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Abstract

We present a multi-task learning approach to jointly estimate the means of mul-
tiple independent data sets. The proposed multi-task averaging (MTA) algorithm
results in a convex combination of the single-task averages. We derive the optimal
amount of regularization, and show that it can be effectively estimated. Simu-
lations and real data experiments demonstrate that MTA outperforms both maxi-
mum likelihood and James-Stein estimators, and that our approach to estimating
the amount of regularization rivals cross-validation in performance but is more
computationally efficient.

1 Introduction

The motivating hypothesis behind multi-task learning (MTL) algorithms is that leveraging data from
related tasks can yield superior performance over learning from each task independently. Early
evidence for this hypothesis is Stein’s work on the estimation of the means of 7" distributions (tasks)
[1]. Stein showed that it is better (in a summed squared error sense) to estimate each of the means
of T' Gaussian random variables using data sampled from all of them, even if they are independent
and have different means. That is, it is beneficial to consider samples from seemingly unrelated
distributions in the estimation of the ¢th mean. This surprising result is often referred to as Stein’s
paradox [2].

Estimating means is perhaps the most common of all estimation tasks, and often multiple means
need to be estimated. In this paper we consider a multi-task regularization approach to the problem
of estimating multiple means that we call multi-task averaging (MTA). We show that MTA has
provably nice theoretical properties, is effective in practice, and is computationally efficient. We
define the MTA objective in Section 2, and review related work in Section 3. We present some
key properties of MTA in Section 4 (proofs are omitted due to space constraints). In particular, we
state the optimal amount of regularization to be used, and show that this optimal amount can be
effectively estimated. Simulations in Section 5 verify the advantage of MTA over standard sample
means and James-Stein estimation if the true means are close compared to the sample variance. In
Section 6.1, two experiments estimating expected sales show that MTA can reduce real errors by
over 30% compared to the sample mean. MTA can be used anywhere multiple averages are needed;
we demonstrate this by applying it fruitfully to the averaging step of kernel density estimation in
Section 6.1.

2  Multi-Task Averaging

Consider the T'-task problem of estimating the means of 7' random variables that have finite mean
and variance. Let {Y}Z}f\;tl be V; independent and identically-distributed random samples for t =
1,...,T. The MTA objective and many of the results in this paper generalize trivially to samples that
are vectors rather than scalars, but for notational simplicity we restrict our focus to scalar samples
Y:: € R. Key notation is given in Table 1.



Table 1: Key Notation

T number of tasks

Ny number of samples for ¢th task

Yii €R ith random sample from ¢th task

Y, eR tth sample average N% > Y

Y eR MTA estimate of tth mean

o} variance of the tth task

by diagonal covariance matrix of Y with &4 = 7\%

A € RTXT | pairwise task similarity matrix

L =D — A | graph Laplacian of A, with diagonal D s.t. Dy, = Zil Ay

In addition, assume that the 7' x 7" matrix A describes the relatedness or similarity of any pair of the
T tasks, with A;; = 0 for all ¢ without loss of generality (because the diagonal self-similarity terms
are canceled in the objective below). The proposed MTA objective is
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The first term minimizes the sum of the empirical losses, and the second term jointly regularizes
the estimates by regularizing their pairwise differences. The regularization parameter v balances
the empirical risk and the multi-task regularizer. Note that if v = 0, then (1) decomposes to T'
separate minimization problems, producing the sample averages Y;. The normalization of each
error term in (1) by its task-specific variance o2 (which may be estimated) scales the 7" empirical
loss terms relative to the variance of their distribution; this ensures that high-variance tasks do not
disproportionately dominate the loss term.

A more general formulation of MTA is

T N
Y = argmin 33" 10, V) 07 (W)
Vi, t=1 i=1

where L is some loss function and J is a regularization function. If L is chosen to be any Bregman
loss, then setting v = 0 will produce the T" sample averages [3]. For the analysis and experiments
in this paper, we restrict our focus to the tractable squared-error formulation given in (1).

The task similarity matrix A can be specified as side information (e.g. from a domain expert), or
set in an optimal fashion. In Section 4 we derive two optimal choices of A for the T' = 2 case: the
A that minimizes expected squared error, and a minimax A. We use the 7' = 2 analysis to propose
practical estimators of A for any number of tasks.

3 Related Work

MTA is an approach to the problem of estimating 7" means. We are not aware of other work in the
multi-task literature that addresses this problem; most MTL methods are designed for regression,
classification, or feature selection, e.g. [4, 5, 6]. The most closely related work is Stein estimation,
an empirical Bayes strategy for estimating multiple means simultaneously [7, 8, 2, 9]. James and
Stein [7] showed that the maximum likelihood estimate of the ¢th mean p; can be dominated by
a shrinkage estimate given Gaussian assumptions. There have been a number of extensions to the
original James-Stein estimator. We compare to the positive-part residual James-Stein estimator for
multiple data points per task and independent unequal variances [8, 10], such that the estimated
mean for the ?th task is
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where (z); = max(0,z); ¥ is a diagonal matrix of the estimated variances of each sample mean
g
Ny
sample means (other choices are sometimes used) £ = Y = % > Y;. Bock’s formulation of (2)
uses the effective dimension (defined as the ratio of the trace of ¥ to the maximum eigenvalue of ¥°)
rather than the 7" in the numerator of (2) [8, 7, 10]. In preliminary practical experiments where 3
must be estimated from the data, we found that using the effective dimension significantly crippled
the performance of the James-Stein estimator. We hypothesize that this is due to the high variance
of the estimate of the maximum eigenvalue of 3.

where Xy = and the estimate is shrunk towards &, which is usually set to be the mean of the

MTA can be interpreted as estimating means of 7' Gaussians with an intrinsic Gaussian Markov
random field prior [11]. Unlike most work in graphical models, we do not assume any variables are
conditionally independent, and generally have non-sparse inverse covariance.

A key issue for MTA and many other multi-task learning methods is how to estimate the similarity
(or task relatedness) between tasks and/or samples if it is not provided. A common approach is to
estimate the similarity matrix jointly with the task parameters [12, 13, 5, 14, 15]. For example, Zhang
and Yeung [15] assumed that there exists a covariance matrix for the task relatedness, and proposed
a convex optimization approach to estimate the task covariance matrix and the task parameters in
a joint, alternating way. Applying such joint and alternating approaches to the MTA objective (1)
leads to a degenerate solution with zero similarity. However, the simplicity of MTA enables us to
specify the optimal task similarity matrix for 7' = 2 (see Sec. 4), which we generalize to obtain an
estimator for the general multi-task case.

4 MTA Theory

For symmetric A with non-negative components', the MTA objective given in (1) is continuous,
differentiable, and convex. It is straightforward to show that (1) has closed-form solution:

Ter\ 'y

Y* = (I + —ZL) v, 3)
T

where Y is the vector of sample averages with tth entry Y; = N% Zf\il Y%, L is the graph Laplacian

of A, and ¥ is defined as before. With non-negative A and ~, the matrix inverse in (3) can be shown
to always exist using the Gershgorin Circle Theorem [16].

Note that the (r, s)th entry of XL goes to 0 as N; approaches infinity, and since matrix inversion

. . . -1 .
is a continuous operation, (I + %Z‘L) — I in the norm. By the law of large numbers one can
conclude that Y* asymptotically approaches the true means.

4.1 Convexity of MTA Solution

From inspection of (3), it is clear that each of the elements of Y* is a linear combination of the
sample averages Y. However, a stronger statement can be made:

Theorem: If v > 0,0 < A,s < ocoforall r,s and 0 < fv—fi < oo for all ¢, then the MTA estimates
{Y;*} given in (3) are a convex combination of the task sample averages {Y;}.

Proof Sketch: The theorem requires showing that the matrix W = (I + %EL)f1 exists and is
right-stochastic. Using the Gershgorin Circle Theorem [16], we can show that the real part of every
eigenvalue of W1 is positive. The matrix W ~! is a Z-matrix [17], and if the real part of each of
the eigenvalues of a Z-matrix is positive, then its inverse has all non-negative entries (See Chapter
6, Theorem 2.3, G5, and N3g, [17]). Finally, to prove that W has rows that sum to 1, first note that
by definition the rows of the graph Laplacian L sum to zero. Thus (I + %ZL) 1 =1, and because

we established invertibility, this implies the desired right-stochasticity: 1 = (I + %EL) 1

'If an asymmetric A is provided, using it with MTA is equivalent to using the symmetric (AT + A)/2.



4.2 Optimal A for the Two Task Case

In this section we analyze the 7" = 2 task case, with /N7 and N, samples for tasks 1 and 2 respec-
tively. Suppose {Y7;} are iid (independently and identically distributed) with finite mean p; and
finite variance o7, and {Ya;} are iid with finite mean ps = p; + A and finite variance o3. Let the
task-relatedness matrix be A = [0 a; a 0], and without loss of generality, we fix ¥ = 1. Then the
closed-form solution (3) can be simplified:
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It is straightforward to derive the mean squared error of Y7*:
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Comparing to the MSE of the sample average, one obtains the following relationship:

ﬁ_i§<é (6)

* Vb 2
MSE[Yy'] < MSE[Vi]if A% = & — 22 < -,

Thus the MTA estimate of the first mean has lower MSE if the squared mean-separation A? is small
compared to the variances of the sample averages. Note that as a approaches 0 from above, the RHS
of (6) approaches infinity, which means that a small amount of regularization can be helpful even
when the difference between the task means A is large. Summarizing, if the two task means are
close relative to each task’s sample variance, MTA will help.

The risk is the sum of the mean squared errors: MSE[Y;*|+MSE[Y5'], which is a convex, continuous,
and differentiable function of a, and therefore the first derivative can be used to specify the optimal
value a*, when all the other variables are fixed. Minimizing MSE[Y*] + MSE[YS"] w.r.t. a one
obtains the following solution:

= — 7
which is always non-negative.

Analysis of the second derivative shows that this minimizer always holds for the cases of interest
(that is, for N1, No > 1). In the limit case, when the difference in the task means A goes to zero
(while o} stay constant), the optimal task-relatedness a* goes to infinity, and the weights in (4) on
Y7 and Y5 become 1/2 each.

4.3 Estimating A from Data

Based on our analysis of the optimal A for the two-task case, we propose two methods to estimate
A from data for arbitrary 7'. The first method is designed to minimize the approximate risk using a
constant similarity matrix. The second method provides a minimax estimator. With both methods we
can use the Sherman-Morrison formula to avoid taking the matrix inverse in (3), and the computation
of Y*is O(T).

4.3.1 Constant MTA

Recalling that E[YY 7] = puuT + %, the risk of estimator Y = WY of unknown parameter vector
w for the squared loss is the sum of the mean squared errors:

R(u, WY) = E[(WY — )T (WY — )] = tr(WEWT) + p" (I = W)T(I = W)p. (8
One approach to generalizing the results of Section 4.2 to arbitrary T is to try to find a symmetric,
non-negative matrix A such that the (convex, differentiable) risk R(u, WY') is minimized for W =

(I + %EL) - (recall L is the graph Laplacian of A). The problem with this approach is two-fold:
(i) the solution is not analytically tractable for 7' > 2 and (ii) an arbitrary A has T'(T — 1) degrees
of freedom, which is considerably more than the number of means we are trying to estimate in



the first place. To avoid these problems, we generalize the two-task results by constraining A to
be a scaled constant matrix A = allT, and find the optimal a* that minimizes the risk in (8). In
addition, w.l.o.g. we set v to 1, and for analytic tractability we assume that all the tasks have the

. . . r(
same variance, estimating Y as

%I . Then it remains to solve:
1tr(S -t
a* = argmin R <u, ([ = r( )L(GHTO Y> ’

a T

which has the solution 5

a =
1 T T 27
T(T-1) D r—1 Do (b = pis)
which reduces to the optimal two task MTA solution (7) when 7' = 2. In practice, one of course
does not have {1, } as these are premsely the Values one is trying to estimate. So, to estimate a* we
use the sample means {7, }: 4* —— . Using this estimated optimal constant
T(T—l) POEN Zs=1(yr s)

similarity and an estimated covariance matrix Y produces what we refer to as the constant MTA
estimate

-1
Y* = (1+ ;m(a*nT)) Y. 9)

Note that we made the assumption that the entries of X were the same in order to be able to derive
the constant similarity a*, but we do not need nor suggest that assumption on the ¥ used with ¢* in

).

4.4 Minimax MTA

Bock’s James-Stein estimator is minimax in that it minimizes the worst-case loss, not necessarily the
expected loss [10]. This leads to a more conservative use of regularization. In this section, we derive
a minimax version of MTA, that prescribes less regularization than the constant MTA. Formally, an
estimator Y™ of y is called minimax if it minimizes the maximum risk:

inf sup R(p, Y) = sup R(u, Y™).
Y Iz

First, we will specify minimax MTA for the 7' = 2 case. To find a minimax estimator Y it is
sufficient to show that (i) Y™ is a Bayes estimator w.r.t. the least favorable prior (LFP) and (ii)
it has constant risk [10]. To find a LFP, we first need to specify a constraint set for u;; we use an
interval: p; € [by,b,], for all t, where b; € R and b, € R. With this constraint set the minimax
estimator is:

M _ 2 T ! Y,
yM — (I—s—T(bubl)zZL(ll )) Y, (10)

which reduces to (7) when T' = 2. This minimax analysis is only valid for the case when T = 2,
but we found that good practical results for larger 7" using (10) with the data-dependent interval

bl ming 7, and b = maxy Y.

5 Simulations

We first illustrate the performance of the proposed MTA using Gaussian and uniform simulations
so that comparisons to ground truth can be made. Simulation parameters are given in the table in
Figure 1, and were set so that the variances of the distribution of the true means were the same in
both types of simulations. Simulation results are reported in Figure 1 for different values of ai,
which determines the variance of the distribution over the means.

We compared constant MTA and minimax MTA to single-task sample averages and to the James-
Stein estimator given in (2). We also compared to a randomized 5-fold 50/50 cross-validated (CV)
version of constant MTA, and minimax MTA, and the James-Stein estimator (which is simply a con-
vex regularization towards the average of the sample means: Ag;+(1—\)y.). For the cross-validated
versions, we randomly subsampled N;/2 samples and chose the value of ~ for constant/minimax
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pe ~ N(0,07) pe ~ U(—=4 /302, ,/302)

o? ~ Gamma(0.9,1.0) + 0.1 o2 ~U(0.1,2.0)
N; ~U{2,...,100} N; ~U{2,...,100}
2 2 2
Yei ~ N (e, 07) Yei ~ Ul — /307, pe + /307 ]
T=2 T=2
10, T T T T T T 10 T T T T T
% o 1% o = —
8 8
1 T
510 1 B-10r 1
g / . = : .
@ | 7 —Single-Task 1 @ L —Single-Task
¢ =20 James—Stein £-20 James—Stein
S —MTA, constant | & a0l —MTA, constant |
E =30 MTA, minimax § =30 MTA, minimax
© James—Stein (CV) ° James—Stein (CV)
=40 ~-MTA, constant (CV)| & ~40f ~-MTA, constant (CV)]
50 ) ) ) “MTA, rqinimax (QV) 50 ‘ ‘ ‘ MTA, rqinimax (CV)
) 0.5 1 L5 2 2.5 3 0 0.5 1 L5 2 2.5 3
(SfL (variance of the means) Gi (variance of the means)
10, T T T T T T 10, T T T T T T
% 0 % 0 1
s k)
1 T
S-10F 1 2-10t ]
£ E
4 =201 1 % =201 1
> >
5 %
£ =307 1 £ =307 1
= =
o o
® —40r 1 R —40r 1
=% 0.5 1 L5 2 25 3 =% 0.5 1 1.5 2 25 3
Gi (variance of the means) Gi (variance of the means)
T =25 T =25
10y ! ! ! ! ! ! 10, ! ! ! ! ! !
x L ] o ]
§ 0 E ek soAmme—
1 1
=10 1 = 1
g g
% —20r b % 1
> >
I %
530 1 3 1
= =
Q o
= —40r 1 S 1
=% 0.5 1 1.5 2 2.5 3 =% 0.5 1 1.5 2 2.5 3
Gi (variance of the means) cﬁ (variance of the means)

Figure 1: Average (over 10000 random draws) percent change in risk vs. single-task. Lower is
better.

MTA or A for James-Stein that resulted in the lowest average left-out risk compared to the sample
mean estimated with all N, samples. In the optimal versions of constant/minimax MTA, v was set
to 1, as this was the case during derivation.

We used the following parameters for CV: v € {27° 274 ... 25} for the MTA estimators and a
comparable set of A spanning (0, 1) by the transformation A = # Even when cross-validating,
an advantage of using the proposed constant MTA or minimax MTA is that these estimators provide
a data-adaptive scale for v, where 7 = 1 sets the regularization parameter to be % or m,

respectively.
Some observations from Figure 1: further to the right on the x-axis, the means are more likely to be

further apart, and multi-task approaches help less on average. For T' = 2, the James-Stein estimator
reduces to the single-task estimator, and is of no help. The MTA estimators provide a gain while



‘7;% < 1 but deteriorates quickly thereafter. For 7' = 5, constant MTA dominates in the Gaussian
case, but in the uniform case does worse than single-task when the means are far apart. Note that for
all ' > 2 minimax MTA almost always outperforms James-Stein and always outperforms single-
task, which is to be expected as it was designed conservatively. For T = 25, we see the trend that
all estimators benefit from an increase in the number of tasks.

For constant MTA, cross-validation is always worse than the estimated optimal regularization. Since
both constant MTA and minimax MTA use a similarity matrix of all ones scaled by a constant, cross-
validating over a set of possible v may result in nearly identical performance, and this can be seen in
the Figure (i.e. the green and blue dotted lines are superimposed). To conclude, when the tasks are
close to each other compared to their variances, constant MTA is the best estimator to use by a wide
margin. When the tasks are farther apart, minimax MTA will provide a win over both James-Stein
and maximum likelihood.

6 Applications

We present two applications with real data. The first application parallels the simulations, estimating
expected values of sales of related products. The second application uses MTA for multi-task kernel
density estimation, highlighting the applicability of MTA to any algorithm that uses sample averages.

6.1 Application: Estimating Product Sales

We consider two multi-task problems using sales data over a certain time period supplied by Artifact
Puzzles, a company that sells jigsaw puzzles online. For both problems, we model the given samples
as being drawn iid from each task.

The first problem estimates the impact of a particular puzzle on repeat business: “Estimate how
much a random customer will spend on an order on average, if on their last order they purchased
the ¢th puzzle, for each of T' = 77 puzzles.” The samples were the amounts different customers had
spent on orders after buying each of the ¢ puzzles, and ranged from 480 down to O for customers that
had not re-ordered. The number of samples for each puzzle ranged from N; = 8 to Ny = 348.

The second problem estimates the expected order size of a particular customer: “Estimate how much
the tth customer will spend on a order on average, for each of the " = 477 customers that ordered
at least twice during the data timeframe.” The samples were the order amounts for each of the T’
customers. Order amounts varied from 15 to 480. The number of samples for each customer ranged
from N; = 2to N; = 17.

There is no ground truth. As a metric to compare the estimates, we treat each task’s sample average
computed from all of the samples as the ground truth, and compare to estimates computed from a
uniformly randomly chosen 50% of the samples. Results in Table 2 are averaged over 1000 random
draws of the 50% used for estimation. We used 5-fold cross-validation with the same parameter
choices as in the simulations section.

Table 2: Percent change in average risk (for puzzle and buyer data, lower is better), and mean
reciprocal rank (for terrorist data, higher is better).

Estimator Puzzles  Customers | Suicide Bombings
T="77 T =477 T=17
Pooled Across Tasks || 181.67%  109.21% 0.13
James-Stein -6.87% -14.04% 0.15
James-Stein (CV) -21.18% -31.01% 0.15
Constant MTA -17.48%  -32.29% 0.19
Constant MTA (CV) || -21.65%  -30.89% 0.19
Minimax MTA -8.41% -2.96% 0.19
Minimax MTA (CV) || -19.83 %  -25.04% 0.19
Expert MTA - - 0.19
Expert MTA (CV) - - 0.19




6.2 Density Estimation for Terrorism Risk Assessment

MTA can be used whenever multiple averages are taken. In this section we present multi-task
kernel density estimation, as an application of MTA. Recall that for standard single-task kernel
density estimation (KDE) [18], a set of random samples z; € ]Rd,i € {1,...,N} are assumed
to be iid from an unknown distribution px, and the problem is to estimate the density for a query
sample, 2z € R%. Given a kernel function K (;, ), the un-normalized single-task KDE estimate is

p(z) =+ Zf\; K (x;, z), which is just a sample average.

When multiple kernel densities {p;(z)}}_; are estimated for the same domain, we replace the mul-
tiple sample averages with MTA estimates, which we refer to as multi-task kernel density estimation
(MT-KDE).

We compared KDE and MT-KDE on a problem of estimating the probability of terrorist events in
Jerusalem using the Naval Research Laboratory’s Adversarial Modeling and Exploitation Database
(NRL AMX-DB). The NRL AMX-DB combined multiple open primary sources® to create a rich
representation of the geospatial features of urban Jerusalem and the surrounding region, and accu-
rately geocoded locations of terrorist attacks. Density estimation models are used to analyze the
behavior of such violent agents, and to allocate security and medical resources. In related work,
[19] also used a Gaussian kernel density estimate to assess risk from past terrorism events.

The goal in this application is to estimate a risk density for 40,000 geographical locations (samples)
in a 20km x 20km area of interest in Jerusalem. Each geographical location is represented by a
d = 76-dimensional feature vector. Each of the 76 features is the distance in kilometers to the
nearest instance of some geographic location of interest, such as the nearest market or bus stop.
Locations of past events are known for 17 suicide bombings. All the events are attributed to one of
seven terrorist groups. The density estimates for these seven groups are expected to be related, and
are treated as 1" = 7 tasks.

The kernel K was taken to be a Gaussian kernel with identity covariance. In addition to constant A
and minimax A, we also obtained a side-information A from terrorism expert Mohammed M. Hafez
of the Naval Postgraduate School; he assessed the similarity between the seven groups during the
Second Intifada (the time period of the data), providing similarities between 0 and 1.

We used leave-one-out cross validation to assess KDE and MT-KDE for this problem, as follows.
After computing the KDE and MT-KDE density estimates using all but one of the training examples
{x; } for each task, we sort the resulting 40,000 estimated probabilities for each of the seven tasks,
and extract the rank of the left-out known event. The mean reciprocal rank (MRR) metric is reported
in Table 2. Ideally, the MRR of the left-out events would be as close to 1 as possible, and indicating
that the location of the left-out event is at high-risk. The results show that the MRR for MT-KDE
are lower or not worse than those for KDE for both problems; there are, however, too few samples
to verify statistical significance of these results.

7 Summary

Though perhaps unintuitive, we showed that both in theory and in practice, estimating multiple un-
related means using an MTL approach can improve the overall risk, even more so than James-Stein
estimation. Averaging is common, and MTA has potentially broad applicability as a subcompo-
nent in many algorithms, such as k-means clustering, kernel density estimation, or non-local means
denoising.
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