting only those pgations that increase the diversity
by a higher factor as iterations progress. This is done tarenthat the algorithm is guided
towards convergence. If thel value is not increased at each iteration, then optimizing will
continue to provide a new solution at each iteration thatifresdthe cost function only marginally.
This is illustrated in figure 1(c), where we show how the caosictionsJ,., and Jq;, exhibit an
oscillatory behavior if annealing is not used. As seen inréigli(b) , the convergence ofy;,

and J,., is obtained very quickly on using the proposed annealingradition technique. The
complete annealing based alternation algorithm is desdriby algorithm 3. A technical detail to
be noted here is that for algorithm 2, input matvixe R¢*" should havel > k. For cases where

d < k, algorithm 2 can be replaced by its extension proposed inT8ble 1 shows the notations
introduced in algorithms 1 - 31I;... ; is obtained by permutingand; columns of the identity matrix.

3 Complexity, Special cases and Limitations

In this section, we discuss how the proposed method relatéeetspecial case o1 = R”, and

to sub-manifolds oR™ specified by a large number of samples. For the cag&'othe cost func-
tions J,.., and.Jy;,, boil down to familiar notions of clustering and low-rank mitapproximation
respectively. In this case, algorithm 3 reduces to alt@ndietween clustering and matrix approx-
imation with the annealing ensuring that the algorithm @vges. This results in a new algorithm
for subset-selection in vector spaces.

For the case of manifolds implicitly specified using samptege can approach the problem in one
of two ways. The first would be to obtain an embedding of theespato a Euclidean space and
apply the special case of the algorithm fot = R™. The embedding here needs to preserve the
geodesic distances between all pairs of points. Multi-disi@nal scaling can be used for this pur-
pose. However, recent methods have also focused on estgiagjarithmic maps numerically from
sampled data points [25]. This would make the algorithmatiyeapplicable for such cases, without
the need for a separate embedding. Thus the proposed fermedin accommodate manifolds with
known and unknown geometries.

However, the formalism is limited to manifolds of finite dingon. The case of infinite dimen-

sional manifolds, such as diffeomorphisms [26], space afed curves [27], etc. pose problems
in formulating the diversity cost function. Whilé;;, could have been framed purely in terms of
pairwise geodesics, making it extensible to infinite dinemal manifolds, it would have made the

optimization a significant bottleneck, as already discdsse&ection 2.

Computational Complexity: The computational complexity of computing exponential raag
its inverse is specific to each manifold. Lete the number of data points aid be the number
of exemplars to be selected. Table 2 enumerates the cortyptéxdifferent computational step of
the algorithm. The last two rows show the complexity of arcédfit algorithm proposed by [28] to
compute the exponential map and its inverse for the caseagg@rann manifold,,, ,.

4 Experiments

Baselines: We compare the proposed algorithm with two baselines. Tis liaseline is a
clustering-based solution to subset selection, where usta the dataset inti clusters, and pick
as exemplar the data point that is closest to the clusteraidnSince clustering optimizes only the
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Figure 1:Subset selection for a simple dataset consisting of unbatholasses iR*. (a) Data projected on
RR? for visualization using PCA. While trying to minimize thepresentational errot,..,, picks two exemplars
from the dominant classly;, picks diverse exemplars but from the boundaries. The pegpapproach strikes

a balance between the two and picks one ‘representativeighae from each class. Convergence Analysis of
algorithm 3: (b) with annealing and (c) without annealing.

representation cost-function, we do not expect it to haeedikiersity of the proposed algorithm.
This corresponds to the special case of optimizing ofly,. The second baseline is to apply a
tangent-space approximation to the entire data-set at #enrof the dataset, and then apply a
subset-selection algorithm such as RRQR. This corresptnadgptimizing only J4;,, where the
input matrix is the matrix of tangent vectors. Since miniatian of.J,..,, is not explicitly enforced,
we do not expect the exemplars to be the best representainasthough the set is diverse.

A Simple Dataset: To gain some intuition, we first perform experiments on a $ingynthetic
dataset. For easy visualization and understanding, wegtetka dataset with unbalanced classes
in Euclidean spac®&*. Individual cost functions,/,.., andJy;, were first optimized to pick three
exemplars using algorithms 1 and 2 respectively. Selecteahplars have been shown in figure 1(a),
where the four dimensional dataset has been projectedvictalimensions for visualization using
Principal Component Analysis (PCA). Despite unbalancadssizes, when optimized individually,
Jaiv Seeks to select exemplars from diverse classes but tenaktthpm from the class boundaries.
While unbalanced class sizes causg, to pick 2 exemplars from the dominant cluster. Algorithm
3 iteratively optimizes for both these cost functions arckpian exemplar from every class. These
exemplars, are closer to the centroid of the individualsgas

Figure 1(b) shows the convergence of the algorithm for timspke dataset and compares it
with the case when no annealing is applied (figure 1(c})., and Jg;, plots are shown as the
iterations of algorithm 3 progresses. When annealing idiegypthe tolerance valuetdl) is
increased by).05 in each iteration. It can be noted that in this case the algoriconverges to
a steady state initerations {ol = 1.35). If no annealing is applied, the algorithm does not coneerg

Shape sampling/summarization: We conducted a real shape summarization experiment on the
MPEG dataset [29]. This dataset Hesshape classes witkh) shapes per class. For our experi-
ments, we created a smaller dataset@®$hape classes with) shapes per class. Figure 2(a) shows
the shapes used in our experiments. We use an affine-invagjaresentation of shapes based on
landmarks. Shape boundaries are uniformly sampled torobtdandmark points. These points are
concatenated in a matrix to obtain the landmark mafrig R™*2. Left singular vectorsi(,,2),
obtained by the singular value decomposition of maftix UX V7T, give the affine-invariant rep-
resentation of shapes [30]. This affine shape-sfgac# m landmark points is &-dimensional
subspace oR™. Thesep-dimensional subspacesRi™ constitute the Grassmann manifdg, ;.
Details of the algorithms for the computation of expondraial inverse exponential map o, ,,
can be found in [28] and has also been included in the suppiematerial.

In the experiment, the cardinality of the subset was s&0ta\s the number of shape classes is also
10, one would ideally seek one exemplar from each class. Algos 1 and 2 were first individually
optimized to select the optimal subset. Algorithm 1 was igolphtrinsically on the manifold with
multiple initializations. Figure 2(b) shows the outputhvihe least cost among these initializations.
For algorithm 2, data points were projected on the tangeatesiat the mean using the inverse
exponential map and the selected subset is shown in figu)e B(dividual optimization of.J,,
results inl exemplar each from classes? each from2 classes (‘apple’ and ‘flower’) and misses
2 classes (‘bell’ and ‘chopper’). While, individual optinaiton of .J;,, alone picksl each from8
classesp from the class ‘car’ and none from the class ‘bell’. It can lserved that exemplars
chosen byJ,;, for classes ‘glass’, ‘heart’,'flower’ and ‘apple’ tend to bausual members of the
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Figure 2:(a) 10 classes from MPEG dataset with 10 shapes per claspalimon ofl0 exemplars selected by
(b)Jrep, (€) Juin and (d) Proposed Approach..., picks2 exemplars each fromclasses (‘apple’ and ‘flower’)
and misses ‘bell’ and ‘chopper’ classek,,, picks1 from 8 different classe<, exemplars from class ‘car’ and
none from class ‘bell’. It can be observed that exemplarsehdy.J,;, for classes ‘glass’, ‘heart’, ‘flower’
and ‘apple’ tend to be unusual members of the class. It alskspip the flipped car. While the proposed
approach picks one representative exemplars from eachasagesired.

class. It also picks up the flipped car. Optimizing for bdih, and.J,., using algorithm 3 picks one
‘representative’ exemplar from each class as shown in fig(dg

These exemplars picked by the three algorithms can be funed to label data points. Table 3
shows the confusion table thus obtained. For each data, peinfind the nearest exemplar, and
label the data point with the ground-truth label of this epdan For example, consider the row
labeled as ‘bell’. All the data points of the class ‘bell’ wdabeled as ‘pocket’ by,.., while Jg;,
labeled7 data points from this class as ‘chopper’ ahéds ‘pocket’. This confusion is largely due
to both.J,., and.Ju;, having missed out picking exemplars from this class. Thepsed approach
correctly labels all data points as it picks exemplars freergclass.

Glass Heart Apple Bell Baby Chopper Flower Car Pocket Teddy

Glass (10,10,10)

Heart (10,10,10)

Apple (0,1,0) (8,7,10) (2,0,0) (0,2,0)

Bell {0,0,10) 0,7.0) (10,3,0)

Baby (10,10,10)

Chopper (2,0,0) (8,0,0) (0,10,10)

Flower (10,10,10)

Car (10,10,10)

Pocket (10,10,10)

Teddy (10,10,10)

Table 3:Confusion Table. Entries correspond to the tuplg.,, Jai., Proposed). Row labels correspond to
the ground truth labels of the shape and the column labetesgmond to the label of the nearest exemplar. Only
non-zero entries have been shown in the table.

KTH human action dataset: The next experiment was conducted on the KTH human action
dataset [31]. This dataset consists of videos Wwitictions conducted b5 persons ik different
scenarios. For our experiment, we created a smaller dad&s@tvideos with the firstb human
subjects conducting actions in thes4 (indoor) scenario. Figure 3(a) shows sample frames from
each video. This dataset mainly consists of videos capturddr constrained settings. This makes it
difficult to identify the ‘usual’ or ‘unusual’ members of aads. To better understand the performance
of the three algorithms, we synthetically added occlusmthe last video of each class. These
occluded videos serve as the ‘unusual’ members.

Histogram of Oriented Optical Flow (HOOF) [32] was extratfeom each frame to obtain a nor-
malized time-series for the videos. A Linear Dynamical 8yst(LDS) is then estimated from
this time-series using the approach in [11]. This model scdbed by the state transition equa-
tion: z(t + 1) = Az(t) + w(t) and the observation equatiarit) = Cuz(t) + v(t), where



(a) Dataset (b) Jrep ©) Jaiv (d) Proposed
Figure 3:(a) Sample frames from KTH action dataset [31]. From top titdoo action classes afebox, run,
walk, hand-clap, hand-wave and jpg5 exemplars selected by: (B, (C) J4i and (d) Proposed. Exemplars

picked by.J,..,, correspond td box, run, run, hand-clap, hand-wayections. WhileJ4;,, selects{ box, walk,
hand-clap, hand-wave and jggProposed approach picksox, run, walk, hand-clap and hand-waje

r € R is the hidden state vector, € RP is the observation vectow(t) ~ N(0,0) and
v(t) ~ N(0,Z) are the noise components. Heré,is the state-transition matrix and is the
observation matrix. The expected observation sequenceodeéhi4, C) lies in the column space
of the infinite extended ‘observability’ matrix which is comonly approximated by a finite matrix
O = [CT (CA)T,(CAHT, ..., (CA™HT]. The column space of this matrix], € R™r*4 js
ad-dimensional subspace and hence lies on the Grassmanroidanif

In this experiment, we consider the scenario when the numbeasses in a dataset is unknown.
We asked the algorithm to pickexemplars when the actual number of classes in the dataéet is
Figure 3(b) shows one frame from each of the videos selectehwi..,, was optimized alone. It
picks 1 exemplar each from classes (‘box’,'hand-clap’ and ‘hand-wave2) from the class ‘run’
while misses out on ‘walk’ and ‘jog’. On the other hanf};,, (when optimized alone) pickseach

from 5 different classes and misses the class ‘run’. It can be s$edi/{;, picks2 exemplars that

are ‘unusual’ members (occluded videos) of their respeatiass. The proposed approach picks

1 representative exemplar fromclasses and none from the class ‘jog’. The proposed approach
achieves both a diverse selection of exemplars, and alsdsapizking outlying exemplars.

Effect of Parameters and Initialization: In our experiments, the effect of tolerance stepgdr
smaller values< 0.1) has very minimal effect. After a few attempts, we fixed thafe t00.05 for

all our experiments. In the first iteration, we start witlhh = 1. With this value, algorithm 2 accepts
any swap that increasdg;,,. This makes output of algorithm 2 after first iteration altrinsensitive

to initialization. While, in the later iterations, swap®accepted only if they increase the value of
Jaiv Significantly and hence input to algorithm 2 becomes moreittamt with the increase itvl.

5 Conclusion and Discussion

In this paper, we addressed the problem of seledtirexemplars from a dataset when the dataset has
an underlying manifold structure to it. We utilized the gesrit structure of the manifold to formu-
late the notion of picking exemplars which minimize the esgantational error while maximizing the
diversity of exemplars. An iterative alternation optintina technique based on annealing has been
proposed. We discussed its convergence and complexityhemeksl its extension to data manifolds
and Euclidean spaces. We showed summarization experiméhtseal shape and human actions
dataset. Future work includes formulating subset seledto infinite dimensional manifolds and
efficient approximations for this case. Also, several slarases of the proposed approach point to
new directions of research such as the cases of vector spadetata manifolds.
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