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Abstract

We offer a regularized, kernel extension of the multi-set, orthogonal Procrustes
problem, or hyperalignment. Our new method, called Kernel Hyperalignment,
expands the scope of hyperalignment to include nonlinear measures of similar-
ity and enables the alignment of multiple datasets with a large number of base
features. With direct application to fMRI data analysis, kernel hyperalignment is
well-suited for multi-subject alignment of large ROIs, including the entire cortex.
We report experiments using real-world, multi-subject fMRI data.

1 Introduction

One of the goals of multi-set data analysis is forming qualitative comparisons between datasets. To
the extent that we can control and design experiments to facilitate these comparisons, we must first
ask whether the data are aligned. In its simplest form, the primary question of interest is whether
corresponding features among the datasets measure the same quantity. If yes, we say the data are
aligned; if not, we must first perform an alignment of the data.

The alignment problem is crucial to multi-subject fMRI data analysis, which is the motivation for
this work. An appreciable amount of effort is devoted to designing experiments that maintain the
focus of a subject. This is to ensure temporal alignment across subjects for a common stimulus.
However, with each subject exhibiting his/her own unique spatial response patterns, there is a need
for spatial alignment. Specifically, we want between subject correspondence of voxel j at TR i
(Time of Repetition). The typical approach taken is anatomical alignment [20] whereby anatomi-
cal landmarks are used to anchor spatial commonality across subjects. In linear algebra parlance,
anatomical alignment is an affine transformation with 9 degrees of freedom.

Recently, Haxby et al. [9] proposed Hyperalignment, a function-based alignment procedure. Instead
of a 9-parameter transformation, a higher-order, orthogonal transformation is derived from voxel
time-series data. The underlying assumption of hyperalignment is that, for a fixed stimulus, a sub-
ject’s time-series data will possess a common geometry. Accordingly, the role of alignment is to
find isometric transformations of the per-subject trajectories traced out in voxel space so that the
transformed time-series best match each other. Using their method, the authors were able to achieve
a between-subject classification accuracy on par with—and even greater than—within-subject accu-
racy.

Suppose that subject data are recorded in matrices X1:m ∈ Rt×n. This could be data from an
experiment involvingm subjects, t TRs, and n voxels. We are interested in extending the regularized
hyperalignment problem

minimize
∑
i<j ‖XiRi −XjRj‖2F

subject to RT
kAkRk = I k = 1, 2, . . . ,m ,

(1)

where matrices A1:m ∈ Rn×n are symmetric and positive definite. In general, the above problem
manifests itself in many application areas. For example, when Ak = I we have hyperalignment or
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a multi-set orthogonal Procrustes problem, commonly used in shape analysis [6, 7]. When Ak =
XT
kXk, (1) represents a form of multi-set Canonical Correlation Analysis (CCA) [12, 13, 8].

The success of hyperalignment engenders numerous questions and in this work we address two of
them. First, is hyperalignment scalable? In [9], the authors consider a subset of ventral temporal cor-
tex (VT), using hundreds of voxels. The relatively-low voxel count alleviates a huge computational
cost and storage burden. However, the current method for solving (1) is infeasible when considering
many or all voxels, and therefore limits the scope of hyperalignment to a local alignment procedure.
For example, if n = 50,000 voxels, then storing the n × n matrix for one subject requires over 18
gigabytes of memory. Moreover, computing a full SVD for a matrix this size is a tall order.

Coupled with scalability, we also ask whether we can include new features of our subjects’ data.
For example, we may want to augment the input data with the associated second-order mixtures,
i.e., n voxels become ( n1 ) + ( n2 ) = n(n+1)/2 features. Again, for a reasonably-sized voxel count,
running hyperalignment is infeasible.

Addressing scalability and feature extension results in the main contribution of kernel hyperalign-
ment. The inclusion of a large feature space motivates the use of kernel methods. Additionally,
numerous optimization problems that use the kernel trick possess global optimizers spanned by the
mapped examples. This is guaranteed by the Representer Theorem [14, 18]. Therefore, the two sep-
arate issues of scalability and feature extension are merged into a single problem through the use of
kernel methods. With kernel hyperalignment, the bottleneck shifts from voxel count to the number
of TRs times subjects (or the original inputs to the number of examples).

The problem we address in this paper is the alignment of multiple datasets in the same and extended
feature space. Multi-set data analysis by means of kernel methods has already been considered in
the framework of CCA [16, 1]. Our approach deviates from [1] and [15] because we focus on align-
ment and never leave feature space until training and testing. We use the kernel trick as a means
of navigating through a high-dimensional orthogonal group. Our CCA variant is more constrained,
and each dataset is assigned the same kernel, supplying us with a richer, single reproducing kernel
Hilbert space (RKHS) over a collection ofm smaller and distinct ones. Allowing for subject-specific
kernels leads to the difficult problem of selecting them—a significantly harder problem than select-
ing a single kernel. In this respect, we assume a single kernel can provide the sought-after linearity
used for comparing multiple datasets.

The paper is organized as follows: in §2 we review regularized hyperalignment, or the regularized
multi-set orthogonal Procrustes problem. Next, in §3 we formulate its kernel variant, and in §4 we
discuss classification with aligned data. We provided experimental results in §5, and we conclude in
§6. All proofs are supplied in the Supplemental Material.

2 Hyperalignment

The hyperalignment problem of (1) is equivalent to [7]:
minimize

∑m
i=1‖XiRi −Y‖2F

subject to Y = 1
m

∑m
j=1XjRj and RT

kAkRk = I for k = 1, . . . ,m .
(2)

The matrix Y is the image centroid and serves as the catalyst for computing a solution: for dataset
i, fix a centroid and solve for Ri. This process cycles over all datasets for a specified number of
rounds, or until approximate convergence is reached (see Algorithm 1). The dynamic centroid Y
can be a sample mean or a leave-one-out (LOO) mean. Regardless of type, the last round should use
the fixed sample mean provided by the penultimate round. We can set Qk = A

1/2
k Rk, using the

symmetric, positive definite square root1, yielding the key operation

minimize ‖XkA
− 1

2

k Qk −Y‖2F
subject to QT

kQk = I .
(3)

The above is the familiar orthogonal Procrustes problem [19] and is solved using the SVD of
A
− 1

2

k XT
kY.

1In practice, we would use the Cholesky factorization of Ak. However, in deriving the kernel hyperalign-
ment procedure it is necessary to familiarize the reader with this approach.
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3 Kernel Hyperalignment

The previous section dealt with alignment based on the original data. In the context of optimization,
the alignment problem of (1) is indifferent to both data generation and data recording. There are,
however, implicit assumptions about these two processes. The data are generated according to a
common input signal, and each of the m datasets represents a specific view of this signal. In other
words, the matrices X1:m have row correspondence. The alignment problem of (1) seeks column
correspondence through a linear mapping of the original features.

In fMRI, the m views are manifested by m subjects experiencing a common, synchronous stimulus.
Each data matrix records fMRI time-series data: the rows are indexed by a TR and the columns are
indexed by a voxel. There are t TRs and n voxels per subject, i.e., Xk ∈ Rt×n. The synchrony of the
stimulus ensures row correspondence. Hyperalignment can be posed as the minimization problem
of (2) with Ak = I. Voxel (column) correspondence is then achieved via an orthogonal constraint
placed on each of the linear mappings. The orthogonal constraint present in hyperalignment follows
a subject-independent isometry assumption. We can view the time-series data of each subject as a
trajectory in Rn. For a fixed stimulus this trajectory is [approximately] identical—up to a rotation-
reflection—across subjects.

As stated above, we are assuming equivalence of the per-view information in its original form, but
we are not assuming that this information can be related through a linear mapping. Now suppose
there is a common set of N features—derived from each n-dimensional example—that does allow
for a linear relationship between views. Alternatively, there may be derivative features of interest
that lead to better alignment via a linear mapping. For example, it is conceivable that second-order
data, i.e., pairwise mixtures of the original data, obey a linear construct and may be a preferred
feature set for alignment. In general, we wish to formulate an alignment technique for this new
feature set. Rather than limit expression of the data to the n given coordinates, we consider an
N -coordinate representation, where N may be much greater than n.

Let Xi ∈ Rt×n have i′-th row [xii′ ]
T with xii′ ∈ Rn. We introduce the row-based mapping of Xi:

Φ(Xi) =

φ1(xi1) φ2(xi1) · · · φN (xi1)
...

...
...

φ1(xit) φ2(xit) · · · φN (xit)

 ∈ Rt×N . (4)

The N functions φ1:N : Rn → R are used to derive N features from the original data. For matrix
Xi ∈ Rt×n let Φi = Φ(Xi). In general, for Xi ∈ Rt×n and Xj ∈ Rs×n, we define the Gram
matrix Kij , ΦiΦ

T
j ∈ Rt×s. We also write Ki , Kii = ΦiΦ

T
i . We assume that there is an

appropriate positive definite kernel, k̂ : Rn × Rn → R, so that we can leverage the kernel trick
[2, 10] and obtain the i′j′-th element of Kij via

(Kij)i′j′ = k̂( xii′ , xjj′ ) . (5)

Using the feature map Φ(·), we form the regularized Kernel Hyperalignment problem:

minimize
∑
i<j‖Φ(Xi)Ri − Φ(Xj)Rj‖2F

subject to RT
kAkRk = I for k = 1, . . . ,m .

(6)

The latent variables are R1:m ∈ RN×N and we are given symmetric, positive definite matrices
A1:m ∈ RN×N . Although different than the original hyperalignment problem, obtaining a solution
to (6) is accomplished in the same way: fix a centroid and find the individual linear maps. To this
end, the key operation involves solving

arg min
RTAiR=I

‖ΦiR−Ψ‖2F or arg min
QTQ=I

‖ΦiA
− 1

2
i Q−Ψ‖2F , (7)

where Φi = Φ(Xi), i ≥ 1, is the current, individual dataset under consideration and Ψ =
1
|A|
∑
j∈AΦjR̂j is a centroid based on the current estimates of R1:m, denoted R̂1:m. The index set

A ⊆ {1, . . . ,m} determines how the estimated centroid is calculated (sample or LOO mean).
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The difficulty of (7) lies in the size ofN . Any of the well-known kernels correspond to anN so large
that direct computation is generally impractical. For example, if using second-order interactions as
the feature set, the number of unknowns in kernel hyperalignment isO(mn4) in contrast toO(mn2)
unknowns for hyperalignment. Nevertheless, the minimization problem of (7) places us in familiar
territory of solving an orthogonal Procrustes problem.

Since we are now in feature space, the matrix Ai poses a problem unless we confine it to a specific
form. For example, if Ai is random, finding A

−1/2
i would be infeasible for large N . Additionally,

the constraint RT
i AiRi = I would lack any intuition. Therefore, we restrict Ai = αI + βΦT

i Φi

with α > 0 and β ≥ 0. As with regularized hyperalignment [22], when (α, β) = (1, 0) we obtain
hyperalignment and when (α, β) ≈ (0, 1) we obtain a form of CCA.

Let Ki have eigen-decomposition ViΛiV
T
i , where Λi = diag{λi1, . . . , λit} or diagj{λij} for

short. We introduce two symmetric, positive definite matrices: Bi = Vi diagj{ 1√
α+βλij

}VT
i and

Ci = Vi diagj{ 1
λij

( 1√
α+βλij

− 1√
α

)}VT
i .

Lemma 3.1. For Ai = αI + βΦT
i Φi we have A

− 1
2

i = 1√
α

I + ΦT
i CiΦi and ΦiA

− 1
2

i = BiΦi.

We can use Lemma 3.1 to transform (7) into

arg min
QTQ=I

‖BiΦiQ−Ψ‖2F or arg max
QTQ=I

tr
(
QTΦT

i Bi

[
1
|A|
∑
j∈ABjΦjQ̂j

])
, (8)

where Q̂j is the current estimate of Qj . Solving for the matrix Q is still well beyond practical
computation. The following lemma is the gateway for managing this problem.

Lemma 3.2. If Ũ ∈ St(N, d) and G̃ ∈ O(d), then Q̃ = IN − Ũ(Id − G̃)ŨT ∈ O(N).2

Familiar applications of the above lemma include the identity matrix (G̃ = Id) and Householder
reflections (G̃ = −Id). If G̃ is block diagonal with 2 × 2 blocks of Givens rotations, then the
columns of Ũ, taken two at a time, are the two-dimensional planes of rotation [7]. We therefore
refer to Ũ as the plane support matrix.

Lemma 3.2 can be interpreted as a lifting mechanism for identity deviations. The difference Id − G̃
represents a O(d) deviation from identity. Applying Ũ(Id − G̃)ŨT = IN − Q̃, “lifts” this differ-
ence to a O(N) deviation from identity. Reversing directions, we can also utilize Lemma 3.2 for
compressing O(N). From IN − Q̃ = Ũ(Id − G̃)ŨT , the rank of the deviation, IN −Q, is upper
bounded by d, producing a subset of O(N).

Motivated by Lemma 3.2 we impose

Qi = IN −U(I−Gi)U
T , (9)

where U ∈ St(N, r), Gi ∈ O(r), and 1 ≤ r ≤ N . Ideally, we want r small to benefit from a
reduced dimension. As is typically the case when using kernel methods, leveraging the Representer
Theorem shifts the dimensionality of the problem from the feature cardinality to the number of
examples, i.e., r = mt. We pool all of the data, forming the mt×N matrix

Φ0 =
[
ΦT

1 ΦT
2 · · · ΦT

m

]T
, (10)

and set U = ΦT
0 K
− 1

2
0 ∈ RN×r with K0 = Φ0Φ

T
0 assumed positive definite. As long as r ≤ N ,

the orthogonality constraint is met because (ΦT
0 K
− 1

2
0 )T (ΦT

0 K
− 1

2
0 ) = K

− 1
2

0 K0K
− 1

2
0 = Ir.

Theorem 3.3 (Hyperalignment Representer Theorem). Within the set of global minimizers of (6)
there exists a solution {R?

1, . . . ,R
?
m} = {A−

1
2

1 Q?
1, . . . ,A

− 1
2

m Q?
m} that admits a representation

Q?
i = IN −U(I−G?

i )U
T , where U = ΦT

0 K
− 1

2
0 and G?

i ∈ O(mt) (i = 1, . . . ,m).

2 St(N, d) , {Z : Z ∈ RN×d , ZTZ = Id} is the (N, d) Stiefel Manifold (N ≥ d), and
O(N) , {Z : Z ∈ RN×N , ZTZ = IN} is the orthogonal group of N ×N matrices.
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Input: X1:m ∈ Rt×n, A1:m ∈ Rn×n

Output: R1:m ∈ Rn×n

Initialize Q1:m as identity (n× n)

Set X̃i
1:m← XiA

−1/2
i

foreach round do
foreach subject/view i do

A ←

{
{1, 2, . . . ,m} sample mean
{1, 2, . . . ,m} \ {i} LOO mean

Y ← 1

|A|
∑
j∈A

X̃jQj

[Ū Σ̄ V̄]← SVD(X̃T
i Y)

Qi ← ŪV̄T

end
end
foreach subject/view i do

Ri ← A
− 1

2
i Qi

end

Algorithm 1: Regularized Hyperalignment

Input: k̂(·, ·), α, β, X1:m ∈ Rt×n

Output: R1:m, linear maps in feature space
Initialize feature maps Φ1, . . . ,Φm ∈ Rt×N

Initialize plane support Φ0 =
[
ΦT

1 ΦT
2 · · · ΦT

m

]T
Initialize G1:m ∈ Rr×r as identity (r = mt)
foreach round do

foreach subject/view i do

A ←

{
{1, 2, . . . ,m} sample mean
{1, 2, . . . ,m} \ {i} LOO mean

Y ← 1

|A|
∑
j∈A

B̃jGj

[Ū Σ̄ V̄]← SVD(B̃T
i Y)

Gi ← ŪV̄T

end
end
foreach subject/view i do

Qi ← I−ΦT
0 K
− 1

2
0 (Ir −Gi)K

− 1
2

0 Φ0

Ri ← A
− 1

2
i Qi

end

Algorithm 2: Regularized Kernel Hyperalignment

When mt is large enough so that evaluating an SVD of numerous mt×mt matrices is prohibitive,
we can first perform PCA-like reduction. Let K0 have eigen-decomposition V0Λ0V

T
0 , where the

nonnegative diagonal entries of Λ0 are sorted in decreasing order. We set Φ0′ = VT
0′Φ0, where

V0′ is formed by the first r columns of V0, and then use U = ΦT
0′K

−1/2
0′ . In general, rather

than compute Q according to (7), involving N(N−1)/2 = O(N2) degrees of freedom (when N is
finite), we end up with r(r−1)/2 = O(r2) degrees of freedom via the kernel trick.

Let B̃i = BiKi0K
− 1

2
0 ∈ Rt×r. We reduce (8) in terms of Gi and obtain (Supplementary Material)

Gi = arg max
G∈O(r)

tr

GT B̃T
i

 1

|A|
∑
j∈A

B̃jĜj

 , (11)

where Ĝj is the current estimate of Gj . Equation (11) is the classical orthogonal Procrustes prob-

lem. If ŪΣ̄V̄T is the SVD of GT B̃T
i

[
1
|A|
∑
j∈A B̃jĜj

]
, then a maximizer is given by ŪV̄T [7].

The kernel hyperalignment procedure is given in Algorithm 2. Using the approach taken in this
section also leads to an efficient solution of the standard orthogonal Procrustes problem for n ≥ 2t
(Supplementary Material). In turn, this leads to an efficient iterative solution for the hyperalignment
problem when n is large.

4 Alignment Assessment

An alignment procedure is not subject to the typical train-and-test paradigm. The lack of spatial
correspondence demands an align-train-test approach. We assume these three sets have within-
subject (or within-view) alignment. With all other parameters fixed, if the aligned test error is
smaller than the unaligned test error, there is strong evidence suggesting that alignment was the
underlying cause.

Kernel hyperalignment returns linear transformations R1:m that act on data living in feature space.
In general, we cannot directly train and test in the feature space due to its large size. We can,
however, learn from relational data. For example, we can compute distances between examples
and, subsequently, produce nearest neighbor classifiers. Assume (α, β) = (1, 0), i.e., the R1:m
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are orthogonal. If x1 ∈ Rn is a view-i example and x2 ∈ Rn is a view-j example, the respective
pre-aligned and post-aligned squared distances between the two examples are given by

‖Φ(xT1 )− Φ(xT2 )‖2F = k̂(x1,x1) + k̂(x2,x2)− 2k̂(x1,x2) (12)

‖Φ(xT1 )Ri − Φ(xT2 )Rj‖2F = k̂(x1,x1) + k̂(x2,x2)− 2Φ(xT1 )RiR
T
j Φ(xT2 )T . (13)

The cross-term in (13) has not been expanded for a simple reason: it is too messy. We realized early
on that the alignment and training phase would be replete with lengthy expansions and, consequently,
sought to simplify matters with a computer science solution. Both binary and unary operations in
feature space can be accomplished with a simple class. Our Phi class stores expressions of the
following forms:∑K

k=1MkΦ(Xa(k))︸ ︷︷ ︸
Type 1

∑K
k=1Φ(Xa(k))

TMk︸ ︷︷ ︸
Type 2

bIN +
∑K
k=1Φ(Xa(k))

TMkΦ(Xa(k))︸ ︷︷ ︸
Type 3

. (14)

Each class instance stores matrices M1:K , scalar b, right address vector a, and left address vector a.
The address vectors are pointers to the input data. This allows for faster manipulation and smaller
memory allocation. Addition and subtraction require a common type. If types match, then the M
matrices must be checked for compatible sizes. Multiplication is performed for types 1 with 2, 1
with 3, 2 with 1, 3 with 2, and 3 with 3. The first of these cases, for example, produces a numeric
result via the kernel trick. We also define scalar multiplication and division for all types and matrix
multiplication for types 1 and 2. A transpose operator applies for all types and maps type 1 to 2,
2 to 1, and 3 to 3. More advanced operations, such as powers and inverses, are also possible. Our
implementation was done in Matlab.

The construction of the Phi class allows us to stay in feature space and avoid lengthy expansions. In
turn, this facilitates implementing the richer set of SVM classifiers. Let X1̄, . . . ,Xm̄ ∈ Rs×n be our
training data with feature representation Φı̄ = Φ(Xı̄) ∈ Rs×N . Recall that kernel hyperalignment
seeks to align in feature space. Before alignment we might have considered Kı̄̄ = Φı̄Φ

T
̄ ; we now

consider the Gram matrix (Φı̄Ri)(Φ̄Rj)
T = Φı̄RiR

T
j ΦT

̄ . If every row of Xı̄ has a corresponding
label, we can train an SVM with

KĀ =

 Φ1̄R1

...
Φm̄Rm

×
 Φ1̄R1

...
Φm̄Rm


T

=


Φ1̄R1R

T
1 ΦT

1̄ Φ1̄R1R
T
2 ΦT

2̄ · · · Φ1̄R1R
T
mΦT

m̄

Φ2̄R2R
T
1 ΦT

1̄ Φ2̄R2R
T
2 ΦT

2̄
...

. . .
Φm̄RmRT

1 ΦT
1̄ Φm̄RmRT

mΦT
m̄

 , (15)

where KĀ = KT
Ā
∈ Rms×ms denotes the aligned kernel matrix. The unaligned kernel matrix, KŪ ,

is also an m×m block matrix with ij-th block Kı̄̄.

Using the dual formulation of an SVM, a classifier can be constructed from the relational data
exhibited among the examples [4]. Similar to a k-nearest neighbor classifier relying on pairwise
distances, an SVM relies on the kernel matrix. The kernel matrix is a matrix of inner products and
is therefore linear. This enables us to assess a partition-based alignment.

In fMRI, we perform two alignments—one for each hemisphere. Each alignment produces two
aligned kernel matrices, which we sum and then input into an SVM. Thus, linearity provides us the
means to handle finer partitions by simply summing the aligned kernel matrices.
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Table 1: Seven label classification using movie-based alignment Below is the cross-validated,
between-subject classification accuracy (within-subject in brackets) with (α, β) = (1, 0). Four
hundred TRs per subject were used for the alignment. Chance = 1/7 ≈ 14.29%.

Kernel
Ventral Temporal Entire Cortex

2,997 voxels/hemisphere 133,590 voxels/hemisphere
Anatomical Kernel Hyp. Anatomical Kernel Hyp.

Linear 35.71% [42.68%] 48.57% [42.68%] 34.64% [26.79%] 36.25% [26.79%]
Quadratic 35.00% [43.32%] 50.36% [42.32%] 36.07% [25.54%] 36.43% [25.54%]
Gaussian 36.25% [43.39%] 48.57% [43.39%] 36.07% [26.07%] 36.43% [26.07%]
Sigmoid 35.89% [43.21%] 48.21% [43.21%] 35.00% [26.79%] 36.25% [26.79%]

5 Experiments

The data used in this section consisted of fMRI time-series data from 10 subjects who viewed a
movie and also engaged in a block-design visualization experiment [17]. Each subject saw Raiders
of the Lost Ark (1981) lasting a total of 2213 TRs. In the visualization experiment, subjects were
shown images belonging to a specific class for 16 TRs followed by 10 TRs of rest. The 7 classes
were: (1) female face, (2) male face, (3) monkey, (4) house, (5) chair, (6) shoe and (7) dog. There
were 8 runs total, and each run had every image class represented once.

We assess alignment by classification accuracy. To provide the same number of voxels per ROI for
all subjects, we first performed anatomical alignment. We then selected a contiguous block of 400
TRs from the movie data to serve as the per-subject input of the kernel hyperalignment. Next, we
extracted labeled examples from the visualization experiment by taking an offset time average of
each 16 TR class exposure. An offset of 6 seconds factored in the hemodynamic response. This
produced 560 labeled examples: 10 subjects × 8 runs/subject × 7 examples/run.

Kernel hyperalignment allows us to (a) use nonlinear measures of similarity, and (b) consider more
voxels for the alignment. Consequently, we (a) experiment with a variety of kernels, and (b) do not
need to pre-select or screen voxels as was done in [9]—we include them all. Table 1 features results
from a 7-label classification experiment. Recall that a linear kernel reduces to hyperalignment. We
classified using a multi-label ν-SVM [3]. We used the first 400 TRs from each subject’s movie data,
and aligned each hemisphere separately. The kernel functions are supplied in the Supplementary
Material. As observed in [9] and repeated here, hyperalignment leads to increased between-subject
accuracy and outperforms within-subject accuracy. Thus, we are extracting more common structure
across subjects. Whereas employing Algorithm 1 for 2,997 voxels is feasible (and slow), 133,590
voxels is not feasible at all.

To complete the picture, we plot the effects of regularization. Figure 1 displays the cross-validated,
between-subject classification accuracy for varying (α, β) where α = 1−β. This traces out a route
from CCA (α ≈ 0) to hyperalignment (α = 1). When compared to the alignments in [9], our voxel
counts are orders of magnitude larger. For our four chosen kernels, hyperalignment (α = 1) presents
itself as the option with near-greatest accuracy.

Our results support the robustness of hyperalignment and imply that voxel selection may be a crucial
pre-processing step when dealing with the whole volume. More voxels mean more noisy voxels,
and hyperalignment does not distinguish itself from anatomical alignment when the entire cortex is
considered. We can visualize this phenomenon with Multidimensional Scaling (MDS) [21].

MDS takes as input all of the pairwise distances between subjects (the previous section discussed
distance calculations). Figure 2 depicts the optimal Euclidean representation of our 10 subjects be-
fore and after kernel hyperalignment ((α, β) = (1, 0)) with respect to the first 400 TRs of the movie
data. Focusing on VT, kernel hyperalignment manages to cluster 7 of the 10 subjects. However,
when we shift to the entire cortex, we see that anatomical alignment has already succeeded in a sim-
ilar clustering. Kernel hyperalignment manages to group the subjects closer together, and manifests
itself as a re-centering.
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Figure 1: Cross-validated between-subject classification accuracy (7 labels) as a function of the
regularization parameter, α = 1−β, for various kernels after alignment. The solid curves are for
Ventral Temporal and the dashed curves are for the entire cortex. Chance = 1/7 ≈ 14.29%.
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Figure 2: Visualizing alignment with MDS Each locus pair approximates the normalized relation-
ship among the 10 subjects in 2D - before (left) and after (right) applying kernel hyperalignment.
Centroids are translated to the origin and numbers correspond to individual subjects.

6 Conclusion

We have extended hyperalignment in both scale and feature space. Kernel hyperalignment can
handle a large number of original features and incorporate nonlinear measures of similarity. We have
also shown how to use the linear maps—applied in feature space—for post-alignment classification.

In the setting of fMRI, we have demonstrated successful alignment with a variety of kernels. Kernel
hyperalignment achieved better between-subject classification over anatomical alignment for VT.
There was no noticeable difference when we considered the entire cortex. Nevertheless, kernel
hyperalignment proved robust and did not degrade with increasing voxel count.

We envision a fruitful path for kernel hyperalignment. Empirically, we have noticed a tradeoff
between feature cardinality and classification accuracy, motivating the need for intelligent feature
selection within our established framework. Although we have limited our focus to fMRI data anal-
ysis, kernel hyperalignment can be applied to other research areas which rely on multi-set Procrustes
problems.
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