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Abstract
In this paper, we consider the Précis problem of samplingK representative yet
diverse data points from a large dataset. This problem arises frequently in ap-
plications such as video and document summarization, exploratory data analysis,
and pre-filtering. We formulate a general theory which encompasses not just tra-
ditional techniques devised for vector spaces, but also non-Euclidean manifolds,
thereby enabling these techniques to shapes, human activities, textures and many
other image and video based datasets. We propose intrinsic manifold measures for
measuring the quality of a selection of points with respect to their representative
power, and their diversity. We then propose efficient algorithms to optimize the
cost function using a novel annealing-based iterative alternation algorithm. The
proposed formulation is applicable to manifolds of known geometry as well as
to manifolds whose geometry needs to be estimated from samples. Experimental
results show the strength and generality of the proposed approach.

1 Introduction
The problem of samplingK representative data points from a large dataset arises frequently in var-
ious applications. Consider analyzing large datasets of shapes, objects, documents or large video
sequences, etc. Analysts spend a large amount of time sifting through the acquired data to famil-
iarize themselves with the content, before using them for their application specific tasks. This has
necessitated the problem of optimal selection of a few representative exemplars from the dataset as
an important step in exploratory data analysis. Other applications include Internet-based video sum-
marization, where providing a quick overview of a video is important for improving the browsing
experience. Similarly, in medical image analysis, pickinga subset ofK anatomical shapes from
a large population helps in identifying the variations within and across shape classes, providing an
invaluable tool for analysts.

Depending upon the application, several subset selection criteria have been proposed in the liter-
ature. However, there seems to be a consensus in selecting exemplars that are representative of
the dataset while minimizing the redundancy between the exemplars. Liuet al.[1] proposed that
the summary of a document should satisfy the ‘coverage’ and ‘orthogonality’ criteria. Shroffet
al.[2] extended this idea to selecting exemplars from videos that maximize ‘coverage’ and ‘diver-
sity’. Simonet al.[3] formulated scene summarization as one of picking interesting and important
scenes with minimal redundancy. Similarly, in statistics,stratified sampling techniques sample the
population by dividing the dataset into mutually exclusiveand exhaustive ‘strata’ (sub-groups) fol-
lowed by a random selection of representatives from each strata [4]. The splitting of population into
stratas ensures that a diverse selection is obtained. The need to select diverse subsets has also been
emphasized in information retrieval applications [5, 6].

Column Subset Selection (CSS) [7, 8, 9] has been one of the popular techniques to address this prob-
lem. The goal of CSS is to select theK most “well-conditioned” columns from the matrix of data
points. One of the key assumptions behind this and other techniques is that the objects or their repre-
sentations, lie in the Euclidean space. Unfortunately, this assumption is not valid in many cases. In
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applications like computer vision, images and videos are represented by features/models like shapes
[10], bags-of-words, linear dynamical systems (LDS) [11],etc. Many of these features/models have
been shown to lie in non-Euclidean spaces, implying that theunderlying distance metric of the space
is not the usual̀2/`p norm. Since these feature/model spaces have a non-trivial manifold structure,
the distance metrics are highly non-linear functions. Examples of features/models - manifold pairs
include: shapes - complex spherical manifold [10], linear subspaces - Grassmann manifold, co-
variance matrices - tensor space, histograms - simplex inR

n, etc. Even the familiar bag-of-words
representation, used commonly in document analysis, is more naturally considered as a statistical
manifold than as a vector space [12]. The geometric properties of the non-Euclidean manifolds allow
one to develop accurate inference and classification algorithms [13, 14]. In this paper, we focus on
the problem of selecting a subset ofK exemplars from a dataset ofN points when the dataset has an
underlying manifold structure to it. We formulate the notion of representational error and diversity
measure of exemplars while utilizing the non-Euclidean structure of the data points followed by the
proposal of an efficient annealing-based optimization algorithm.

Related Work: The problem of subset selection has been studied by the communities of numerical
linear algebra and theoretical computer science. Most workin the former community is related
to theRank RevealingQR factorization (RRQR) [7, 15, 16]. Given a data matrixY , the goal of
RRQR factorization is to find a permutation matrixΠ such that the QR factorization ofY Π reveals
the numerical rank of the matrix. The resultant matrixY Π has as its firstK columns the most
“well-conditioned” columns of the matrixY . On the other hand, the latter community has focused
on Column Subset Selection (CSS). The goal of CSS is to pickK columns forming a matrixC ∈
R

m×K such that the residual|| Y − PCY ||ζ is minimized over all possible choices for the matrix
C. HerePC = CC† denotes the projection onto theK-dimensional space spanned by the columns
of C andζ can represent the spectral or Frobenius norm.C† indicates the pseudo inverse of matrix
C. Along these lines, different randomized algorithms have been proposed [17, 18, 9, 8]. Various
approaches include a two-stage approach [9], subspace sampling methods [8], etc.

Clustering techniques [19] have also been applied for subset selection [20, 21]. In order to selectK
exemplars, data points are clustered into` clusters with(` ≤ K) followed by the selection of one
or multiple exemplars from each cluster to obtain the best representation or low-rank approximation
of each cluster. Affinity Propagation [21], is a clustering algorithm that takes similarity measures as
input and recursively passes message between nodes until a set of exemplars emerges. As we discuss
in this paper, the problems with these approaches are that (a) the objective functions optimized by the
clustering functions do not incorporate the diversity of the exemplars, hence can be biased towards
denser clusters, and also by outliers, and (b) seeking low-rank approximation of the data matrix
or clusters individually is not always an appropriate subset selection criterion. Furthermore, these
techniques are largely tuned towards addressing the problem in an Euclidean setting and cannot be
applied for datasets in non-Euclidean spaces.

Recently, advances have been made in utilizing non-Euclidean structure for statistical inferences
and pattern recognition [13, 14, 22, 23]. These works have addressed inferences, clustering, dimen-
sionality reduction, etc. in non-Euclidean spaces. To the best of our knowledge, the problem of
subset selection for analytic manifolds remains largely unaddressed. While one could try to solve
the problem by obtaining an embedding of a given manifold into a larger ambient Euclidean space, it
is desirable to have a solution that is more intrinsic in nature. This is because the chosen embedding
is often arbitrary, and introduces peculiarities that result from such extrinsic approaches. Further
manifolds such as the Grassmannian or the manifold of infinite dimensional diffeomorphisms do
not admit a natural embedding into a vector space.

Contributions: 1) We present the first formal treatment of subset selection for the general case of
manifolds, 2) We propose a novel annealing-based alternation algorithm to efficiently solve the opti-
mization problem, 3) We present an extension of the algorithm for data manifolds, and demonstrate
the favorable properties of the algorithm on real data.

2 Subset Selection on Analytic Manifolds

In this section, we formalize the subset selection problem on manifolds and propose an efficient
algorithm. First, we briefly touch upon the necessary basic concepts.

Geometric Computations on Manifolds: Let M be anm-dimensional manifold and, for a point
p ∈ M, consider a differentiable curveγ : (−ε, ε) → M such thatγ(0) = p. The velocityγ̇(0)
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denotes the velocity ofγ at p. This vector is an example of a tangent vector toM at p. The set of
all such tangent vectors is called the tangent space toM at p. If M is a Riemannian manifold then
the exponential mapexpp : Tp(M) → M is defined byexpp(v) = αv(1) whereαv is a specific
geodesic. The inverse exponential map (logarithmic map)logp : M → Tp takes a point on the
manifold and returns a point on the tangent space – which is anEuclidean space.

Representational error on manifolds: Let us assume that we are given a set of pointsX =
{x1, x2, . . . xn} which belong to a manifoldM. The goal is to select a few exemplarsE =
{e1, . . . eK} from the setX , such that the exemplars provide a good representation of the given
data points, and are minimally redundant. For the special case of vector spaces, two common ap-
proaches for measuring representational error is in terms of linear spans, and nearest-exemplar error.
The linear span error is given by:minz ‖X − Ez‖

2
F , whereX is the matrix form of the data, andE

is a matrix of chosen exemplars. The nearest-exemplar erroris given by:
∑

i

∑

xk∈Φi
‖xk − ei‖

2,
whereei is theith exemplar andΦi corresponds to its Voronoi region.

Of these two measures, the notion of linear span, while appropriate for matrix approximation, is
not particularly meaningful for general dataset approximation problems since the ‘span’ of a dataset
item does not carry much perceptually meaningful information. For example, the linear span of a
vectorx ∈ R

n is the set of pointsαx, α ∈ R. However, ifx were an image, the linear span ofx
would be the set of images obtained by varying the global contrast level. All elements of this set
however are perceptually equivalent, and one does not obtain any representational advantage from
considering the span ofx. Further, points sampled from the linear span of few images,would not be
meaningful images. This situation is further complicated for manifold-valued data such as shapes,
where the notion of linear span does not exist. One could attempt to define the notion of linear spans
on the manifold as the set of points lying on the geodesic shotfrom some fixed pole toward the given
dataset item. But, points sampled from this linear span might not be very meaningful e.g., samples
from the linear span of a few shapes would give physically meaningless shapes.

Hence, it is but natural to consider the representational error of a setX with respect to a set of
exemplarsE as follows:

Jrep(E) =
∑

i

∑

xj∈Φi

d
2
g(xj , ei) (1)

Here,dg is the geodesic distance on the manifold andΦi is the Voronoi region of theith exemplar.
This boils down to the familiarK-means orK-medoids cost function for Euclidean spaces. In order
to avoid combinatorial optimization involved in solving this problem, we use efficient approxima-
tions i.e., we first find the mean followed by the selection ofei as data point that is closest to the
mean. The algorithm for optimizingJrep is given in algorithm 1. Similar toK-means clustering,
a cluster label is assigned to eachxj followed by the computation of the meanµi for each cluster.
This is further followed by selecting representative exemplar ei as the data point closest toµi.

Diversity measures on manifolds: The next question we consider is to define the notion of diver-
sity of a selection of points on a manifold. We first begin by examining equivalent constructions for
R

n. One of the ways to measure diversity is simply to use the sample variance of the points. This is
similar to the construction used recently in [2]. For the case of manifolds, the sample variance can be
replaced by the sample Karcher variance, given by the function: ρ(E) = 1

K

∑K

i=1 d2
g(µ, ei), where

µ is the Karcher mean [24], and the function value is the Karcher variance. However, this construc-
tion leads to highly inefficient optimization routines, essentially boiling down to a combinatorial
search over all possibleK-sized subsets ofX .

An alternate formulation for vector spaces that results in highly efficient optimization routines is via
Rank-Revealing QR (RRQR) factorizations. For vector spaces, given a set of vectorsX = {xi},
written in matrix formX, RRQR [7] aims to findQ, R and a permutation matrixΠ ∈ R

n×n such
thatXΠ = QR reveals the numerical rank of the matrixX. This permutationXΠ = (XK Xn−K)
givesXK , theK most linearly independent columns ofX. This factorization is achieved by seeking
Π which maximizesΛ(XK) =

∏

i σi(XK), the product of the singular values of the matrixXK .

For the case of manifolds, we adopt an approximate approach in order to measure diversity in terms
of the ‘well-conditioned’ nature of the set of exemplars projected on the tangent space at the mean.
In particular, for the dataset{xi} ⊆ M, with intrinsic meanµ, and a given selection of exemplars
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Algorithm 1 : Algorithm to minimizeJrep

Input : X ∈ M, k, index vectorω, Γ
Output : Permutation MatrixΠ
Initialize Π← In×n

for γ ← 1 to Γ do
Initialize Π(γ) ← In×n

ei ← xωi
for i = {1,2,. . . ,k}

for i← 1 to k do
Φi ← {xp : arg minj dg(xp, ej) = i }
µi ←mean ofΦi

ĵ ← arg minj dg(xj , µi)

Update:Π(γ) ← Π(γ) Πi↔ĵ

end
Update:Π← Π Π(γ), ω ← ωΠ(γ)

if Π(γ) = In×n then
break

end
end

Algorithm 2 : Algorithm for Diversity Maximization

Input : Matrix V ∈ R
d×n, k, Tolerancetol

Output : Permutation MatrixΠ
Initialize Π← In×n

repeat
ComputeQR decomposition ofV to obtain

R11, R12 andR22 s.t.,V = Q

(

R11 R12

0 R22

)

βij ←
√

(R−1
11 R12)2ij + ||R22αj ||22||α

T
i R−1

11 ||
2
2

βm ← maxij βij

(̂i, ĵ)← arg maxijβij

Update:Π← Π Πi↔(j+k)

V ← V Πi↔(j+k)

until βm < tol ;

{ej}, we measure the diversity of exemplars as follows: matrixTE = [logµ(ej)] is obtained by
projecting the exemplars{ej} on the tangent space at meanµ. Here,log() is the inverse exponential
map on the manifold and gives tangent vectors atµ that point towardsej .

Diversity can then be quantified asJdiv(E) = Λ(TE), where,Λ(TE) represents the product of the
singular values of the matrixTE . For vector spaces, this measure is related to the sample variance
of the chosen exemplars. For manifolds, this measure is related to the sample Karchervariance. If
we denoteTX = [logµ(xi)], the matrix of tangent vectors corresponding to all data-points, and ifΠ
is the permutation matrix that orders the columns such that the firstK columns ofTX correspond
to the most diverse selection, then

Jdiv(E) = Λ(TE) = det(R11), where,TXΠ = QR = Q

(

R11 R12

0 R22

)

(2)

Here,R11 ∈ R
K×K is the upper triangular matrix ofR ∈ R

n×n, R12 ∈ R
K×(n−K) andR22 ∈

R
(n−K)×(n−K). The advantage of viewing the required quantity as the determinant of a sub-matrix

Algorithm 3 : Annealing-based Alternation Algo-
rithm for Subset Selection on Manifolds
Input : Data pointsX = {x1, x2, . . . , xn} ∈ M,

Number of exemplarsk, Tolerance stepδ
Output : E = {e1, . . . ek} ⊆ X
Initial setup:
Compute intrinsic meanµ of X
Compute tangent vectorsvi ← logµ(xi)
V ← [v1, v2, . . . , vn]
ω ← [1, 2, . . . , n] be the1× n index vector ofX
Tol← 1
Initialize: Π← Randomly permute columns ofIn×n

Update:V ← V Π, ω ← ωΠ.
while Π 6= In×n do

Diversity: Π← Div(V, k, tol) as in algorithm 2.
Update:V ← V Π, ω ← ωΠ.
Representative Error: Π← Rep(X, k, ω,1) as
in algorithm 1
Update:V ← V Π, ω ← ωΠ.
tol← tol + δ

end
ei ← xωi

for i = {1,2,. . . ,k}

on the right hand-side of the above equation is
that one can obtain efficient techniques for op-
timizing this cost function. The algorithm for
optimizing Jdiv is adopted from [7] and de-
scribed in algorithm 2. Input to the algorithm
is a matrixV created by the tangent-space pro-
jection of X and output is theK most “well-
conditioned” columns ofV . This is achieved
by first decomposingV into QR and comput-
ing βij , which indicates the benefit of swapping
ith andjth columns [7]. The algorithm then se-
lects pair(̂i, ĵ) corresponding to the maximum
benefit swapβm and if βm > tol, this swap is
accepted. This is repeated until eitherβm < tol
or maximum number of iterations is completed.

Representation and Diversity Trade-offs
for Subset Selection: From (1) and (2),
it can be seen that we seek a solution that
represents a trade-off between two conflicting
criteria. As an example, in figure 1(a) we
show two cases, whereJrep and Jdiv are
individually optimized. We can see that the

solutions look quite different in each case. One way to writethe global cost function is as a
weighted combination of the two. However, such a formulation does not lend itself to efficient
optimization routines (c.f. [2]). Further, the choice of weights is often left unjustified. Instead,
we propose an annealing-based alternating technique of optimizing the conflicting criteriaJrep
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Symbol Represents
Γ Maximum number of iterations

In×n Identity matrix
Φi Voronoi region ofith exemplar

Πi↔j Permutation matrix that swaps columnsi andj

Π(γ) Π in theγth iteration
V Matrix obtained by tangent-space projection ofX

Hij (i, j) element of matrixH
αj jth column of the identity matrix

Hαj , αT
j H jth column and row of matrixH respectively

Table 1:Notations used in Algorithm 1 - 3

Computational Step Complexity
M Exponential Map (assume) O(ν)

M Inverse exponential Map (assume) O(χ)
Intrinsic mean ofX O((nχ + ν)Γ)

Projection ofX to tangent-space O(nχ)
Geodesic distances in alg. 1 O(nKχ)

K intrinsic means O((nχ + Kν)Γ)
Alg. 2 O(mnK log n)

Gm,p Exponential Map O(p3)

Gm,p Inverse exponential map O(p3)

Table 2:Complexity of various computational steps.

andJdiv. Optimization algorithms forJrep andJdiv individually are given in algorithms 1 and
2 respectively. We first optimizeJdiv to obtain an initial set of exemplars, and use this set as
an initialization for optimizingJrep. The output of this stage is used as the current solution to
further optimizeJdiv. However, with each iteration, we increase the tolerance parametertol in
algorithm 2. This has the effect of accepting only those permutations that increase the diversity
by a higher factor as iterations progress. This is done to ensure that the algorithm is guided
towards convergence. If thetol value is not increased at each iteration, then optimizingJdiv will
continue to provide a new solution at each iteration that modifies the cost function only marginally.
This is illustrated in figure 1(c), where we show how the cost functionsJrep andJdiv exhibit an
oscillatory behavior if annealing is not used. As seen in figure 1(b) , the convergence ofJdiv

and Jrep is obtained very quickly on using the proposed annealing alternation technique. The
complete annealing based alternation algorithm is described in algorithm 3. A technical detail to
be noted here is that for algorithm 2, input matrixV ∈ R

d×n should haved ≥ k. For cases where
d < k, algorithm 2 can be replaced by its extension proposed in [9]. Table 1 shows the notations
introduced in algorithms 1 - 3.Πi↔j is obtained by permutingi andj columns of the identity matrix.

3 Complexity, Special cases and Limitations

In this section, we discuss how the proposed method relates to the special case ofM = R
n, and

to sub-manifolds ofRn specified by a large number of samples. For the case ofR
n, the cost func-

tionsJrep andJdiv boil down to familiar notions of clustering and low-rank matrix approximation
respectively. In this case, algorithm 3 reduces to alternation between clustering and matrix approx-
imation with the annealing ensuring that the algorithm converges. This results in a new algorithm
for subset-selection in vector spaces.

For the case of manifolds implicitly specified using samples, one can approach the problem in one
of two ways. The first would be to obtain an embedding of the space into a Euclidean space and
apply the special case of the algorithm forM = R

n. The embedding here needs to preserve the
geodesic distances between all pairs of points. Multi-dimensional scaling can be used for this pur-
pose. However, recent methods have also focused on estimating logarithmic maps numerically from
sampled data points [25]. This would make the algorithm directly applicable for such cases, without
the need for a separate embedding. Thus the proposed formalism can accommodate manifolds with
known and unknown geometries.

However, the formalism is limited to manifolds of finite dimension. The case of infinite dimen-
sional manifolds, such as diffeomorphisms [26], space of closed curves [27], etc. pose problems
in formulating the diversity cost function. WhileJdiv could have been framed purely in terms of
pairwise geodesics, making it extensible to infinite dimensional manifolds, it would have made the
optimization a significant bottleneck, as already discussed in section 2.

Computational Complexity: The computational complexity of computing exponential mapand
its inverse is specific to each manifold. Letn be the number of data points andK be the number
of exemplars to be selected. Table 2 enumerates the complexity of different computational step of
the algorithm. The last two rows show the complexity of an efficient algorithm proposed by [28] to
compute the exponential map and its inverse for the case of Grassmann manifoldGm,p.

4 Experiments

Baselines: We compare the proposed algorithm with two baselines. The first baseline is a
clustering-based solution to subset selection, where we cluster the dataset intoK clusters, and pick
as exemplar the data point that is closest to the cluster centroid. Since clustering optimizes only the
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Figure 1:Subset selection for a simple dataset consisting of unbalanced classes inR4. (a) Data projected on
R

2 for visualization using PCA. While trying to minimize the representational error,Jrep picks two exemplars
from the dominant class.Jdiv picks diverse exemplars but from the boundaries. The proposed approach strikes
a balance between the two and picks one ‘representative’ exemplar from each class. Convergence Analysis of
algorithm 3: (b) with annealing and (c) without annealing.

representation cost-function, we do not expect it to have the diversity of the proposed algorithm.
This corresponds to the special case of optimizing onlyJrep. The second baseline is to apply a
tangent-space approximation to the entire data-set at the mean of the dataset, and then apply a
subset-selection algorithm such as RRQR. This correspondsto optimizing onlyJdiv where the
input matrix is the matrix of tangent vectors. Since minimization ofJrep is not explicitly enforced,
we do not expect the exemplars to be the best representatives, even though the set is diverse.

A Simple Dataset: To gain some intuition, we first perform experiments on a simple synthetic
dataset. For easy visualization and understanding, we generated a dataset with3 unbalanced classes
in Euclidean spaceR4. Individual cost functions,Jrep andJdiv were first optimized to pick three
exemplars using algorithms 1 and 2 respectively. Selected exemplars have been shown in figure 1(a),
where the four dimensional dataset has been projected into two dimensions for visualization using
Principal Component Analysis (PCA). Despite unbalanced class sizes, when optimized individually,
Jdiv seeks to select exemplars from diverse classes but tends to pick them from the class boundaries.
While unbalanced class sizes causeJrep to pick2 exemplars from the dominant cluster. Algorithm
3 iteratively optimizes for both these cost functions and picks an exemplar from every class. These
exemplars, are closer to the centroid of the individual classes.

Figure 1(b) shows the convergence of the algorithm for this simple dataset and compares it
with the case when no annealing is applied (figure 1(c)).Jrep and Jdiv plots are shown as the
iterations of algorithm 3 progresses. When annealing is applied, the tolerance value (tol) is
increased by0.05 in each iteration. It can be noted that in this case the algorithm converges to
a steady state in7 iterations (tol = 1.35). If no annealing is applied, the algorithm does not converge.

Shape sampling/summarization: We conducted a real shape summarization experiment on the
MPEG dataset [29]. This dataset has70 shape classes with20 shapes per class. For our experi-
ments, we created a smaller dataset of10 shape classes with10 shapes per class. Figure 2(a) shows
the shapes used in our experiments. We use an affine-invariant representation of shapes based on
landmarks. Shape boundaries are uniformly sampled to obtain m landmark points. These points are
concatenated in a matrix to obtain the landmark matrixL ∈ R

m×2. Left singular vectors (Um×2),
obtained by the singular value decomposition of matrixL = UΣV T , give the affine-invariant rep-
resentation of shapes [30]. This affine shape-spaceU of m landmark points is a2-dimensional
subspace ofRm. Thesep-dimensional subspaces inRm constitute the Grassmann manifoldGm,p.
Details of the algorithms for the computation of exponential and inverse exponential map onGm,p

can be found in [28] and has also been included in the supplemental material.

In the experiment, the cardinality of the subset was set to10. As the number of shape classes is also
10, one would ideally seek one exemplar from each class. Algorithms 1 and 2 were first individually
optimized to select the optimal subset. Algorithm 1 was applied intrinsically on the manifold with
multiple initializations. Figure 2(b) shows the output with the least cost among these initializations.
For algorithm 2, data points were projected on the tangent space at the mean using the inverse
exponential map and the selected subset is shown in figure 2(c). Individual optimization ofJrep

results in1 exemplar each from6 classes,2 each from2 classes (‘apple’ and ‘flower’) and misses
2 classes (‘bell’ and ‘chopper’). While, individual optimization ofJdiv alone picks1 each from8
classes,2 from the class ‘car’ and none from the class ‘bell’. It can be observed that exemplars
chosen byJdiv for classes ‘glass’, ‘heart’,‘flower’ and ‘apple’ tend to beunusual members of the
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(a) (b) (c) (d)

Figure 2:(a) 10 classes from MPEG dataset with 10 shapes per class. Comparison of10 exemplars selected by
(b)Jrep, (c)Jdiv and (d) Proposed Approach.Jrep picks2 exemplars each from2 classes (‘apple’ and ‘flower’)
and misses ‘bell’ and ‘chopper’ classes.Jdiv picks1 from 8 different classes,2 exemplars from class ‘car’ and
none from class ‘bell’. It can be observed that exemplars chosen byJdiv for classes ‘glass’, ‘heart’, ‘flower’
and ‘apple’ tend to be unusual members of the class. It also picks up the flipped car. While the proposed
approach picks one representative exemplars from each class as desired.

class. It also picks up the flipped car. Optimizing for bothJdiv andJrep using algorithm 3 picks one
‘representative’ exemplar from each class as shown in figure2(d).

These exemplars picked by the three algorithms can be further used to label data points. Table 3
shows the confusion table thus obtained. For each data point, we find the nearest exemplar, and
label the data point with the ground-truth label of this exemplar. For example, consider the row
labeled as ‘bell’. All the data points of the class ‘bell’ were labeled as ‘pocket’ byJrep while Jdiv

labeled7 data points from this class as ‘chopper’ and3 as ‘pocket’. This confusion is largely due
to bothJrep andJdiv having missed out picking exemplars from this class. The proposed approach
correctly labels all data points as it picks exemplars from every class.

Glass Heart Apple Bell Baby Chopper Flower Car Pocket Teddy
Glass (10,10,10)
Heart (10,10,10)
Apple (0,1,0) (8,7,10) (2,0,0) (0,2,0)
Bell (0,0,10) (0,7,0) (10,3,0)
Baby (10,10,10)

Chopper (2,0,0) (8,0,0) (0,10,10)
Flower (10,10,10)

Car (10,10,10)
Pocket (10,10,10)
Teddy (10,10,10)

Table 3:Confusion Table. Entries correspond to the tuple(Jrep, Jdiv , P roposed). Row labels correspond to
the ground truth labels of the shape and the column labels correspond to the label of the nearest exemplar. Only
non-zero entries have been shown in the table.

KTH human action dataset: The next experiment was conducted on the KTH human action
dataset [31]. This dataset consists of videos with6 actions conducted by25 persons in4 different
scenarios. For our experiment, we created a smaller datasetof 30 videos with the first5 human
subjects conducting6 actions in thes4 (indoor) scenario. Figure 3(a) shows sample frames from
each video. This dataset mainly consists of videos capturedunder constrained settings. This makes it
difficult to identify the ‘usual’ or ‘unusual’ members of a class. To better understand the performance
of the three algorithms, we synthetically added occlusion to the last video of each class. These
occluded videos serve as the ‘unusual’ members.

Histogram of Oriented Optical Flow (HOOF) [32] was extracted from each frame to obtain a nor-
malized time-series for the videos. A Linear Dynamical System (LDS) is then estimated from
this time-series using the approach in [11]. This model is described by the state transition equa-
tion: x(t + 1) = Ax(t) + w(t) and the observation equationz(t) = Cx(t) + v(t), where
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(a) Dataset (b) Jrep (c) Jdiv (d) Proposed

Figure 3:(a) Sample frames from KTH action dataset [31]. From top to bottom action classes are{ box, run,
walk, hand-clap, hand-wave and jog}. 5 exemplars selected by: (b)Jrep, (c)Jdiv and (d) Proposed. Exemplars
picked byJrep correspond to{ box, run, run, hand-clap, hand-wave} actions. WhileJdiv selects{ box, walk,
hand-clap, hand-wave and jog}. Proposed approach picks{ box, run, walk, hand-clap and hand-wave}.

x ∈ R
d is the hidden state vector,z ∈ R

p is the observation vector,w(t) ∼ N(0, Θ) and
v(t) ∼ N(0, Ξ) are the noise components. Here,A is the state-transition matrix andC is the
observation matrix. The expected observation sequence of model (A, C) lies in the column space
of the infinite extended ‘observability’ matrix which is commonly approximated by a finite matrix
OT

m = [CT , (CA)T , (CA2)T , . . . , (CAm−1)T ]. The column space of this matrixOT
m ∈ R

mp×d is
ad-dimensional subspace and hence lies on the Grassmann manifold.

In this experiment, we consider the scenario when the numberof classes in a dataset is unknown.
We asked the algorithm to pick5 exemplars when the actual number of classes in the dataset is6.
Figure 3(b) shows one frame from each of the videos selected whenJrep was optimized alone. It
picks1 exemplar each from3 classes (‘box’,‘hand-clap’ and ‘hand-wave’),2 from the class ‘run’
while misses out on ‘walk’ and ‘jog’. On the other hand,Jdiv (when optimized alone) picks1 each
from 5 different classes and misses the class ‘run’. It can be seen thatJdiv picks2 exemplars that
are ‘unusual’ members (occluded videos) of their respective class. The proposed approach picks
1 representative exemplar from5 classes and none from the class ‘jog’. The proposed approach
achieves both a diverse selection of exemplars, and also avoids picking outlying exemplars.

Effect of Parameters and Initialization: In our experiments, the effect of tolerance steps (δ) for
smaller values (< 0.1) has very minimal effect. After a few attempts, we fixed this value to0.05 for
all our experiments. In the first iteration, we start withtol = 1. With this value, algorithm 2 accepts
any swap that increasesJdiv. This makes output of algorithm 2 after first iteration almost insensitive
to initialization. While, in the later iterations, swaps are accepted only if they increase the value of
Jdiv significantly and hence input to algorithm 2 becomes more important with the increase intol.

5 Conclusion and Discussion

In this paper, we addressed the problem of selectingK exemplars from a dataset when the dataset has
an underlying manifold structure to it. We utilized the geometric structure of the manifold to formu-
late the notion of picking exemplars which minimize the representational error while maximizing the
diversity of exemplars. An iterative alternation optimization technique based on annealing has been
proposed. We discussed its convergence and complexity and showed its extension to data manifolds
and Euclidean spaces. We showed summarization experimentswith real shape and human actions
dataset. Future work includes formulating subset selection for infinite dimensional manifolds and
efficient approximations for this case. Also, several special cases of the proposed approach point to
new directions of research such as the cases of vector spacesand data manifolds.
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