A Bayesian Approach for Policy Learning from
Trajectory Preference Queries

Aaron Wilson * Alan Fern Prasad Tadepalli
School of EECS School of EECS School of EECS
Oregon State University Oregon State University Oregon State University
Abstract

We consider the problem of learning control policies via trajectory preference
queries to an expert. In particular, the agent presents an expert with short runs of
a pair of policies originating from the same state and the expert indicates which
trajectory is preferred. The agent’s goal is to elicit a latent target policy from
the expert with as few queries as possible. To tackle this problem we propose
a novel Bayesian model of the querying process and introduce two methods that
exploit this model to actively select expert queries. Experimental results on four
benchmark problems indicate that our model can effectively learn policies from
trajectory preference queries and that active query selection can be substantially
more efficient than random selection.

1 Introduction

Directly specifying desired behaviors for automated agents is a difficult and time consuming pro-
cess. Successful implementation requires expert knowledge of the target system and a means of
communicating control knowledge to the agent. One way the expert can communicate the desired
behavior is to directly demonstrate it and have the agent learn from the demonstrations, e.g. via
imitation learning [15, 3, 13] or inverse reinforcement learning [12]. However, in some cases, like
the control of complex robots or simulation agents, it is difficult to generate demonstrations of the
desired behaviors. In these cases an expert may still recognize when an agent’s behavior matches a
desired behavior, or is close to it, even if it is difficult to directly demonstrate it. In such cases an
expert may also be able to evaluate the relative qualities to the desired behavior of a pair of example
trajectories and express a preference for one or the other.

Given this motivation, we study the problem of learning expert policies via trajectory preference
queries to an expert. A trajectory preference query (TPQ) is a pair of short state trajectories origi-
nating from a common state. Given a TPQ the expert is asked to indicate which trajectory is most
similar to the target behavior. The goal of our learner is to infer the target trajectory using as few
TPQs as possible. Our first contribution (Section 3) is to introduce a Bayesian model of the query-
ing process along with an inference approach for sampling policies from the posterior given a set
of TPQs and their expert responses. Our second contribution (Section 4) is to describe two active
query strategies that attempt to leverage the model in order to minimize the number of queries re-
quired. Finally, our third contribution (Section 5) is to empirically demonstrate the effectiveness of
the model and querying strategies on four benchmark problems.

We are not the first to examine preference learning for sequential decision making. In the work
of Cheng et al. [5] action preferences were introduced into the classification based policy iteration

*wilsonaaleecs.oregonstate.edu
fafern@eecs. oregonstate.edu
itadepall@eecs .oregonstate.edu

framework. In this framework preferences explicitly rank state-action pairs according to their rel-
ative payoffs. There is no explicit interaction between the agent and domain expert. Further the
approach also relies on knowledge of the reward function, while our work derives all information
about the target policy by actively querying an expert. In more closely related to our work, Akraur
et al. [1] consider the problem of learning a policy from expert queries. Similar to our proposal this
work suggests presenting trajectory data to an informed expert. However, their queries require the
expert to express preferences over approximate state visitation densities and to possess knowledge
of the expected performance of demonstrated policies. Necessarily the trajectories must be long
enough to adequately approximate the visitation density. We remove this requirement and only re-
quire short demonstrations; our expert assesses trajectory snippets not whole solutions. We believe
this is valuable because pairs of short demonstrations are an intuitive and manageable object for
experts to assess.

2 Preliminaries

We explore policy learning from expert preferences in the framework of Markov Decision Processes
(MDP). An MDP is a tuple (S, A, T, Py, R) with state space S, action space A, state transition
distribution 7', which gives the probability T'(s, a, s") of transitioning to state s’ given that action a
is taken in state s. The initial state distribution Py(sg) gives a probability distribution over initial
states so. Finally the reward function R(s) gives the reward for being in state s. Note that in this
work, the agent will not be able to observe rewards and rather must gather all information about
the quality of policies via interaction with an expert. We consider agents that select actions using
a policy mp parameterized by 6, which is a stochastic mapping from states to actions Py (als,8).
For example, in our experiments, we use a log-linear policy representation, where the parameters
correspond to coefficients of features defined over state-action pairs.

Agents acting in an MDP experience the world as a sequence of state-action pairs called a tra-
jectory. We denote a K-length trajectory as & = (so,aop,...,ax—_1,SK) beginning in state sg
and terminating after K steps. It follows from the definitions above that the probability of gen-
erating a K-length trajectory given that the agent executes policy g starting from state sg is,
P10, s0) = Hfil T(st—1,a¢—1,8t)Pr(at_1|st—1,). Trajectories are an important part of our
query process. They are an intuitive means of communicating policy information. Trajectories have
the advantage that the expert need not share a language with the agent. Instead the expert is only
required to recognize differences in physical performances presented by the agent. For purposes of
generating trajectories we assume that our learner is provided with a strong simulator (or generative
model) of the MDP dynamics, which takes as input a start state s, a policy 7, and a value K, and
outputs a sampled length K trajectory of 7 starting in s.

In this work, we evaluate policies in an episodic setting where an episode starts by drawing an initial
state from Py and then executing the policy for a finite horizon 7. A policy’s value is the expected
total reward of an episode. The goal of the learner is to select a policy whose value is close to that
of an expert’s policy. Note, that our work is not limited to finite-horizon problems, but can also be
applied to infinite-horizon formulations.

In order to learn a policy, the agent presents trajectory preference queries (TPQs) to the expert and
receives responses back. A TPQ is a pair of length K trajectories (&;,&;) that originate from a
common state s. Typically K will be much smaller than the horizon 7', which is important from
the perspective of expert usability. Having been provided with a TPQ the expert gives a response y
indicating, which trajectory is preferred. Thus, each TPQ results in a training data tuple (&;, &5, v).
Intuitively, the preferred trajectory is the one that is most similar to what the expert’s policy would
have produced from the same starting state. As detailed more in the next section, this is modeled
by assuming that the expert has a (noisy) evaluation function f(.) on trajectories and the response
is then given by y = I(f(&) > f(&;)) (a binary indicator). We assume that the expert’s evaluation
function is a function of the observed trajectories and a latent target policy 6*.

3 Bayesian Model and Inference

In this section we first describe a Bayesian model of the expert response process, which will be
used to: 1) Infer policies based on expert responses to TPQs, and 2) Guide the action selection of

TPQs. Next, we describe a posterior sampling method for this model which is used for both policy
inference and TPQ selection.

3.1 Expert Response Model

The model for the expert response y given a TPQ (§;, £;) decomposes as follows
P(yl(&:, &), 07) P(67)
where P(6*) is a prior over the latent expert policy, and P(y|(&;,&;), 6*) is a response distribution

conditioned on the TPQ and expert policy. In our experiments we use a ridge prior in the form of a
Gaussian over #* with diagonal covariance, which penalizes policies with large parameter values.

Response Distribution. The conditional response distribution is represented in terms of an expert
evaluation function f*(§;,§;,0*), described in detail below, which translates a TPQ and a candidate
expert policy 6" into a measure of preference for trajectory &; over ;. Intuitively, f* measures
the degree to which the policy 6* agrees with &; relative to §;. To translate the evaluation into an
expert response we borrow from previous work [6]. In particular, we assume the expert response is
given by the indicator I(f*(&;,&;,0%) > €) where € ~ N(0,02). The indicator simply returns 1 if
the condition is true, indicating &; is preferred, and zero otherwise. It follows that the conditional
response distribution is given by:

“+oo
Ply=11(6.6).00 = [107 (66,6 > V(0. 0%)de
& (M) ,
or
where ®(.) denotes the cumulative distribution function of the normal distribution. This formulation
allows the expert to err when demonstrated trajectories are difficult to distinguish as measured by the
magnitude of the evaluation function f*. We now describe the evaluation function in more detail.

Evaluation Function. Intuitively the evaluation function must combine distances between the query
trajectories and trajectories generated by the latent target policy. We say that a latent policy and
query trajectory are in agreement when they produce similar trajectories. The dissimilarity between
two trajectories §; and &; is measured by the trajectory dissimilarity function

K

f(fhgj) = Z k([si,t, ai,t]7 [Sj,ta (lj,t])

t=0
where the variables [s; +, a; ;] represent the values of the state-action pair at time step t in trajectory
i (similarly for [s; ¢, a;]) and the function & computes distances between state-action pairs. In our
experiments, states and actions are represented by real-valued vectors and we use a simple function
of the form: k([s,al,[s’,a]) = ||s — §'|| + ||a — a’|| though other more sophisticated comparison
functions could be easily used in the model.

Given the trajectory comparison function, we now encode a dissimilarity measure between the latent
target policy and an observed trajectory ;. To do this let £* be a random variable ranging over length
k trajectories generated by target policy 6* starting in the start state of £;. The dissimilarity measure

is given by: . .

d(&:,07) = E[f (&, ¢")]
This function computes the expected dissimilarity between a query trajectory &; and the K-length
trajectories generated by the latent policy from the same initial state.

Finally, the comparison function value f*(&;,&;,0%) = d(&;,0%) — d(&;,0") is the difference in
computed values between the ith and jth trajectory. Larger values of f* indicate stronger preferences
for trajectory &;.

3.2 Posterior Inference

Given the definition of the response model, the prior distribution, and an observed data set D =
{(&,&;,y)} of TPQs and responses the posterior distribution is,
PO ID)x P(0*) [@@'Q-®@:)"",

(&i.€5.y)€D

where z =) | This posterior distribution does not have a simple closed form and we

o
must approximate it.

We approximate the posterior distribution using a set of posterior samples which we generate using
a stochastic simulation algorithm called Hybrid Monte Carlo (HMC) [8, 2]. The HMC algorithm
is an example of a Markov Chain Monte Carlo (MCMC) algorithm. MCMC algorithms output a
sequence of samples from the target distribution. HMC has an advantage in our setting because it
introduces auxiliary momentum variables proportional to the gradient of the posterior which guides
the sampling process toward the modes of the posterior distribution.

To apply the HMC algorithm we must derive the gradient of the energy function
Vo log(P(D|0)P(6)) as follows.

g LElP(O° D) = S oBlPO)]+ 30 g los[@(2)" (1 -9 (2)']

(€i.65,0)€D °

The energy function decomposes into prior and likelihood components. Using our assumption of a
Gaussian prior with diagonal covariance on 6* the partial derivative of the prior component at 8 is

g7 loelP(e7)) = — 2.

Next, consider the gradient of the data log likelihood,

S o lee [#(2)7(1 - (=),

(€1.65.9)€D ¢

which decomposes into | D| components each of which has a value dependent on y.

In what follows we will assume that y = 1 (It is straight forward to derive the second case). Recall
that the function ®(.) is the cumulative distribution function of N(z;0,o2), Therefore, the gradient

of log(®(z2)) is,
‘1>(12) (8(3*(1)('2)) = % (a%*z) N(z0,07)

O 1og[d(2)] =
:q>(1z)<1 (ao* d(&;,0") — ae* (&, 0)) (z;o,a$)>.

0;
Rrecall the definition of d(&, 6*) from above. After moving the derivative inside the integral the
gradient of this function is

5rd(€07) = = [16 g PE10)ae = = [J(e.€)PE 107 5 o(PLE107) e

[HE NP1 S os(Peloslsn)"
k=1 ?

The final step follows from the definition of the trajectory density which decomposes under the log
transformation. For purposes of approximating the gradient this integral must be estimated. We do
this by generating N sample trajectories from P(£*|0*) and then compute the Monte-Carlo estimate

— % Y 66 Y ag* log(Py (ak|sk,0*)). We leave the definition of log(Pr(ak|sk, 0*))
for the experimental results section where we describe a specific kind of stochastic policy space.

Given this gradient calculation, we can apply HMC in order to sample policy parameter vectors from
the posterior distribution. This can be used for policy selection in a number of ways. For example, a
policy could be formed via Bayesian averaging. In our experiments, we select a policy by generating
a large set of samples and then select the sample maximizing the energy function.

4 Active Query Selection

Given the ability to perform posterior inference, the question now is how to collect a data set of
TPQs and their responses. Unlike many learning problems, there is no natural distribution over
TPQs to draw from, and thus, active selection of TPQs is essential. In particular, we want the
learner to select TPQs for which the responses will be most useful toward the goal of learning the
target policy. This selection problem is difficult due to the high dimensional continuous space of
TPQs, where each TPQ is defined by an initial state and two trajectories originating from the state.

To help overcome this complexity our algorithm assumes the availability of a distribution Py over

candidate start states of TPQs. This distribution is intended to generate start states that are feasible
and potentially relevant to a target policy. The distribution may incorporate domain knowledge
to rule out unimportant parts of the space (e.g. avoiding states where the bicycle has crashed) or
simply specify bounds on each dimension of the state space and generate states uniformly within
the bounds. Given this distribution, we consider two approaches to actively generating TPQs for the
expert.

4.1 Query by Disagreement

Our first approach Query by Disagreement (OBD) is similar to the well-known query-by-committee
approach to active learning of classifiers [17, 9]. The main idea behind the basic query-by-committee
approach is to generate a sequence of unlabeled examples from a given distribution and for each
example sample a pair of classifiers from the current posterior. If the sampled classifiers disagree
on the class of the example, then the algorithm queries the expert for the class label. This simple
approach is often effective and has theoretical guarantees on its efficiency.

We can apply this general idea to select TPQs in a straightforward way. In particular, we generate
a sequence of potential initial TPQ states from Py and for each draw two policies ¢; and 6; from
the current posterior distribution P(6*|D). If the policies “disagree” on the state, then a query is
posed based on trajectories generated by the policies. Disagreement on an initial state sq is measured
according to the expected difference between K length trajectories generated by ¢; and 6, starting at
so- In particular, the disagreement measure is g = [) P(&l0:, s0, K)P(&;10;, s0, K) f(&,€5),
which we estimate via sampling a set of K length trajectories from each policy. If this measure
exceeds a threshold then TPQ is generated and given to the expert by running each policy for K
steps from the initial state. Otherwise a new initial state is generated. If no query is posed after a
specified number of initial states, then the state and policy pair that generated the most disagreement
are used to generate the TPQ. We set the threshold ¢ so that ®(¢/o,.) = .95.

This query strategy has the benefit of generating TPQs such that &; and ; are significantly different.
This is important from a usability perspective, since making preference judgements between similar
trajectories can be difficult for an expert and error prone. In practice we observe that the QBD
strategy often generates TPQs based on policy pairs that are from different modes of the distribution,
which is an intuitively appealing property.

4.2 Expected Belief Change

Another class of active learning approaches for classifiers is more selective than traditional query-
by-committee. In particular, they either generate or are given an unlabeled dataset and then use a
heuristic to select the most promising example to query from the entire set. Such approaches often
outperform less selective approaches such as the traditional query-by-committee. In this same way,
our second active learning approach for TPQs attempts to be more selective than the above QBD
approach by generating a set of candidate TPQs and heuristically selecting the best among those
candidates.

A set of candidate TPQs is generated by first drawing an initial state from from Py, sampling a pair
of policies from the posterior, and then running the policies for K steps from the initial state. It
remains to define the heuristic used to select the TPQ for presentation to the expert.

A truly Bayesian heuristic selection strategy should account for the overall change in belief about the
latent target policy after adding a new data point. To represent the difference in posterior beliefs we
use the variational distance between posterior based on the current data D and the posterior based
on the updated data D U {(&;,&;,v)}-

V(P@ID) || PO]D U{(&,&5,y)}) = / |PO|D) — P(O|D U{(&&;,y)})[do.
By integrating over the entire latent policy space it accounts for the total impact of the query on the
agent’s beliefs.

The value of the variational distance depends on the response to the TPQ, which is unobserved at
query selection time. Therefore, the agent computes the expected variational distance,

H(d) = Y P(yléi. &, D)V (P(OID) || P(O]D U{(&. &, 9)})-

y€e0,1

Where P(y|&;, &5, D) = [P(y|&i, &, 0%)P(6*|D)do* is the predictive distribution and is straight-
forwardly estimated using a set of posterior samples.

Finally, we specify a simple method of estimating the variational distance given a particular re-
sponse. For this, we re-express the variational distance as an expectation with respect to P(6|D),

V(P(6|D) || P(6|D U d)) /|P 0|D) — P(6|D U d) |d0_/‘ (8|D) — (0|Dud)§gzg;‘d9
p@DUd)|
/me ww)kw—/Pmm P(dlf) " | do

where 21 and zo are the normalizing constants of the posterior distributions. The final expression is
a likelihood weighted estimate of the variational distance. We can estimate this value using Monte-
Carlo over a set S of policies sampled from the posterior,

V(POID) | POID U (&8, 1)) = >

0esS

This leaves the computation of the ratio of normalizing constants i—; which we estimate using Monte-

Carlo based on a sample set of policies from the prior distribution, hence avoiding further posterior
sampling.

1_“Pmm‘

Z2

Our basic strategy of using an information theoretic selection heuristic is similar to early work using
Kullback Leibler Divergence ([7]) to measure the quality of experiments [11, 4]. Our approach dif-
fers in that we use a symmetric measure which directly computes differences in probability instead
of expected differences in code lengths. The key disadvantage of this form of look-ahead query
strategy (shared by other strategies of this kind) is the computational cost.

5 Empirical Results

Below we outline our experimental setup and present our empirical results on four standard RL
benchmark domains.

5.1 Setup

If the posterior distribution focuses mass on the expert policy parameters the expected value of the
MAP parameters will converge to the expected value of the expert’s policy. Therefore, to examine
the speed of convergence to the desired expert policy we report the performance of the MAP policy
in the MDP task. We choose the MAP policy, maximizing P(D|6)P(6), from the sample generated
by our HMC routine. The expected return of the selected policy is estimated and reported. Note that
no reward information is given to the learner and is used for evaluation only.

We produce an automated expert capable of responding to the queries produced by our agent. The
expert knows a target policy, and compares, as described above, the query trajectories generated
by the agent to the trajectories generated by the target policy. The expert stochastically produces
a response based on its evaluations. Target policies are hand designed and produce near optimal
performance in each domain.

In all experiments the agent executes a simple parametric policy, P(als,0) = —szpiﬁs&%ﬁ 7y
The function ¢(s) is a set of features derived from the current state s. The complete parameter
vector # is decomposed into components 6, associated with each action a. The policy is executed
by sampling an action from this distribution. The gradient of this action selection policy can be
derived straightforwardly and substituted into the gradient of the energy function required by our
HMC procedure.

We use the following values for the unspecified model parameters: 02 = 1, 02 = 2, u = 0. The
value of K used for TPQ trajectories was set to 10 for each domain except for Bicycle, for which we
used K = 300. The Bicycle simulator uses a fine time scale, so that even &' = 300 only corresponds
to a few seconds of bike riding, which is quite reasonable for a TPQ.

For purposes of comparison we implement a simple random TPQ selection strategy (Denoted Ran-
dom in the graphs below). The random strategy draws an initial TPQ state from Py and then gener-
ates a trajectory pair by executing two policies drawn i.i.d. from the prior distribution P(#). Thus,
this approach does not use information about past query responses when selecting TPQs.

Domains. We consider the following benchmark domains.

Acrobot. The acrobot task simulates a two link under-actuated robot. One joint end, the “hands”
of the robot, rotates around a fixed point. The mid joint associated with the "hips” attach the upper
and lower links of the robot. To change the joint angle between the upper and lower links the
agent applies torque at the hip joint. The lower link swings freely. Our expert knows a policy for
swinging the acrobot into a balanced handstand. The acrobot system is defined by four continuous
state variables (61,02, 01, 02) representing the arrangement of the acrobot’s joints and the changing
velocities of the joint angles. The acrobot is controlled by a 12 dimensional softmax policy selecting
between positive, negative, and zero torque to be applied at the hip joint. The feature vector ¢(s)
returns the vector of state variables. The acrobot receives a penalty on each step proportional to the
distance between the foot and the target position for the foot.

Mountain Car. The mountain car domain simulates an underpowered vehicle which the agent must
drive to the top of a steep hill. The state of the mountain car system is described by the location of
the car z, and its velocity v. The goal of the agent controlling the mountain car system is to utilize
the hills surrounding the car to generate sufficient energy to escape a basin. Our expert knows a
policy for performing this escape. The agent’s softmax control policy space has 16 dimensions and
selects between positive and negative accelerations of the car. The feature vector ¢(s) returns a
polynomial expansion (x, v, x2, 2%, 2v, 22v, 23v, v?) of the state. The agent receives a penalty for

every step taken to reach the goal.

Cart Pole. In the cart-pole domain the agent attempts to balance a pole fixed to a movable cart
while maintaining the carts location in space. Episodes terminate if the pole falls or the cart leaves
its specified boundary. The state space is composed of the cart velocity v, change in cart velocity
v’, angle of the pole w, and angular velocity of the pole w’. The control policy has 12 dimensions
and selects the magnitude of the change in velocity (positive or negative) applied to the base of the
cart. The feature vector returns the state of the cart-pole. The agent is penalized for pole positions
deviating from upright and for movement away from the midpoint.

Bicycle Balancing. Agents in the bicycle balancing task must keep the bicycle balanced for 30000
steps. For our experiments we use the simulator originally introduced in [14]. The state of the
bicycle is defined by four variables (w,w, v,). The variable w is the angle of the bicycle with
respect to vertical, and w is its angular velocity. The variable v is the angle of the handlebars
with respect to neutral, and v is the angular velocity. The goal of the agent is to keep the bicycle
from falling. Falling occurs when |w| > 7/15. We borrow the same implementation used in[10]
including the discrete action set, the 20 dimensional feature space, and 100 dimensional policy. The
agent selects from a discrete set of five actions. Each discrete action has two components. The first
component is the torque applied to the handlebars T' € (—1,0, 1), and the second component is the
displacement of the rider in the saddle p € (—.02,0,.02). From these components five action tuples
are composed a € ((—1,0), (1,0), (0,—.02), (0,.02), (0,0)). The agent is penalized proportional
to the magnitude of w at each step and receives a fixed penalty for falling.

We report the results of our experiments in Figure 1. Each graph gives the results for the TPQ
selection strategies Random, Query-by-Disagreement (QBD), and Expected Belief Change (EBC).
The average reward versus number of queries is provided for each selection strategy, where curves
are averaged over 20 runs of learning.

5.2 [Experiment Results

In all domains the learning algorithm successfully learns the target policy. This is true independent
of the query selection procedure used. As can be seen our algorithm can successfully learn even from
queries posed by Random. This demonstrates the effectiveness of our HMC inference approach.

Importantly, in some cases, the active query selection heuristics significantly improve the rate of
convergence compared to Random. The value of the query selection procedures is particularly high
in the Mountain Car and Cart Pole domains. In the Mountain Car domain more than 500 Random
queries were needed to match the performance of 50 EBC queries. In both of these domains exam-
ining the generated query trajectories shows that the Random strategy tended to produce difficult
to distinguish trajectory data and later queries tended to resemble earlier queries. This is due to
“plateaus” in the policy space which produce nearly identical behaviors. Intuitively, the informa-
tion content of queries selected by Random decreases rapidly leading to slower convergence. By

Acrobot Mountain Car
-100

-200

Expected Return (MAP Policy)

40 0 4 60 80 100 4% 10 20 30 40 50
Queries # Queries
Cart Pole Bicycle Balancing

100 1% 50 100 150
Queries # Queries

Figure 1: Results: We report the expected return of the MAP policy, sampled during Hybrid MCMC
simulation of the posterior, as a function of the number of expert queries. Results are averaged over
50 runs. Query trajectory lengths: Acrobot KX = 10, Mountain-Car K = 10, Cart-Pole K = 20,
Bicycle Balancing K = 300.

comparison the selection heuristics ensure that selected queries have high impact on the posterior
distribution and exhibit high query diversity.

The benefits of the active selection procedure diminish in the Acrobot and Bicycle domains. In both
of these domains active selection performs only slightly better than Random. This is not the first time
active selection procedures have shown performance similar to passive methods [16]. In Acrobot all
of the query selection procedure quickly converge to the target policy (only 25 queries are needed
for Random to identify the target). Little improvement is possible over this result. Similarly, in
the bicycle domain the performance results are difficult to distinguish. We believe this is due to
the length of the query trajectories (300) and the importance of the initial state distribution. Most
bicycle configurations lead to out of control spirals from which no policy can return the bicycle
to balanced. In these configurations inputs from the agent result in small impact on the observed
state trajectory making policies difficult to distinguish. To avoid these cases in Bicycle the start state
distribution P, only generated initial states close to a balanced configuration. In these configurations
poor balancing policies are easily distinguished from better policies and the better policies are not
rare. These factors lead Random to be quite effective in this domain.

Finally, comparing the active learning strategies, we see that EBC has a slight advantage over QBD
in all domains other than Bicycle. This agrees with prior active learning work, where more selective
strategies tend to be superior in practice. The price that EBC pays for the improved performance is
in computation time, as it is about an order of magnitude slower.

6 Summary

We examined the problem of learning a target policy via trajectory preference queries. We formu-
lated a Bayesian model for the problem and a sampling algorithm for sampling from the posterior
over policies. Two query selection methods were introduced, which heuristically select queries with
an aim to efficiently identify the target. Experiments in four RL benchmarks indicate that our model
and inference approach is able to infer quality policies and that the query selection methods are
generally more effective than random selection.

Acknowledgments

We gratefully acknowledge the support of ONR under grant number N00014-11-1-0106.

8

References

[1] R. Akrour, M. Schoenauer, and M. Sebag. Preference-based policy learning. In Dimitrios
Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis, editors, Proc.
ECML/PKDD’11, Part I, volume 6911 of Lecture Notes in Computer Science, pages 12-27.
Springer, 2011.

[2] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An introduction
to mcemc for machine learning. Machine Learning, 50(1-2):5-43, 2003.

[3] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robot. Auton. Syst., 57(5):469-483, May 2009.

[4] J M Bernardo. Expected information as expected utility. Annals of Statistics, 7(3):686—690,
1979.

[5] Weiwei Cheng, Johannes Fiirnkranz, Eyke Hiillermeier, and Sang-Hyeun Park. Preference-
based policy iteration: Leveraging preference learning for reinforcement learning. In Proceed-
ings of the 22nd European Conference on Machine Learning (ECML 2011), pages 312-327.
Springer, 2011.

[6] Wei Chu and Zoubin Ghahramani. Preference learning with gaussian processes. In Proceed-
ings of the 22nd international conference on Machine learning, ICML 05, pages 137-144,
New York, NY, USA, 2005. ACM.

[7] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience,
New York, NY, USA, 1991.

[8] Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid monte carlo.
Physics Letters B, 195(2):216 — 222, 1987.

[9] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling using
the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.

[10] Michail G. Lagoudakis, Ronald Parr, and L. Bartlett. Least-squares policy iteration. Journal
of Machine Learning Research, 4, 2003.

[11] D. V. Lindley. On a Measure of the Information Provided by an Experiment. The Annals of
Mathematical Statistics, 27(4):986—-1005, 1956.

[12] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In ICML,
pages 663-670, 2000.

[13] Bob Price and Craig Boutilier. Accelerating reinforcement learning through implicit imitation.
J. Artif. Intell. Res. (JAIR), 19:569—-629, 2003.

[14] Jette Randlgv and Preben Alstrgm. Learning to drive a bicycle using reinforcement learning
and shaping. In ICML, pages 463-471, 1998.

[15] Stefan Schaal. Learning from demonstration. In NIPS, pages 1040-1046, 1996.

[16] Andrew I. Schein and Lyle H. Ungar. Active learning for logistic regression: an evaluation.
Mach. Learn., 68(3):235-265, October 2007.

[17] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the fifth
annual workshop on Computational learning theory, COLT *92, pages 287-294, New York,
NY, USA, 1992. ACM.

