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Abstract

This paper provides both theoretical and algorithmic results for the `1-relaxation
of the Cheeger cut problem. The `2-relaxation, known as spectral clustering, only
loosely relates to the Cheeger cut; however, it is convex and leads to a simple op-
timization problem. The `1-relaxation, in contrast, is non-convex but is provably
equivalent to the original problem. The `1-relaxation therefore trades convexity
for exactness, yielding improved clustering results at the cost of a more challeng-
ing optimization. The first challenge is understanding convergence of algorithms.
This paper provides the first complete proof of convergence for algorithms that
minimize the `1-relaxation. The second challenge entails comprehending the `1-
energy landscape, i.e. the set of possible points to which an algorithm might
converge. We show that `1-algorithms can get trapped in local minima that are
not globally optimal and we provide a classification theorem to interpret these lo-
cal minima. This classification gives meaning to these suboptimal solutions and
helps to explain, in terms of graph structure, when the `1-relaxation provides the
solution of the original Cheeger cut problem.

1 Introduction

Partitioning data points into sensible groups is a fundamental problem in machine learning. Given a
set of data points V = {x1, · · · , xn} and similarity weights {wi,j}1≤i,j≤n, we consider the balance
Cheeger cut problem [4]:

Minimize C(S) =

∑
xi∈S

∑
xj∈Sc wi,j

min(|S|, |Sc|)
over all subsets S ( V . (1)

Here |S| denotes the number of data points in S and Sc is the complementary set of S in V . While
this problem is NP-hard, it has the following exact continuous `1-relaxation:

Minimize E(f) =
1
2

∑
i,j wi,j |fi − fj |∑
i |fi −med(f)|

over all non-constant functions f : V → R. (2)

Here med(f) denotes the median of f ∈ Rn and fi ≡ f(xi). Recently, various algorithms have
been proposed [12, 6, 7, 1, 9, 5] to minimize `1-relaxations of the Cheeger cut (1) and of other
related problems. Typically these `1-algorithms provide excellent unsupervised clustering results
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and improve upon the standard `2 (spectral clustering) method [10, 13] in terms of both Cheeger
energy and classification error. However, complete theoretical guarantees of convergence for such
algorithms do not exist. This paper provides the first proofs of convergence for `1-algorithms that
attempt to minimize (2).

In this work we consider two algorithms for minimizing (2). We present a new steepest descent (SD)
algorithm and also consider a slight modification of the inverse power method (IPM) from [6]. We
provide convergence results for both algorithms and also analyze the energy landscape. Specifically,
we give a complete classification of local minima. This understanding of the energy landscape
provides intuition for when and how the algorithms get trapped in local minima. Our numerical
experiments show that the two algorithms perform equally well with respect to the quality of the
achieved cut. Both algorithms produce state of the art unsupervised clustering results. Finally, we
remark that the SD algorithm has a better theoretical guarantee of convergence. This arises from
the fact that the distance between two successive iterates necessarily converges to zero. In contrast,
we cannot guarantee this holds for the IPM without further assumptions on the energy landscape.
The simpler mathematical structure of the SD algorithm also provides better control of the energy
descent.

Both algorithms take the form of a fixed point iteration fk+1 ∈ A(fk), where f ∈ A(f) implies
that f is a critical point. To prove convergence towards a fix point typically requires three key
ingredients: the first is monotonicity of A, that is E(z) ≤ E(f) for all z ∈ A(f); the second
is some estimate that guarantees the successive iterates remain in a compact domain on which E
is continuous; lastly, some type of continuity of the set-valued map A is required. For set valued
maps, closedness provides the correct notion of continuity [8]. Monotonicity of the IPM algorithm
was proven in [6]. This property alone is not enough to obtain convergence, and the closedness
property proves the most challenging ingredient to establish for the algorithms we consider. Section
2 elucidates the form these properties take for the SD and IPM algorithms. In Section 3 we show
that that if the iterates of either algorithm approach a neighborhood of a strict local minimum then
both algorithms will converge to this minimum. We refer to this property as local convergence.
When the energy is non-degenerate, section 4 extends this local convergence to global convergence
toward critical points for the SD algorithm by using the additional structure afforded by the gradient
flow. In Section 5 we develop an understanding of the energy landscape of the continuous relaxation
problem. For non-convex problems an understanding of local minima is crucial. We therefore
provide a complete classification of the local minima of (2) in terms of the combinatorial local
minima of (1) by means of an explicit formula. As a consequence of this formula, the problem
of finding local minima of the combinatorial problem is equivalent to finding local minima of the
continuous relaxation. The last section is devoted to numerical experiments.

We now present the SD algorithm. Rewrite the Cheeger functional (2) as E(f) = T (f)/B(f),
where the numerator T (f) is the total variation term and the denominator B(f) is the balance term.
If T and B were differentiable, a mixed explicit-implicit gradient flow of the energy would take the
form (fk+1−fk)/τk = −(∇T (fk+1)−E(fk)∇B(fk))/(B(fk)), where {τk} denotes a sequence
of time steps. As T and B are not differentiable, particularly at the binary solutions of paramount
interest, we must consider instead their subgradients

∂T (f) := {v ∈ Rn : T (g)− T (f) ≥ 〈v, g − f〉 ∀g ∈ Rn} , (3)
∂0B(f) := {v ∈ Rn : B(g)−B(f) ≥ 〈v, g − f〉 ∀g ∈ Rn and 〈1, v〉 = 0} . (4)

Here 1 ∈ Rn denotes the constant vector of ones. Also note that if f has zero median then B(f) =
||f ||1 and ∂0B(f) = {v ∈ sign(f), s.t. mean(v) = 0}. After an appropriate choice of time steps
we arrive to the SD Algorithm summarized in table 1(on left), i.e. a non-smooth variation of steepest
descent. A key property of the the SD algorithm’s iterates is that ‖fk+1 − fk‖2 → 0. This property
allows us to conclude global convergence of the SD algorithm in cases where we can not conclude
convergence for the IPM algorithm. We also summarize the IPM algorithm from [6] in Table 1 (on
right). Compared to the original algorithm from [6], we have added the extra step to project onto
the sphere Sn−1, that is fk+1 = hk/||hk||2. While we do not think that this extra step is essential,
it simplifies the proof of convergence.

The successive iterates of both algorithms belong to the space

Sn−10 := {f ∈ Rn : ||f ||2 = 1 and med(f) = 0}. (5)
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Table 1: ASD : SD Algorithm. AIPM : Modifed IPM Algorithm [6].

f0 nonzero function with med(f) = 0.
c positive constant.
while E(fk)− E(fk+1) ≥ TOL do
vk ∈ ∂0B(fk)
gk = fk + c vk

ĥk = arg min
u∈Rn

T (u)+E(fk)
2c ||u−g

k||22

hk = ĥk −med(ĥk)1

fk+1 = hk

‖hk‖2
end while

f0 nonzero function with med(f) = 0.
while E(fk)− E(fk+1) ≥ TOL do
vk ∈ ∂0B(fk)
Dk = min||u||2≤1 T (u)− E(fk)〈u, vk〉
gk = arg min

||u||2≤1
T (u)−E(fk)〈u, vk〉 ifDk< 0

gk = fk if Dk = 0
hk = gk −med(gk)1

fk+1 = hk

||hk||2
end while

As the successive iterates have zero median, ∂0B(fk) is never empty. For example, we can take
vk ∈ Rn so that vk(xi) = 1 if f(xi) > 0, vk(xi) = −1 if f(xi) < 0 and vk(xi) = (n−−n+)/(n0)
if f(xi) = 0 where n+, n− and n0 denote the cardinalities of the sets {xi : f(xi) > 0}, {xi :
f(xi) > 0} and {xi : f(xi) = 0}, respectively. Other possible choices also exist, so that vk is
not uniquely defined. This idea, i.e. choosing an element from the subdifferential with mean zero,
was introduced in [6] and proves indispensable when dealing with median zero functions. As vk is
not uniquely defined in either algorithm, we must introduce the concepts of a set-valued map and a
closed map, which is the proper notion of continuity in this context:
Definition 1 (Set-valued Map, Closed Maps). LetX and Y be two subsets of Rn. If for each x ∈ X
there is a corresponding set F (x) ⊂ Y then F is called a set-valued map from X to Y . We denote
this by F : X ⇒ Y . The graph of F , denoted Graph(F) is defined by

Graph(F ) = {(x, y) ∈ Rn × Rn : x ∈ X, y ∈ F (x)}.
A set-valued map F is called closed if Graph(F ) is a closed subset of Rn × Rn.

With these notations in hand we can write fk+1 ∈ ASD(fk) (SD algorithm) and fk+1 ∈ AIPM(fk)
(IPM algorithm) where ASD,AIPM : Sn−10 ⇒ Sn−10 are the appropriate set-valued maps. The
notion of a closed map proves useful when analyzing the step ĥk ∈ H(fk) in the SD algorithm.
Particularly,
Lemma 1 (Closedness ofH(f)). The following set-valued mapH : Sn−10 ⇒ Rn is closed.

H(f) := arg min
u

{
T (u) +

E(f)

2c
||u− (f + c∂0B(f))||22

}
Currently, we can only show that lemma 1 holds at strict local minima for the analogous step, gk,
of the IPM algorithm. That lemma 1 holds without this further restriction on f ∈ Sn−10 will allow
us to demonstrate stronger global convergence results for the SD algorithm. Due to page limitations
the supplementary material contains the proofs of all lemmas and theorems in this paper.

2 Properties of ASD and AIPM

This section establishes the required properties of the of the set-valued maps ASD and AIPM men-
tioned in the introduction. In section 2.1 we first elucidate the monotonicity and compactness of
ASD andAIPM. Section 2.2 demonstrates that a local notion of closedness holds for each algorithm.
This form of closedness suffices to show local convergence toward isolated local minima (c.f. Sec-
tion 3). In particular, this more difficult and technical section is necessary as monotonicity alone
does not guarantee this type of convergence.

2.1 Monotonicity and Compactness

We provide the monotonicity and compactness results for each algorithm in turn. Lemmas 2 and 3
establish monotonicity and compactness forASD while Lemmas 4 and 5 establish monotonicity and
compactness for AIPM.
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Lemma 2 (Monotonicity of ASD). Let f ∈ Sn−10 and define v, g, ĥ and h according to the SD
algorithm. Then neither ĥ nor h is a constant vector. Moreover, the energy inequality

E(f) ≥ E(h) +
E(f)

B(h)

‖ĥ− f‖22
c

(6)

holds. As a consequence, if z ∈ ASD(f) then E(z) = E(h) < E(f) unless z = f .

Lemma 3 (Compactness of ASD). Let f0 ∈ Sn−10 and define a sequence of iterates
(gk, ĥk, hk, fk+1) according to the SD algorithm. Then for any such sequence

‖ĥk‖2 ≤ ‖gk‖2, 1 ≤ ||gk||2 ≤ 1 + c
√
n and 0 < ||hk||2 ≤ (1 +

√
n)||ĥk||2. (7)

Moreover, we have

||ĥk − fk||2 → 0, med(ĥk)→ 0, ‖fk − fk+1‖2 → 0. (8)

Therefore Sn−10 attracts the sequences {ĥk} and {hk}.

By the monotonicity result of Hein and Bühler [6] we have
Lemma 4 (Monotonicity of AIPM). Let f ∈ Sn−10 . If z ∈ AIPM(f) then E(z) < E(f) unless
z = f .

To prove convergence forAIPM using our techniques, we must also maintain control over the iterates
after subtracting the median. This control is provided by the following lemma.
Lemma 5 (Compactness of AIPM). Let f ∈ Sn−10 and define v,D, g and h according to the IPM.

1. The minimizer is unique when D < 0, i.e. g ∈ Sn−1 is a single point.

2. 1 ≤ ||h||2 ≤ 1 +
√
n. In particular, AIPM(f) is always well-defined for a given choice of

v ∈ ∂0B(f).

2.2 Closedness Properties

The final ingredient to prove local convergence is some form of closedness. We require closedness
of the set valued maps A at strict local minima of the energy. As the energy (2) is invariant under
constant shifts and scalings, the usual notion of a strict local minimum on Rn does not apply. We
must therefore remove the effects of these invariances when referring to a local minimum as strict.
To this end, define the spherical and annular neighborhoods on Sn−10 by

Bε(f∞) := {||f − f∞||2 ≤ ε} ∩ Sn−10 Aδ,ε(f∞) := {δ ≤ ||f − f∞||2 ≤ ε} ∩ Sn−10 .

With these in hand we introduce the proper definition of a strict local minimum.
Definition 2 (Strict Local Minima). Let f∞ ∈ Sn−10 . We say f∞ is a strict local minimum of the
energy if there exists ε > 0 so that f ∈ Bε(f∞) and f 6= f∞ imply E(f) > E(f∞).

This definition then allows us to formally define closedness at a strict local minimum in Definition
3. For the IPM algorithm this is the only form of closedness we are able to establish. Closedness at
an arbitrary f ∈ Sn−10 (c.f. lemma 1) does in fact hold for the SD algorithm. Once again, this fact
manifests itself in the stronger global convergence results for the SD algorithm in section 4.
Definition 3 (CLM/CSLM Mappings). Let A(f) : Sn−10 ⇒ Sn−10 denote a set-valued mapping.
We say A(f) is closed at local minima (CLM) if zk ∈ A(fk) and fk → f∞ imply zk → f∞

whenever f∞ is a local minimum of the energy. If zk → f∞ holds only when f∞ is a strict local
minimum then we say A(f) is closed at strict local minima (CSLM).

The CLM property for the SD algorithm, provided by lemma 6, follows as a straight forward conse-
quence of lemma 1. The CSLM property for the IPM algorithm provided by lemma 7 requires the
additional hypothesis that the local minimum is strict.

Lemma 6 (CLM Property forASD). For f ∈ Sn−10 define g, ĥ and h according to the SD algorithm.
Then ASD(f) defines a CLM mapping.

Lemma 7 (CSLM Property for AIPM). For f ∈ Sn−10 define v,D, g, h according to the IPM. Then
AIPM(f) defines a CSLM mapping.
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3 Local Convergence of ASD and AIPM at Strict Local Minima

Due to the lack of convexity of the energy (2) , at best we can only hope to obtain convergence
to a local minimum of the energy. An analogue of Lyapunov’s method from differential equations
allows us to show that such convergence does occur provided the iterates reach a neighborhood of
an isolated local minimum. To apply the lemmas from section 2 we must assume that f∞ ∈ Sn−10
is a local minimum of the energy. We will assume further that f∞ is an isolated critical point of the
energy according to the following definition.
Definition 4 (Isolated Critical Points). Let f ∈ Sn−10 . We say that f is a critical point of the energy
E(f) if there exist w ∈ ∂T (f) and v ∈ ∂0B(f) so that 0 = w − E(f)v. This generalizes the usual
quotient rule 0 = ∇T (f)− E(f)∇B(f). If there exists ε > 0 so that f is the only critical point in
Bε(f∞) we say f is an isolated critical point of the energy.

Note that as any local minimum is a critical point of the energy, if f∞ is an isolated critical point
and a local minimum then it is necessarily a strict local minimum. The CSLM property therefore
applies.

Finally, to show convergence, the set-valued map A must possess one further property, i.e. the
critical point property.
Definition 5 (Critical Point Property). Let A(f) : Sn−10 ⇒ Sn−10 denote a set-valued mapping. We
say that A(f) satisfies the critical point property (CP property) if, given any sequence satisfying
fk+1 ∈ A(fk), all limit points of {fk} are critical points of the energy.

Analogously to the CLM property, for the SD algorithm the CP property follows as a direct conse-
quence of lemma 1. For the IPM algorithm it follows from closedness of the minimization step.

The proof of local convergence utilizes a version of Lyapunov’s direct method for set-valued maps,
and we adapt this technique from the strategy outlined in [8]. We first demonstrate that if any
iterate fk lies in a sufficiently small neighborhood Bγ(f∞) of the strict local minimum then all
subsequent iterates remain in the neighborhood Bε(f∞) in which f∞ is an isolated critical point.
By compactness and the CP property, any subsequence of {fk} must have a further subsequence
that converges to the only critical point in Bε(f∞), i.e. f∞. This implies that the whole sequence
must converge to f∞ as well. We formalize this argument in lemma 8 and its corollary theorem 1.
Lemma 8 (Lyapunov Stability at Strict Local Minima). SupposeA(f) is a monotonic, CSLM map-
ping. Fix f0 ∈ Sn−10 and let {fk} denote any sequence satisfying fk+1 ∈ A(fk). If f∞ is a strict
local minimum of the energy, then for any ε > 0 there exists a γ > 0 so that if f0 ∈ Bγ(f∞) then
{fk} ⊂ Bε(f∞).

Theorem 1 (Local Convergence at Isolated Critical Points). Let A(f) : Sn−10 ⇒ Sn−10 denote a
monotonic, CSLM, CPP mapping. Let f0 ∈ Sn−10 and suppose {fk} is any sequence satisfying
fk+1 ∈ A(fk). Let f∞ denote a local minimum that is an isolated critical point of the energy. If
f0 ∈ Bγ(f∞) for γ > 0 sufficiently small then fk → f∞.

Note that both algorithms satisfy the hypothesis of theorem 1, and therefore possess identical lo-
cal convergence properties. A slight modification of the proof of theorem 1 yields the following
corollary that also applies to both algorithms.
Corollary 1. Let f0 ∈ Sn−10 be arbitrary, and define fk+1 ∈ A(fk) according to either algorithm.
If any accumulation point f∗ of the sequence {fk} is both an isolated critical point of the energy
and a local minimum, then the whole sequence fk → f∗.

4 Global Convergence for ASD

To this point the convergence properties of both algorithms appear identical. However, we have
yet to take full advantage of the superior mathematical structure afforded by the SD algorithm.
In particular, from lemma 3 we know that ||fk+1 − fk||2 → 0 without any further assumptions
regarding the initialization of the algorithm or the energy landscape. This fact combines with the
fact that lemma 1 also holds globally for f ∈ Sn−10 to yield theorem 2. Once again, we arrive at this
conclusion by adapting the proof from [8].
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Theorem 2 (Convergence of the SD Algorithm). Take f0 ∈ Sn−10 and fix a constant c > 0. Let
{fk} denote any sequence satisfying fk+1 ∈ ASD(fk). Then

1. Any accumulation point f∗ of the sequence is a critical point of the energy.

2. Either the sequence converges, or the set of accumulation points form a continuum in Sn−10 .

We might hope to rule out the second possibility in statement 2 by showing that E can never have
an uncountable number of critical points. Unfortunately, we can exhibit (c.f. the supplementary
material) simple examples to show that a continuum of local or global minima can in fact happen.
This degeneracy of a continuum of critical points arises from a lack of uniqueness in the underlying
combinatorial problem. We explore this aspect of convergence further in section 5.

By assuming additional structure in the energy landscape we can generalize the local convergence
result, theorem 1, to yield global convergence of both algorithms. This is the content of corollary 2
for the SD algorithm and the content of corollary 3 for the IPM algorithm. The hypotheses required
for each corollary clearly demonstrate the benefit of knowing apriori that ||fk+1−fk||2 → 0 occurs
for the SD algorithm. For the IPM algorithm, we can only deduce this a posteriori from the fact that
the iterates converge.

Corollary 2. Let f0 ∈ Sn−10 be arbitrary and define fk+1 ∈ ASD(fk). If the energy has only
countably many critical points in Sn−10 then {fk} converges.

Corollary 3. Let f0 ∈ Sn−10 be arbitrary and define fk+1 ∈ AIPM(fk). Suppose all critical
points of the energy are isolated in Sn−10 and are either local maxima or local minima. Then {fk}
converges.

While at first glance corollary 3 provides hope that global convergence holds for the IPM algorithm,
our simple examples in the supplementary material demonstrate that even benign graphs with well-
defined cuts have critical points of the energy that are neither local maxima nor local minima.

5 Energy Landscape of the Cheeger Functional

This section demonstrates that the continuous problem (2) provides an exact relaxation of the combi-
natorial problem (1). Specifically, we provide an explicit formula that gives an exact correspondence
between the global minimizers of the continuous problem and the global minimizers of the combi-
natorial problem. This extends previous work [12, 11, 9] on the relationship between the global
minima of (1) and (2). We also completely classifiy the local minima of the continuous problem by
introducing a notion of local minimum for the combinatorial problem. Any local minimum of the
combinatorial problem then determines a local minimum of the combinatorial problem by means of
an explicit formula, and vice-versa. Theorem 4 provides this formula, which also gives a sharp con-
dition for when a global minimum of the continuous problem is two-valued (binary), three-valued
(trinary), or k-valued in the general case. This provides an understanding the energy landscape,
which is essential due to the lack of convexity present in the continuous problem. Most importantly,
we can classify the types of local minima encountered and when they form a continuum. This is
germane to the global convergence results of the previous sections. The proofs in this section follow
closely the ideas from [12, 11].

5.1 Local and Global Minima

We first introduce the two fundamental definitions of this section. The first definition introduces the
concept of when a set S ⊂ V of vertices is compatible with an increasing sequence S1 ( S2 (
· · · ( Sk of vertex subsets. Loosely speaking, a set S is compatible with S1 ( S2 ( · · · ( Sk
whenever the cut defined by the pair (S, Sc) neither intersects nor crosses any of the cuts (Si, S

c
i ).

Definition 6 formalizes this notion.

Definition 6 (Compatible Vertex Set). A vertex set S is compatible with an increasing sequence
S1 ( S2 ( · · · ( Sk if S ⊆ S1, Sk ⊆ S or

S1 ( S2 ( · · · ( Si ⊆ S ⊆ Si+1 ( · · · ( Sk for some 1 ≤ i ≤ k − 1,
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The concept of compatible cuts then allows us to introduce our notion of a local minimum of the
combinatorial problem, i.e. definition 7.
Definition 7 (Combinatorial k-Local Minima). An increasing collection of nontrivial sets S1 (
S2 ( · · · ( Sk is called a k-local minimum of the combinatorial problem if C(S1) = C(S2) =
· · · = C(Sk) ≤ C(S) for all S compatible with S1 ( S2 ( · · · ( Sk.

Pursuing the previous analogy, a collection of cuts (S1, S
c
1), · · · , (Sk, Sck) forms a k-local minimum

of the combinatorial problem precisely when they do not intersect, have the same energy and all other
non-intersecting cuts (S, Sc) have higher energy. The case of a 1-local minimum is paramount. A cut
(S1, S

c
1) defines a 1-local minimum if and only if it has lower energy than all cuts that do not intersect

it. As a consequence, if a 1-local minimum is not a global minimum then the cut (S1, S
c
1) necessarily

intersects all of the cuts defined by the global minimizers. This is a fundamental characteristic of
local minima: they are never “parallel” to global minima.

For the continuous problem, combinatorial k-local minima naturally correspond to vertex functions
f ∈ Rn that take (k + 1) distinct values. We therefore define the concept of a (k + 1)-valued local
minimum of the continuous problem.
Definition 8 (Continuous (k + 1)-valued Local Minima). We call a vertex function f ∈ Rn a
(k + 1)-valued local minimum of the continuous problem if f is a local minimum of E and if its
range contains exactly k + 1 distinct values.

Theorem 3 provides the intuitive picture connecting these two concepts of minima, and it follows as
a corollary of the more technical and explicit theorem 4.
Theorem 3. The continuous problem has a (k + 1)-valued local minimum if and only if the combi-
natorial problem has a k-local minimum.

For example, if the continuous problem has a trinary local minimum in the usual sense then the com-
binatorial problem must have a 2-local minimum in the sense of definition 7. As the cuts (S1, S

c
1)

and (S2, S
c
2) defining a 2-local minimum do not intersect, a 2-local minimum separates the vertices

of the graph into three disjoint domains. A trinary function therefore makes intuitive sense. We
make this intuition precise in theorem 4. Before stating it we require two further definitions.
Definition 9 (Characteristic Functions). Given ∅ 6= S ⊂ V , define its characteristic function fS
as

fS = Cut(S, Sc)−1χS if |S| ≤ n/2 and fS = −Cut(S, Sc)−1χSc if |S| > n/2. (9)

Note that fS has median zero and TV -norm equal to 1.
Definition 10 (Strict Convex Hull). Given k functions f1, · · · , fk, their strict convex hull is the set

sch{f1, · · · , fk} = {θ1f1 + · · ·+ θkfk : θi > 0 for 1 ≤ i ≤ k and θ1 + · · ·+ θk = 1} (10)

Theorem 4 (Explicit Correspondence of Local Minima).

1. Suppose S1 ( S2 ( · · · ( Sk is a k-local minimum of the combinatorial problem and let
f ∈ sch{fS1

, · · · , fSk
}. Then any function of the form g = αf + β1 defines a (k + 1)-

valued local minimum of the continuous problem and with E(g) = C(S1).

2. Suppose that f is a (k + 1)-valued local minimum and let c1 > c2 > · · · > ck+1 denote
its range. For 1 ≤ i ≤ k set Ωi = {f = ci}. Then the increasing collection of sets
S1 ( · · · ( Sk given by

S1 = Ω1, S2 = Ω1 ∪ Ω2 · · · Sk = Ω1 ∪ · · · ∪ Ωk

is a k-local minimum of the combinatorial problem with C(Si) = E(f).
Remark 1 (Isolated vs Continuum of Local Minima). If a set S1 is a 1-local min then the strict
convext hull (10) of its characteristic function reduces to the single binary function fS1

. Thus every
1-local minimum generates exactly one local minimum of the continuous problem in Sn−10 , and this
local minimum is binary. On the other hand, if k ≥ 2 then every k-local minimum of the combi-
natorial problem generates a continuum (in Sn−10 ) of non-binary local minima of the continuous
problem. Thus, the hypotheses of theorem 1, corollary 2 or corollary 3 can hold only if no such
higher order k-local minima exist. When these theorems do apply the algorithms therefore con-
verge to a binary function.
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As a final consequence, we summarize the fact that theorem 4 implies that the continuous relaxation
of the Cheeger cut problem is exact. In other words,
Theorem 5. Given {f ∈ arg minE} an explicit formula exists to construct the set {S ∈
arg min C}, and vice-versa.

6 Experiments

In all experiments, we take the constant c = 1 in the SD algorithm. We use the method from
[3] to solve the minimization problem in the SD algorithm and the method from [7] to solve the
minimization problem in the IPM algorithm. We terminate each minimization when either a stopping
tolerance of ε = 10−10 (i.e. ‖uj+1 − uj‖1 ≤ ε) or 2, 000 iterations is reached. This yields a
comparison of the idealized cases of the SD algorithm and the IPM algorithm. Our first experiment
uses the two-moon dataset [2] in the same setting as in [12]. The second experiment utilizes pairs of
image digits extracted from the MNIST dataset. The first table summarizes the results of these tests.
It shows the mean Cheeger energy value (2), the mean error of classification (% of misclassified data)
and the mean computational time for both algorithms over 10 experiments with the same random
initialization for both algorithms in each of the individual experiments.

SD Algorithm Modified IPM Algorithm [7]
Energy Error (%) Time (sec.) Energy Error (%) Time (sec.)

2 moons 0.126 8.69 2.06 0.145 14.12 1.98
4’s and 9’s 0.115 1.65 52.4 0.185 25.23 58.9
3’s and 8’s 0.086 1.217 49.2 0.086 1.219 48.1

Our second set of experiments applies both algorithms to multi-class clustering problems using a
standard, recursive bi-partitioning method. We use the MNIST, USPS and COIL datasets. We
preprocessed the data by projecting onto the first 50 principal components, and take k = 10 nearest
neighbors for the MNIST and USPS datasets and k = 5 nearest neighbors for the COIL dataset.
We used the same tolerances for the minimization problems, i.e. ε = 10−10 and 2, 000 maximum
iterations. The table below presents the mean Cheeger energy, classification error and time over 10
experiments as before.

SD Algorithm Modified IPM Algorithm [7]
Energy Err. (%) Time (min.) Energy Err. (%) Time (min.)

MNIST (10 classes) 1.30 11.78 45.01 1.29 11.75 42.83
USPS (10 classes) 2.37 4.11 5.15 2.37 4.13 4.81
COIL (20 classes) 0.19 1.58 4.31 0.18 2.52 4.20

Overall, the results show that both algorithms perform equivalently for both two-class and multi-
class clustering problems.

As our interest here lies in the theoretical properties of both algorithms, we will study practical
implementation details for the SD algorithm in future work. For instance, as Hein and Bühler remark
[6], solving the minimization problem for the IPM algorithm precisely is unnecessary. Analogously
for the SD Algorithm, we only need to lower the energy sufficiently before proceeding to the next
iteration of the algorithm. It proves convenient to stop the minimization when a weaker form of the
energy inequality (6) holds, such as

E(f) ≥ E(h) + θ

(
E(f)

B(h)

||ĥ− f ||22
c

)
for some constant 0 < θ < 1. This condition provably holds in a finite number of iterations and
still guarantees that ||fk+1 − fk||2 → 0. The concrete decay estimate provided by SD algorithm
therefore allows us to give precise meaning to “sufficiently lowers the energy.” We investigate these
aspects of the algorithm and prove convergence for this practical implementation in future work.

Reproducible research: The code is available at http://www.cs.cityu.edu.hk/∼xbresson/codes.html

Acknowledgements: This work supported by AFOSR MURI grant FA9550-10-1-0569 and Hong
Kong GRF grant #110311.
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