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Abstract 
Diagnosis of Alzheimer’s disease (AD) at the early stage of the disease development is of great 
clinical importance. Current clinical assessment that relies primarily on cognitive measures proves 
low sensitivity and specificity. The fast growing neuroimaging techniques hold great promise. 
Research so far has focused on single neuroimaging modality. However, as different modalities 
provide complementary measures for the same disease pathology, fusion of multi-modality data 
may increase the statistical power in identification of disease-related brain regions. This is 
especially true for early AD, at which stage the disease-related regions are most likely to be weak-
effect regions that are difficult to be detected from a single modality alone. We propose a sparse 
composite linear discriminant analysis model (SCLDA) for identification of disease-related brain 
regions of early AD from multi-modality data. SCLDA uses a novel formulation that decomposes 
each LDA parameter into a product of a common parameter shared by all the modalities and a 
parameter specific to each modality, which enables joint analysis of all the modalities and 
borrowing strength from one another. We prove that this formulation is equivalent to a penalized 
likelihood with non-convex regularization, which can be solved by the DC (difference of convex 
functions) programming. We show that in using the DC programming, the property of the non-
convex regularization in terms of preserving weak-effect features can be nicely revealed. We 
perform extensive simulations to show that SCLDA outperforms existing competing algorithms on 
feature selection, especially on the ability for identifying weak-effect features. We apply SCLDA 
to the Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) images of 
49 AD patients and 67 normal controls (NC). Our study identifies disease-related brain regions 
consistent with findings in the AD literature.  

 

1 Introduction 
Alzheimer’s disease (AD) is a fatal, neurodegenerative disorder that currently affects over five 
million people in the U.S. It leads to substantial, progressive neuron damage that is irreversible, 
which eventually causes death.  Early diagnosis of AD is of great clinical importance, because 
disease-modifying therapies given to patients at the early stage of their disease development will 
have a much better effect in slowing down the disease progression and helping preserve some 
cognitive functions of the brain. However, current clinical assessment that majorly relies on 
cognitive measures proves low sensitivity and specificity in early diagnosis of AD. This is because 
these cognitive measures are vulnerable to the confounding effect from some non-AD related 
factors such as patients’ mood, and presence of other illnesses or major life events [1]. The 
confounding effect is especially severe in the diagnosis of early AD, at which time cognitive 



 2 

impairment is not yet apparent. On the other hand, fast growing neuroimaging techniques, such as 
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET), provide great 
opportunities for improving early diagnosis of AD, due to their ability for overcoming the 
limitations of conventional cognitive measures. There are two major categories of neuroimaging 
techniques, i.e., functional and structure neuroimaging. MRI is a typical structural neuroimaging 
technique, which allows for visualization of brain anatomy. PET is a typical functional 
neuroimaging technique, which measures the cerebral metabolic rate for glucose. Both techniques 
have been extensively applied to AD studies. For example, studies based on MRI have 
consistently revealed brain atrophy that involves the hippocampus and entorhinal cortex [2-6]; 
studies based on PET have revealed functional abnormality that involves the posterior temporal 
and parietal association cortices [8-10], posterior cingulate, precuneus, and medial temporal 
cortices [11-14].  

There is overlap between the disease-related brain regions detected by MRI and those by PET, 
such as regions in the hippocampus area and the mesia temporal lobe [15-17]. This is not 
surprising since MRI and PET are two complementary measures for the same disease pathology, 
i.e., it starts mainly in the hippocampus and entorhinal cortex, and subsequently spreads 
throughout temporal and orbiogrontal cortext, poseterior cingulated, and association cortex [7]. 
However, most existing studies only exploited structural and functional alterations in separation, 
which ignore the potential interaction between them. The fusion of MRI and PET imaging 
modalities will increase the statistical power in identification of disease-related brain regions, 
especially for early AD, at which stage the disease-related regions are most likely to be weak-
effect regions that are difficult to be detected from MRI or PET alone. Once a good set of disease-
related brain regions is identified, they can be further used to build an effective classifier (i.e., a 
biomarker from the clinical perspective) to enable AD diagnose with high sensitivity and 
specificity.  

The idea of multi-modality data fusion in the research of neurodegenerative disorders has been 
exploited before. For example, a number of models have been proposed to combine 
electroencephalography (EEG) and functional MRI (fMRI), including parallel EEG-fMRI 
independent component analysis [18]-[19], EEG-informed fMRI analysis [18] [20], and 
variational Bayesian methods [18] [21]. The purpose of these studies is different from ours, i.e., 
they aim to combine EEG, which has high temporal resolution but low spatial resolution, and 
fMRI, which has low temporal resolution but high spatial resolution, so as to obtain an accurate 
picture for the whole brain with both high spatial and high temporal resolutions [18]-[21]. Also, 
there have been some studies that include both MRI and PET data for classification [15], [22]-
[25]. However, these studies do not make use of the fact that MRI and PET measure the same 
underlying disease pathology from two complementary perspectives (i.e., structural and functional 
perspectives), so that the analysis of one imaging modality can borrow strength from the other.  

In this paper, we focus on the problem of identifying disease-related brain regions from multi-
modality data. This is actually a variable selection problem. Because MRI and PET data are high-
dimensional, regularization techniques are needed for effective variable selection, such as the L1-
regularization technique [25]-[30] and the L2/L1-regularization technique [31]. In particular, 
L2/L1-regularization has been used for variable selection jointly on multiple related datasets, also 
known as multitask feature selection [31], which has a similar nature to our problem. Note that 
both L1- and L2/L1-regularizations are convex regularizations, which have gained them popularity 
in the literature. On the other hand, there is increasing evidence that these convex regularizations 
tend to produce too severely shrunken parameter estimates. Therefore, these convex 
regularizations could lead to miss-identification of the weak-effect disease-related brain regions, 
which unfortunately make up a large portion of the disease-related brain regions especially in early 
AD. Also, convex regularizations tend to select many irrelevant variables to compensate for the 
overly severe shrinkage in the parameters of the relevant variables. Considering these limitations 
of convex regularizations, we study non-convex regularizations [33]-[35] [39], which have the 
advantage of producing mildly or slightly shrunken parameter estimates so as to be able to 
preserve weak-effect disease-related brain regions and the advantage of avoiding selecting many 
disease-irrelevant regions.  

Specifically in this paper, we propose a sparse composite linear discriminant analysis model, 
called SCLDA, for identification of disease-related brain regions from multi-modality data. The 
contributions of our paper include: 
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• Formulation: We propose a novel formulation that decomposes each LDA parameter into a 
product of a common parameter shared by all the data sources and a parameter specific to 
each data source, which enables joint analysis of all the data sources and borrowing strength 
from one another. We further prove that this formulation is equivalent to a penalized 
likelihood with non-convex regularization.  

• Algorithm: We show that the proposed non-convex optimization can be solved by the DC 
(difference of convex functions) programming [39]. More importantly, we show that in using 
the DC programming, the property of the non-convex regularization in terms of preserving 
weak-effect features can be nicely revealed. 

• Application: We apply the proposed SCLDA to the PET and MRI data of early AD patients 
and normal controls (NC). Our study identifies disease-related brain regions that are 
consistent with the findings in the AD literature. AD vs. NC classification based on these 
identified regions achieves high accuracy, which makes the proposed method a useful tool for 
clinical diagnosis of early AD. In contrast, the convex-regularization based multitask feature 
selection method [31] identifies more irrelevant brain regions and yields a lower classification 
accuracy.  

 
2 Review of  LDA and its  variants  

Denote 𝒁 = 𝑍!,𝑍!,… ,𝑍!
!

 as the variables and assume there are 𝐽 classes. Denote 𝑁! as the 
sample size of class 𝑗 and 𝑁 = 𝑁!

!
!!!  is the total sample size. Let 𝐳 = 𝒛!, 𝒛!,… , 𝒛! ! be the 

𝑁×𝑝 sample matrix, where 𝒛! is the 𝑖!! sample and 𝑔 𝑖  is its associated class index. Let 
𝛍! =

!
!!

𝒛!!
!!!,! ! !!  be the sample mean of class 𝑗, 𝛍 = !

!
𝒛!!

!!!  be the overall sample mean, 

𝐓 = !
!

𝒛! − 𝛍 𝒛! − 𝛍 !!
!!!  be the total normalized sum of squares and products (SSQP),  

𝐖! =
!
!!

𝒛! − 𝛍! 𝒛! − 𝛍!
!!

!!!,! ! !!  be the normalized class SSQP of class 𝑗, and 𝐖 =
!
!

𝑁!𝐖!
!
!!!  be the overall normalized class SSQP.  

The objective of LDA is to seek for a 𝑝×𝑞 linear transformation matrix, 𝛉! , with which  𝛉!!𝑍 
retains the maximum amount of class discrimination information in 𝑍. To achieve this objective, 
one approach is to seek for the 𝛉!  that maximizes the between-class variance of 𝛉!!𝑍, which can 
be measured by tr(𝛉!!𝐓𝛉! ),  while minimizing the within-class variance of 𝛉!!𝑍, which  can be 
measured by tr(𝛉!!𝐖𝛉! ). Here tr() is the matrix trace operator. This is equivalent to solving the 
following optimization problem: 

                                                            𝛉! = argmax𝛉!
𝐭𝐫(𝛉!!𝐓𝛉! )
𝐭𝐫(𝛉!!𝐖𝛉! )

 .                                                          (1) 

Note that 𝛉!  corresponds to the right eigenvector of 𝐖!!𝐓 and 𝑞 = 𝐽 − 1. 

Another approach used for finding the 𝛉!  is to use the maximum likelihood estimation for 
Gaussian populations that have different means and a common covariance matrix. Specifically, as 
in [36], this approach is developed by assuming the class distributions are Gaussian with a 
common covariance matrix, and their mean differences lie in a 𝑞-dimensional subspace of the 𝑝-
dimensional original variable space. Hastie [37] further generalized this approach by assuming 
that class distributions are a mixture of Gaussians, which has more flexibility than LDA. However, 
both approaches assume a common covariance matrix for all the classes, which is too strict in 
many practical applications, especially in high-dimensional problems where the covariance 
matrices of different classes tend to be different. Consequently, the linear transformation explored 
by LDA may not be effective.  

In [38], a heterogeneous LDA (HLDA) is developed to relax this assumption. The HLDA seeks 
for a 𝑝×𝑝 linear transformation matrix, 𝛉, in which only the first 𝑞 columns (𝛉! ) contain 
discrimination information and the remaining 𝑝 − 𝑞 columns (𝛉!!!) contain no discrimination 
information. For Gaussian models, assuming lack of discrimination information is equivalent to 
assuming that the means and the covariance matrices of the class distributions are the same for all 
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classes, in the 𝑝 − 𝑞 dimensional subspace. Following this, the log-likelihood function of 𝛉 can be 
written as below [38]: 

                      𝑙 𝛉|𝐙 = − !
!
log 𝛉!!!! 𝐓𝛉!!! −

!!
!
log 𝛉!!𝐖!𝛉!

!
!!! + 𝑁 log 𝛉 ,                       (2) 

Here 𝐀  denotes the determinant of matrix 𝐀. There is no closed-form solution for 𝛉. As a result, 
numeric methods are needed to derive the maximum likelihood estimate for 𝛉. It is worth 
mentioning that the LDA in the form of (1) is a special case of the HLDA [38].   

 
3 The proposed SCLDA 
Suppose that there are multiple data sources, 𝐙 ! ,𝐙 ! ,… ,𝐙 ! , with each data source capturing 
one aspect of the same set of physical variables, e.g., the MRI and PET capture the structural and 
functional aspects of the same brain regions. For each data source, 𝐙 ! , there is a linear 
transformation matrix 𝛉 ! , which retains the maximum amount of class discrimination 
information in 𝐙 ! . A naive way for estimating 𝚯 = 𝛉 ! ,𝛉 ! ,… ,𝛉 !  is to separately estimate 
each 𝛉 !  based on 𝐙 ! . Apparently, this approach does not take advantage of the fact that all the 
data sources measure the same physical process. Also, when the sample size of each data source is 
small, this approach may lead to unreliable estimates for the 𝛉 ! ’s.  

To tackle these problems, we propose a composite parameterization following the line as [40]. 
Specifically, let 𝜃!,!

!  be the element at the k-th row and l-th column of 𝛉 ! .  We treat 
𝜃!,!
! , 𝜃!,!

! ,… , 𝜃!,!
!  as an interrelated group and parameterize each 𝜃!,!

!  as 𝜃!,!
! = 𝛿!𝛾!,!

! , for 
1 ≤ 𝑘 ≤ 𝑝, 1 ≤ 𝑙 ≤ 𝑝 and  1 ≤ 𝑚 ≤ 𝑀. In order to assure identifiability, we restrict each 𝛿! ≥ 0. 
Here, 𝛿! represents the common information shared by all the data sources about variable 𝑘, while 
𝛾!,!
!  represents the specific information only captured by the 𝑚!! data source. For example, for 

disease-related brain region identification, if 𝛿! = 0, it means that all the data sources indicate 
variable 𝑘 is not a disease-related brain region; otherwise, variable 𝑘 is a disease-related brain 
region. 𝛾!,!

! ≠ 0 means that the 𝑚!! data source supports this assertion.  

The log-likelihood function of 𝚯 is: 

𝑙! 𝚯| 𝐙 ! ,𝐙 ! ,… ,𝐙 ! = − ! !

!
log 𝛉!!!

! !
𝐓 ! 𝛉!!!

! −
!!

!

!
log 𝛉!

! 𝐖!
! 𝛉!

!!
!!! +!

!!!

𝑁 ! log 𝛉 !  , 

which follows the same line as (2). However, our formulation includes the following constraints 
on 𝚯:   

                                                 𝜃!,!
! = 𝛿!𝛾!,!

! , 𝛿! ≥ 0, 1 ≤ 𝑘, 𝑙 ≤ 𝑝, 1 ≤ 𝑚 ≤ 𝑀.                               (3) 

Let 𝚪 = 𝛾!,!
! , 1 ≤ 𝑘 ≤ 𝑝, 1 ≤ 𝑙 ≤ 𝑝, 1 ≤ 𝑚 ≤ 𝑀  and 𝚿 = 𝛿! , 1 ≤ 𝑘 ≤ 𝑝 . An intuitive 

choice for estimation of 𝚪 and 𝚿 is to maximize the 𝑙! 𝚯| 𝐙 ! ,𝐙 ! ,… ,𝐙 !   subject to the 
constraints in (3). However, it can be anticipated that no element in the estimated 𝚪 and 𝚿 will be 
exactly zero, resulting in a model which is not interpretable, i.e., poor identification of disease-
related regions. Thus, we encourage the estimation of 𝚿 and the first 𝑞 columns of 𝚪 (i.e., the 
columns containing discrimination information) to be sparse, by imposing the L1-penalty on 𝚪 and 
𝚿. By doing so, we obtain the following optimization problem for the proposed SCLDA: 

𝚯 = argmin𝚯 𝑙! 𝚯| 𝐙 ! ,𝐙 ! ,… ,𝐙 ! = argmin𝚯 −𝑙! 𝚯| 𝐙 ! ,𝐙 ! ,… ,𝐙 ! +   𝜆! 𝛿!! +

𝜆! 𝛾!,!
!

!,!,!   , subject to 

                                                  𝜃!,!
! = 𝛿!𝛾!,!

! , 𝛿! ≥ 0, 1 ≤ 𝑘, 𝑙 ≤ 𝑝, 1 ≤ 𝑚 ≤ 𝑀.                                (4) 

Here, 𝜆! and 𝜆! control the degrees of sparsity of 𝚿 and 𝚪, respectively. Tuning of two 
regularization parameters is difficult. Fortunately, we prove the following Theorem which 
indicates that formulation (4) is equivalent to a simpler optimization problem involving only one 
regularization parameter. 
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Theorem 1: The optimization problem (4) is equivalent to the following optimization problem: 

𝚯 = argmin𝚯 𝑙! 𝚯| 𝐙 ! ,𝐙 ! ,… ,𝐙 !  

                              = argmin𝚯 −𝑙! 𝚯| 𝐙 ! ,𝐙 ! ,… ,𝐙 ! +  𝜆 𝜃!,!
!!

!!!
!
!!!!  ,        (5) 

with 𝜆 = 2 𝜆!𝜆!, i.e., 𝜃!,!
! = 𝜃!,!

! .    

The proof can be found in the supplementary document. It can also be found in the supplementary 
material how this formulation will serve the purpose of the composite parameterization, i.e., 
common information and specific information can be estimated separately and simultaneously.  

The optimization problem (5) is a non-convex optimization problem that is difficult to solve. We 
address this problem by using an iterative two-stage procedure known as Difference of Convex 
functions (DC) programming [39]. A full description of the algorithm can be found in the 
supplemental material.  

 
4 Simulation studies  
In this section, we conduct experiments to compare the performance of the proposed SCLDA with 
sparse LDA (SLDA) [42] and multitask feature selection [31]. Specifically, as we focus on LDA, 
we use the multitask feature selection method developed in [31] on LDA, denoted as MSLDA. 
Both SLDA and MSLDA adopt convex regularizations. Specifically, SLDA selects features from 
one single data source with L1-regularization; MSLDA selects features from multiple data sources 
with L2/L1 regularization. 

We evaluate the performances of these three methods across various parameters settings, including 
the number of variables, 𝑝, the number of features, 𝑙, the number of data sources, M, sample size, 
𝑛, and the degree of overlapping of the features across different data sources, s% (the larger the 
𝑠%, the more shared features among the datasets). Definition of 𝑠% can be found in the simulation 
procedure that is included in the supplemental material. For each specification of the parameters 
settings, 𝑀 datasets can be generated following the simulation procedure. We apply the proposed 
SCLDA to the 𝑀 datasets, and identify one feature vector 𝛉(!) for each dataset, with 𝜆 and 𝑞 
chosen by the method described in section 3.3. The result can be described by the number of true 
positives (TPs) as well as the number of false positives (FPs). Here, true positives are the non-zero 
elements in the learned feature vector 𝛉(!)which are also non-zero in the 𝛃!; false positives are the 
non-zero elements in 𝛉(!), which are actually zero in 𝛃!. As there are 𝑚 pairs of the TPs and FPs 
for the 𝑀 datasets, the average TP over the M datasets and the average FP over the M datasets are 
used as the performance measures. This procedure (i.e., from data simulation, to SCLDA, to TPs 
and FPs generation) can be repeated for 𝐵 times, and 𝐵 pairs of average TP and average FP are 
collected for SCLDA. In a similar way, we can obtain 𝐵 pairs of average TP and average FP for 
both SLDA and MSLDA. 

Figures 1 (a) and (b) show comparison between SCLDA, SLDA and MSLDA by scattering the 
average TP against the average FP for each method. Each point corresponds to one of the N 
repetitions. The comparison is across various parameters settings, including the number of 
variables (𝑝 = 100,200,500), the number of data sources (𝑚 = 2,5,10), and the degree of 
overlapping of the features across different data sources (𝑠% = 90%, 70%). Additionally, 𝑛 𝑝 is 
kept constant, 𝑛 𝑝 = 1. A general observation is that SCLDA is better than SLDA and MSLDA 
across all the parameter settings. Some specific trends can be summarized as follows: (i) Both 
SCLDA and MSLDA outperform SLDA in terms of TPs; SCLDA further outperforms MSLDA in 
terms of FPs. (ii) In Figure 2 (a), rows correspond to different numbers of data sources, i.e., 
𝑚 = 2,5,10 respectively. It is clear that the advantage of SCLDA over both SLDA and MSLDA is 
more significant when there are more data sources. Also, MSLDA performs consistently better 
than SLDA. Similar phenomena are shown in Figure 2 (b). This demonstrates that in analyzing 
each data source, both SCLDA and MSLDA are able to make use of the information contained in 
other data sources. SCLDA can use this information more efficiently, as SCLDA can produce less 
shrunken parameter estimates than MSLDA and thus it is able to preserve weak-effect features. 
(iii) Comparing Figures 2 (a) and (b), it can be seen that the advantage of SCLDA or MSLDA 
over SLDA is more significant as the data sources have more degree of overlapping in their 
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features. Finally, although not presented here, our simulation shows that the three methods 
perform similarly when 𝑠% = 40 or less.  

 

 
                                     (a)                                                                       (b) 

Figure 1: Average numbers of TPs vs FPs for SCLDA (green symbols “+”), SLDA (blue symbols 
“*”) and MSLDA (red symbols “o”) (a) 𝑠% = 90%, 𝑛 𝑝 = 1; (b) 𝑠% = 70%, 𝑛 𝑝 = 1 

 
5 Case study 
 
5 . 1  D a t a  p r e p r o c e s s i n g  

Our study includes 49 AD patient and 67 age-matched normal controls (NC), with each subject of 
AD or NC being scanned both by PET and MRI. The PET and MRI images can be downloaded 
from the database by the Alzheimer’s Disease Neuroimaging Initiative. In what follows, we 
outline the data preprocessing steps.  

Each image is spatially normalized to the Montreal Neurological Institute (MNI) template, using 
the affine transformation and subsequent non-linear wraping algorithm [43] implemented in the 
SPM MATLAB toolbox. This is to ensure that each voxel is located in the same anatomical region 
for all subjects, so that spatial locations can be reported and interpreted in a consistent manner. 
Once all the images in the MNI template, we further apply the Automated Anatomical Labeling 
(AAL) technique [43] to segment the whole brain of each subject into 116 brain regions. The 90 
regions that belong to the cerebral cortex are selected for the later analysis, as the other regions are 
not included in the cerebral cortex are rarely considered related with AD in the literature.   The 
measurement of each region in the PET data is regional cerebral blood flow (rCBF); the 
measurement of each region in the MRI data is the structural volume of the region.  

 
5 . 2  D i s e a s e - r e l a t e d  b r a i n  r e g i o n s  

SCLDA is applied to the preprocessed PET and MRI data of AD and NC with the penalty 
parameter selected by the AIC method mentioned in section 3. 26 disease-related brain regions are 
identified from PET and 21 from MRI (see Table 1 for their names). The maps of the disease-
related brain regions identified from PET and MRI are highlighted in Figure 2 (a) and (b), 
respectively, with different colors given to neighboring regions in order to distinguish them. Each 
figure is a set of horizontal cut away slices of the brain as seen from the top, which aims to 
provide a full view of locations of the regions.  

One major observation is that the identified disease-related brain regions from MRI are in the 
hippocampus, parahippocampus, temporal lobe, frontal lobe, and precuneus, which is consistent 
with the existing literature that reports structural atrophy in these brain areas. [3-6,12-14]. The 
identified disease-related brain regions from PET are in the temporal, frontal and parietal lobes, 
which is consistent with many functional neuroimaging studies that report reduced rCBF or 
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reduced cortical glucose metabolism in these areas [8-10, 12-14]. Many of these identified 
disease-related regions can be explained in terms of the AD pathology. For example, hippocampus 
is a region affected by AD the earliest and severely [6] Also, as regions in the temporal lobe are 
essential for memory, damage on these regions by AD can explain the memory loss which is a 
major clinic symptom of AD. The consistency of our findings with the AD literature supports 
effectiveness of the proposed SCLDA.  

Another finding is that there is a large overlap between the identified disease-related regions from 
PET and those from MRI, which implies strong interaction between functional and structural 
alterations in these regions. Although well-accepted biological mechanisms underlying this 
interaction are still not very clear, there are several explanations existing in the literature. The first 
explanation is that both functional and structural alterations could be the consequence of dendritic 
arborizations, which results from intracellular accumulation of PHFtau and further leads to neuron 
death and grey matter loss [14]. The second explanation is that the AD pathology may include a 
vascular component, which may result in reduced rCBF due to limited blood supply and may 
ultimately result in structural alteration such as brain atrophy [45].   
 

 
                                            (a)                                                                (b) 

Figure 2: locations of disease-related brain regions identified from (a) MRI; (b) PET 

 
5 . 3  C l a s s i f i c a t i o n  a c c u r a c y  

As one of our primary goals is to distinguish AD from NC, the identified disease-related brain 
regions through SCLDA are further utilized for establishing a classification model.  Specifically, 
for each subject, the rCBF values of the 26 disease-related brain regions identified from PET and 
the structural volumes of the 21 disease-related brain regions identified from MRI are used, as a 
joint spatial pattern of both brain physiology and structure. As a result, each subject is associated 
with a vector with 47 features/variables. Linear SVM (Support Vector Machine) is employed as 
the classifier. The classification accuracy based on 10-fold cross-validation is 94.3%. For 
comparison purposes, MSLDA is also applied, which identifies 45 and 38 disease-related brain 
regions for PET and MRI, respectively. Linear SVM applied to the 45+38 features gives a 
classification accuracy of only 85.8%. Note that MSLDA identifies a much larger number of 
disease-related brain regions than SCLDA, but some of the identified regions by MSLDA may 
indeed be disease-irrelevant, so including them deteriorates the classification. 

 
5 . 4  R e l a t i o n s h i p  b e t w e e n  s t r u c t u r a l  a t r o p h y  a n d  a b n o r m a l  r C B F ,  a n d  
s e v e r i t y  o f  c o g n i t i v e  i m p a i r m e n t  i n  A D  

In addition to classification, it is also of interest to further verify relevance of the identified 
disease-related regions with AD in an alternative way. One approach is to investigate the degree to 
which those disease-related regions are relevant to cognitive impairment that can be measured by 
the Alzheimer’s disease assessment scale – cognitive subscale (ADAS-cog). ADAS measures 
severity of the most important symptoms of AD, while its subscale, ADAS-cog, is the most 
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popular cognitive testing instrument used in clinic trails. The ADAS-cog consists of 11 items 
measuring disturbances of memory, language, praxis, attention and other cognitive abilities that 
are often affected by AD. As the total score of these 11 items provides an overall assessment of 
cognitive impairment, we regress this ADAS-cog total score (the response) against the rCBF or 
structure volume measurement (the predictor) of each identified brain region, using a simple 
regression. The regression results are listed in Table 1. 

It is not surprising to find that some regions in the hippocampus area and temporal lobes are 
among the best predictors, as these regions are extensively reported in the literature as the most 
severely affected by AD [3-6]. Also, it is found that most of these brain regions are weak-effect 
predictors, as most of them can only explain a small portion of the variability in the ADAS-cog 
total score, i.e., many R-square values in Table 1 are less than 10%. However, although the effects 
are weak, most of them are significant, i.e., most of the p-values in Table 1 are smaller than 0.05. 
Furthermore, it is worth noting that 70.22% variability in ADAS-cog can be explained by taking 
all the 26 brain regions identified from PET as predictors in a multiple regression model; 49.72% 
variability can be explained by taking all the 21 brain regions from MRI as predictors in a multiple 
regression model. All this findings imply that the disease-related brain regions are indeed weak-
effect features if considered individually, but jointly they can play a strong role for characterizing 
AD. This verifies the suitability of the proposed SCLDA for AD studies, as SCLDA can preserve 
weak-effect features.  

 
Table 1: Explanatory power of regional rCBF and structural volume for variability in ADAS-cog 

(“~” means this region is not identified from PET (or MRI) as a disease-related region by SCLDA) 
 

Brain regions 
PET MRI 

Brain regions 
PET MRI 

R2 p-
value R2 p-

value R2 p-
value R2 p-

value 
Precentral_L 0.003 0.503 0.027 0.077 Amygdala_L 0.090 0.001 0.313 <10-4 
Precentral_R 0.044 0.022 ~ ~ Calcarine_L 0.038 0.034 0.028 0.070 

Frontal_Sup_L 0.051 0.013 0.047 0.018 Lingual_L 0.066 0.005 0.044 0.023 
Frontal_Sup_R 0.044 0.023 ~ ~ Postcentral_L 0.038 0.035 0.026 0.081 
Frontal_Mid_R 0.056 0.010 0.072 0.003 Parietal_Sup_R 0.001 0.677 ~ ~ 
Frontal_M_O_L 0.036 0.040 0.086 0.001 Angular_R 0.173 <10-4 0.063 0.006 
Frontal_M_O_R 0.019 0.138 0.126 0.000 Precuneus_R 0.063 0.006 0.025 0.084 

Insula_L 0.016 0.171 0.163 <10-4 Paracentr_Lobu_L 0.035 0.043 0.000 0.769 
Insula_R ~ ~ 0.125 0.000 Pallidum_L 0.082 0.001 ~ ~ 

Cingulum_A_R 0.004 0.497 0.082 0.001 Pallidum_R ~ ~ 0.020 0.122 
Cingulum_Mid_L 0.001 0.733 0.040 0.030 Heschl_L 0.001 0.640 ~ ~ 
Cingulum_Post_L 0.184 <10-4 ~ ~ Heschl_R 0.000 0.744 0.111 0.000 
Hippocampus_L 0.158 <10-4 ~ ~ Temporal_P_S_R 0.008 0.336 0.071 0.003 
Hippocampus_R ~ ~ 0.242 <10-4 Temporal_Inf_R 0.187 <10-4 0.147 <10-4 

ParaHippocamp_L 0.206 <10-4 ~ ~ All regions 0.702 <10-4 0.497 <10-4 

 
6 Conclusion 
In the paper, we proposed a SCLDA model for identification of disease-related brain regions of 
AD from multi-modality data, which is capable to preserve weak-effect disease-related brain 
regions due to its less shrinkage imposed on its parameters. We applied SCLDA to the PET and 
MRI data of early AD patients and normal controls. As MRI and PET measure two 
complementary aspects (structural and functional aspects, respectively) of the same AD pathology, 
fusion of these two image modalities can make effective use of their interaction and thus improve 
the statistical power in identification of disease-related brain regions. Our findings were consistent 
with the literature and also showed some new aspects that may suggest further investigation in 
neuroimaging research in the future.   
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