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Abstract

Multi-task sparse feature learning aims to improve the generalization performance
by exploiting the shared features among tasks. It has been successfully applied to
many applications including computer vision and biomedical informatics. Most
of the existing multi-task sparse feature learning algorithms are formulated as
a convex sparse regularization problem, which is usually suboptimal, due to its
looseness for approximating an ℓ0-type regularizer. In this paper, we propose a
non-convex formulation for multi-task sparse feature learning based on a novel
regularizer. To solve the non-convex optimization problem, we propose a Multi-
Stage Multi-Task Feature Learning (MSMTFL) algorithm. Moreover, we present
a detailed theoretical analysis showing that MSMTFL achieves a better parameter
estimation error bound than the convex formulation. Empirical studies on both
synthetic and real-world data sets demonstrate the effectiveness of MSMTFL in
comparison with the state of the art multi-task sparse feature learning algorithms.

1 Introduction

Multi-task learning (MTL) exploits the relationships among multiple related tasks to improve the
generalization performance. It has been applied successfully to many applications such as speech
classification [16], handwritten character recognition [14, 17] and medical diagnosis [2]. One com-
mon assumption in multi-task learning is that all tasks should share some common structures in-
cluding the prior or parameters of Bayesian models [18, 21, 24], a similarity metric matrix [16], a
classification weight vector [6], a low rank subspace [4, 13] and a common set of shared features
[1, 8, 10, 11, 12, 14, 20].

In this paper, we focus on multi-task feature learning, in which we learn the features specific to
each task as well as the common features shared among tasks. Although many multi-task feature
learning algorithms have been proposed, most of them assume that the relevant features are shared
by all tasks. This is too restrictive in real-world applications [9]. To overcome this limitation, Jalali
et al. (2010) [9] proposed an ℓ1 + ℓ1,∞ regularized formulation, called dirty model, to leverage
the common features shared among tasks. The dirty model allows a certain feature to be shared
by some tasks but not all tasks. Jalali et al. (2010) also presented a theoretical analysis under the
incoherence condition [5, 15] which is more restrictive than RIP [3, 27]. The ℓ1 + ℓ1,∞ regularizer
is a convex relaxation for the ℓ0-type one, which, however, is too loose to well approximate the
ℓ0-type regularizer and usually achieves suboptimal performance (requiring restrictive conditions or
obtaining a suboptimal error bound) [23, 26, 27]. To remedy the shortcoming, we propose to use a
non-convex regularizer for multi-task feature learning in this paper.

∗This work was completed when the first author visited Arizona State University.
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Contributions: We propose to employ a capped-ℓ1,ℓ1 regularized formulation (non-convex) to
learn the features specific to each task as well as the common features shared among tasks. To
solve the non-convex optimization problem, we propose a Multi-Stage Multi-Task Feature Learning
(MSMTFL) algorithm, using the concave duality [26]. Although the MSMTFL algorithm may not
obtain a globally optimal solution, we theoretically show that this solution achieves good perfor-
mance. Specifically, we present a detailed theoretical analysis on the parameter estimation error
bound for the MSMTFL algorithm. Our analysis shows that, under the sparse eigenvalue condition
which is weaker than the incoherence condition in Jalali et al. (2010) [9], MSMTFL improves the
error bound during the multi-stage iteration, i.e., the error bound at the current iteration improves
the one at the last iteration. Empirical studies on both synthetic and real-world data sets demonstrate
the effectiveness of the MSMTFL algorithm in comparison with the state of the art algorithms.

Notations: Scalars and vectors are denoted by lower case letters and bold face lower case let-
ters, respectively. Matrices and sets are denoted by capital letters and calligraphic capital let-
ters, respectively. The ℓ1 norm, Euclidean norm, ℓ∞ norm and Frobenius norm are denoted by
∥ · ∥1, ∥ · ∥, ∥ · ∥∞ and ∥ · ∥F , respectively. | · | denotes the absolute value of a scalar or the
number of elements in a set, depending on the context. We define the ℓp,q norm of a matrix X as

∥X∥p,q =
(∑

i

(
(
∑

j |xij |q)1/q
)p)1/p

. We define Nn as {1, · · · , n} and N(µ, σ2) as a normal dis-

tribution with mean µ and variance σ2. For a d×m matrix W and sets Ii ⊆ Nd×{i}, I ⊆ Nd×Nd,
we let wIi be a d× 1 vector with the j-th entry being wji, if (j, i) ∈ Ii, and 0, otherwise. We also
let WI be a d×m matrix with the (j, i)-th entry being wji, if (j, i) ∈ I, and 0, otherwise.

2 The Proposed Formulation

Assume we are given m learning tasks associated with training data {(X1,y1), · · · , (Xm,ym)},
where Xi ∈ Rni×d is the data matrix of the i-th task with each row as a sample; yi ∈ Rni is
the response of the i-th task; d is the data dimensionality; ni is the number of samples for the i-th
task. We consider learning a weight matrix W = [w1, · · · ,wm] ∈ Rd×m consisting of the weight
vectors for m linear predictive models: yi ≈ fi(Xi) = Xiwi, i ∈ Nm. In this paper, we propose a
non-convex multi-task feature learning formulation to learn these m models simultaneously, based
on the capped-ℓ1,ℓ1 regularization. Specifically, we first impose the ℓ1 penalty on each row of W ,
obtaining a column vector. Then, we impose the capped-ℓ1 penalty [26, 27] on that vector. Formally,
we formulate our proposed model as follows:

min
W

l(W ) + λ
d∑

j=1

min
(
∥wj∥1, θ

) , (1)

where l(W ) is an empirical loss function of W ; λ (> 0) is a parameter balancing the empirical loss
and the regularization; θ (> 0) is a thresholding parameter; wj is the j-th row of the matrix W . In
this paper, we focus on the quadratic loss function: l(W ) =

∑m
i=1

1
mni

∥Xiwi − yi∥2.

Algorithm 1: MSMTFL: Multi-Stage Multi-Task Feature Learning

1 Initialize λ
(0)
j = λ;

2 for ℓ = 1, 2, · · · do
3 Let Ŵ (ℓ) be a solution of the following problem:

min
W∈Rd×m

l(W ) +
d∑

j=1

λ
(ℓ−1)
j ∥wj∥1

 . (2)

Let λ(ℓ)
j = λI(∥(ŵ(ℓ))j∥1 < θ) (j = 1, · · · , d), where (ŵ(ℓ))j is the j-th row of Ŵ (ℓ) and I(·)

denotes the {0, 1} valued indicator function.
4 end

Intuitively, due to the capped-ℓ1, ℓ1 penalty, the optimal solution of Eq. (1) denoted as W ⋆ has many
zero rows. For a nonzero row (w⋆)k, some entries may be zero, due to the ℓ1-norm imposed on each
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row of W . Thus, under the formulation in Eq. (1), a certain feature can be shared by some tasks
but not all the tasks. Therefore, the proposed formulation can leverage the common features shared
among tasks.

The formulation in Eq. (1) is non-convex and is difficult to solve. To this end, we propose a Multi-
Stage Multi-Task Feature Learning (MSMTFL) algorithm (see Algorithm 1). Note that if we termi-
nate the algorithm with ℓ = 1, the MSMTFL algorithm is equivalent to the ℓ1 regularized multi-task
feature learning algorithm (Lasso). Thus, the solution obtained by MSMTFL can be considered
as a refinement of that of Lasso. Although Algorithm 1 may not find a globally optimal solution,
the solution has good performance. Specifically, we will theoretically show that the solution ob-
tained by Algorithm 1 improves the performance of the parameter estimation error bound during
the multi-stage iteration. Moreover, empirical studies also demonstrate the effectiveness of our pro-
posed MSMTFL algorithm. We provide more details about intuitive interpretations, convergence
analysis and reproducibility discussions of the proposed algorithm in the full version [7].

3 Theoretical Analysis

In this section, we theoretically analyze the parameter estimation performance of the solution ob-
tained by the MSMTFL algorithm. To simplify the notations in the theoretical analysis, we assume
that the number of samples for all the tasks are the same. However, our theoretical analysis can be
easily extended to the case where the tasks have different sample sizes.

We first present a sub-Gaussian noise assumption which is very common in the analysis of sparse
regularization literature [23, 25, 26, 27].

Assumption 1 Let W̄ = [w̄1, · · · , w̄m] ∈ Rd×m be the underlying sparse weight matrix and
yi = Xiw̄i + δi, Eyi = Xiw̄i, where δi ∈ Rn is a random vector with all entries δji (j ∈ Nn, i ∈
Nm) being independent sub-Gaussians: there exists σ > 0 such that ∀j ∈ Nn, i ∈ Nm, t ∈ R:
Eδji exp(tδji) ≤ exp

(
σ2t2/2

)
.

Remark 1 We call the random variable satisfying the condition in Assumption 1 sub-Gaussian,
since its moment generating function is upper bounded by that of the zero mean Gaussian ran-
dom variable. That is, if a normal random variable x ∼ N(0, σ2), then we have E exp(tx) =∫∞
−∞ exp(tx) 1√

2πσ
exp

(
− x2

2σ2

)
dx = exp(σ2t2/2)

∫∞
−∞

1√
2πσ

exp
(
−(x− σ2t)2/(2σ2)

)
dx =

exp(σ2t2/2) ≥ Eδji exp(tδji).

Remark 2 Based on the Hoeffding’s Lemma, for any random variable x ∈ [a, b] and Ex = 0, we

have E(exp(tx)) ≤ exp
(

t2(b−a)2

8

)
. Therefore, both zero mean Gaussian and zero mean bounded

random variables are sub-Guassians. Thus, the sub-Gaussian noise assumption is more general
than the Gaussian noise assumption which is commonly used in the literature [9, 11].

We next introduce the following sparse eigenvalue concept which is also common in the analysis of
sparse regularization literature [22, 23, 25, 26, 27].

Definition 1 Given 1 ≤ k ≤ d, we define

ρ+i (k) = sup
w

{
∥Xiw∥2

n∥w∥2
: ∥w∥0 ≤ k

}
, ρ+max(k) = max

i∈Nm

ρ+i (k),

ρ−i (k) = inf
w

{
∥Xiw∥2

n∥w∥2
: ∥w∥0 ≤ k

}
, ρ−min(k) = min

i∈Nm

ρ−i (k).

Remark 3 ρ+i (k) (ρ
−
i (k)) is in fact the maximum (minimum) eigenvalue of (Xi)

T
S (Xi)S/n, where

S is a set satisfying |S| ≤ k and (Xi)S is a submatrix composed of the columns of Xi indexed by
S. In the MTL setting, we need to exploit the relations of ρ+i (k) (ρ

−
i (k)) among multiple tasks.

We present our parameter estimation error bound on MSMTFL in the following theorem:
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Theorem 1 Let Assumption 1 hold. Define F̄i = {(j, i) : w̄ji ̸= 0} and F̄ = ∪i∈Nm
F̄i. Denote r̄

as the number of nonzero rows of W̄ . We assume that
∀(j, i) ∈ F̄ , ∥w̄j∥1 ≥ 2θ (3)

and
ρ+i (s)

ρ−i (2r̄ + 2s)
≤ 1 +

s

2r̄
, (4)

where s is some integer satisfying s ≥ r̄. If we choose λ and θ such that for some s ≥ r̄:

λ ≥ 12σ

√
2ρ+max(1) ln(2dm/η)

n
, (5)

θ ≥ 11mλ

ρ−min(2r̄ + s)
, (6)

then the following parameter estimation error bound holds with probability larger than 1− η:

∥Ŵ (ℓ) − W̄∥2,1 ≤ 0.8ℓ/2
9.1mλ

√
r̄

ρ−min(2r̄ + s)
+

39.5mσ
√
ρ+max(r̄)(7.4r̄ + 2.7 ln(2/η))/n

ρ−min(2r̄ + s)
, (7)

where Ŵ (ℓ) is a solution of Eq. (2).

Remark 4 Eq. (3) assumes that the ℓ1-norm of each nonzero row of W̄ is away from zero. This
requires the true nonzero coefficients should be large enough, in order to distinguish them from
the noise. Eq. (4) is called the sparse eigenvalue condition [27], which requires the eigenvalue ratio
ρ+i (s)/ρ

−
i (s) to grow sub-linearly with respect to s. Such a condition is very common in the analysis

of sparse regularization [22, 25] and it is slightly weaker than the RIP condition [3, 27].

Remark 5 When ℓ = 1 (corresponds to Lasso), the first term of the right-hand side of Eq. (7)
dominates the error bound in the order of

∥ŴLasso − W̄∥2,1 = O
(
m
√
r̄ ln(dm/η)/n

)
, (8)

since λ satisfies the condition in Eq. (5). Note that the first term of the right-hand side of Eq. (7)
shrinks exponentially as ℓ increases. When ℓ is sufficiently large in the order of O(ln(m

√
r̄/n) +

ln ln(dm)), this term tends to zero and we obtain the following parameter estimation error bound:

∥Ŵ (ℓ) − W̄∥2,1 = O
(
m
√
r̄/n+ ln(1/η)/n

)
. (9)

Jalali et al. (2010) [9] gave an ℓ∞,∞-norm error bound ∥ŴDirty−W̄∥∞,∞ = O
(√

ln(dm/η)/n
)

as well as a sign consistency result between Ŵ and W̄ . A direct comparison between these two
bounds is difficult due to the use of different norms. On the other hand, the worst-case estimate of
the ℓ2,1-norm error bound of the algorithm in Jalali et al. (2010) [9] is in the same order with Eq. (8),

that is: ∥ŴDirty − W̄∥2,1 = O
(
m
√

r̄ ln(dm/η)/n
)

. When dm is large and the ground truth has
a large number of sparse rows (i.e., r̄ is a small constant), the bound in Eq. (9) is significantly better
than the ones for the Lasso and Dirty model.

Remark 6 Jalali et al. (2010) [9] presented an ℓ∞,∞-norm parameter estimation error bound and
hence a sign consistency result can be obtained. The results are derived under the incoherence
condition which is more restrictive than the RIP condition and hence more restrictive than the sparse
eigenvalue condition in Eq. (4). From the viewpoint of the parameter estimation error, our proposed
algorithm can achieve a better bound under weaker conditions. Please refer to [19, 25, 27] for
more details about the incoherence condition, the RIP condition, the sparse eigenvalue condition
and their relationships.

Remark 7 The capped-ℓ1 regularized formulation in Zhang (2010) [26] is a special case of our for-
mulation when m = 1. However, extending the analysis from the single task to the multi-task setting
is nontrivial. Different from previous work on multi-stage sparse learning which focuses on a single
task [26, 27], we study a more general multi-stage framework in the multi-task setting. We need to
exploit the relationship among tasks, by using the relations of sparse eigenvalues ρ+i (k) (ρ

−
i (k))

and treating the ℓ1-norm on each row of the weight matrix as a whole for consideration. Moreover,
we simultaneously exploit the relations of each column and each row of the matrix.
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4 Proof Sketch

We first provide several important lemmas (please refer to the full version [7] or supplementary
materials for detailed proofs) and then complete the proof of Theorem 1 based on these lemmas.

Lemma 1 Let Ῡ = [ϵ̄1, · · · , ϵ̄m] with ϵ̄i = [ϵ̄1i, · · · , ϵ̄di]T = 1
nX

T
i (Xiw̄i − yi) (i ∈ Nm). Define

H̄ ⊇ F̄ such that (j, i) ∈ H̄ (∀i ∈ Nm), provided there exists (j, g) ∈ F̄ (H̄ is a set consisting of
the indices of all entries in the nonzero rows of W̄ ). Under the conditions of Assumption 1 and the
notations of Theorem 1, the followings hold with probability larger than 1− η:

∥Ῡ∥∞,∞ ≤ σ

√
2ρ+max(1) ln(2dm/η)

n
, (10)

∥ῩH̄∥2F ≤ mσ2ρ+max(r̄)(7.4r̄ + 2.7 ln(2/η))/n. (11)

Lemma 1 gives bounds on the residual correlation (Ῡ) with respect to W̄ . We note that Eq. (10) and
Eq. (11) are closely related to the assumption on λ in Eq. (5) and the second term of the right-hand
side of Eq. (7) (error bound), respectively. This lemma provides a fundamental basis for the proof
of Theorem 1.

Lemma 2 Use the notations of Lemma 1 and consider Gi ⊆ Nd × {i} such that F̄i ∩ Gi = ∅ (i ∈
Nm). Let Ŵ = Ŵ (ℓ) be a solution of Eq. (2) and ∆Ŵ = Ŵ − W̄ . Denote λ̂i = λ̂

(ℓ−1)
i =

[λ
(ℓ−1)
1 , · · · , λ(ℓ−1)

d ]T . Let λ̂Gi = min(j,i)∈Gi
λ̂ji, λ̂G = mini∈Gi λ̂Gi and λ̂0i = maxj λ̂ji, λ̂0 =

maxi λ̂0i. If 2∥ϵ̄i∥∞ < λ̂Gi , then the following inequality holds at any stage ℓ ≥ 1:
m∑
i=1

∑
(j,i)∈Gi

|ŵ(ℓ)
ji | ≤

2∥Ῡ∥∞,∞ + λ̂0

λ̂G − 2∥Ῡ∥∞,∞

m∑
i=1

∑
(j,i)∈Gc

i

|∆ŵ
(ℓ)
ji |.

Denote G = ∪i∈NmGi, F̄ = ∪i∈NmF̄i and notice that F̄ ∩ G = ∅ ⇒ ∆Ŵ (ℓ) = Ŵ (ℓ). Lemma 2
says that ∥∆Ŵ

(ℓ)
G ∥1,1 = ∥Ŵ (ℓ)

G ∥1,1 is upper bounded in terms of ∥∆Ŵ
(ℓ)
Gc ∥1,1, which indicates that

the error of the estimated coefficients locating outside of F̄ should be small enough. This provides
an intuitive explanation why the parameter estimation error of our algorithm can be small.

Lemma 3 Using the notations of Lemma 2, we denote G = G(ℓ) = H̄c ∩ {(j, i) : λ̂(ℓ−1)
ji = λ} =

∪i∈NmGi with H̄ being defined as in Lemma 1 and Gi ⊆ Nd × {i}. Let Ji be the indices of the
largest s coefficients (in absolute value) of ŵGi , Ii = Gc

i ∪ Ji, I = ∪i∈NmIi and F̄ = ∪i∈NmF̄i.
Then, the following inequalities hold at any stage ℓ ≥ 1:

∥∆Ŵ (ℓ)∥2,1 ≤

(
1 + 1.5

√
2r̄
s

)√
8m

(
4∥ῩGc

(ℓ)
∥2F +

∑
(j,i)∈F̄ (λ̂

(ℓ−1)
ji )2

)
ρ−min(2r̄ + s)

, (12)

∥∆Ŵ (ℓ)∥2,1 ≤ 9.1mλ
√
r̄

ρ−min(2r̄ + s)
. (13)

Lemma 3 is established based on Lemma 2, by considering the relationship between Eq. (5) and
Eq. (10), and the specific definition of G = G(ℓ). Eq. (12) provides a parameter estimation error
bound in terms of ℓ2,1-norm by ∥ῩGc

(ℓ)
∥2F and the regularization parameters λ̂(ℓ−1)

ji (see the definition

of λ̂ji (λ̂
(ℓ−1)
ji ) in Lemma 2). This is the result directly used in the proof of Theorem 1. Eq. (13)

states that the error bound is upper bounded in terms of λ, the right-hand side of which constitutes
the shrinkage part of the error bound in Eq. (7).

Lemma 4 Let λ̂ji = λI
(
∥ŵj∥1 < θ, j ∈ Nd

)
,∀i ∈ Nm with some Ŵ ∈ Rd×m. H̄ ⊇ F̄ is defined

in Lemma 1. Then under the condition of Eq. (3), we have:∑
(j,i)∈F̄

λ̂2
ji ≤

∑
(j,i)∈H̄

λ̂2
ji ≤ mλ2∥W̄H̄ − ŴH̄∥22,1/θ2.
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Lemma 4 establishes an upper bound of
∑

(j,i)∈F̄ λ̂2
ji by ∥W̄H̄ − ŴH̄∥22,1, which is critical for

building the recursive relationship between ∥Ŵ (ℓ) − W̄∥2,1 and ∥Ŵ (ℓ−1) − W̄∥2,1 in the proof of
Theorem 1. This recursive relation is crucial for the shrinkage part of the error bound in Eq. (7).

4.1 Proof of Theorem 1

Proof For notational simplicity, we denote the right-hand side of Eq. (11) as:

u = mσ2ρ+max(r̄)(7.4r̄ + 2.7 ln(2/η))/n. (14)

Based on H̄ ⊆ Gc
(ℓ), Lemma 1 and Eq. (5), the followings hold with probability larger than 1− η:

∥ῩGc
(ℓ)
∥2F = ∥ῩH̄∥2F + ∥ῩGc

(ℓ)
\H̄∥2F ≤ u+ |Gc

(ℓ) \ H̄|∥Ῡ∥2∞,∞

≤ u+ λ2|Gc
(ℓ) \ H̄|/144 ≤ u+ (1/144)mλ2θ−2∥Ŵ (ℓ−1)

Gc
(ℓ)

\H̄ − W̄Gc
(ℓ)

\H̄∥22,1, (15)

where the last inequality follows from ∀(j, i) ∈ Gc
(ℓ) \ H̄, ∥(ŵ(ℓ−1))j∥21/θ2 = ∥(ŵ(ℓ−1))j −

w̄j∥21/θ2 ≥ 1 ⇒ |Gc
(ℓ) \ H̄| ≤ mθ−2∥Ŵ (ℓ−1)

Gc
(ℓ)

\H̄ − W̄Gc
(ℓ)

\H̄∥22,1. According to Eq. (12), we have:

∥Ŵ (ℓ) − W̄∥22,1 = ∥∆Ŵ (ℓ)∥22,1 ≤
8m

(
1 + 1.5

√
2r̄
s

)2 (
4∥ῩGc

(ℓ)
∥2F +

∑
(j,i)∈F̄ (λ̂

(ℓ−1)
ji )2

)
(ρ−min(2r̄ + s))2

≤
78m

(
4u+ (37/36)mλ2θ−2

∥∥∥Ŵ (ℓ−1) − W̄
∥∥∥2
2,1

)
(ρ−min(2r̄ + s))2

≤ 312mu

(ρ−min(2r̄ + s))2
+ 0.8

∥∥∥Ŵ (ℓ−1) − W̄
∥∥∥2
2,1

≤ 0.8ℓ
∥∥∥Ŵ (0) − W̄

∥∥∥2
2,1

+
312mu

(ρ−min(2r̄ + s))2
1− 0.8ℓ

1− 0.8
≤ 0.8ℓ

9.12m2λ2r̄

(ρ−min(2r̄ + s))2
+

1560mu

(ρ−min(2r̄ + s))2
.

In the above derivation, the first inequality is due to Eq. (12); the second inequality is due to the
assumption s ≥ r̄ in Theorem 1, Eq. (15) and Lemma 4; the third inequality is due to Eq. (6); the
last inequality follows from Eq. (13) and 1 − 0.8ℓ ≤ 1 (ℓ ≥ 1). Thus, following the inequality√
a+ b ≤

√
a+

√
b (∀a, b ≥ 0), we obtain:

∥Ŵ (ℓ) − W̄∥2,1 ≤ 0.8ℓ/2
9.1mλ

√
r̄

ρ−min(2r̄ + s)
+

39.5
√
mu

ρ−min(2r̄ + s)
.

Substituting Eq. (14) into the above inequality, we verify Theorem 1. �

5 Experiments

We compare our proposed MSMTFL algorithm with three competing multi-task feature learning
algorithms: ℓ1-norm multi-task feature learning algorithm (Lasso), ℓ1,2-norm multi-task feature
learning algorithm (L1,2) [14] and dirty model multi-task feature learning algorithm (DirtyMTL)
[9]. In our experiments, we employ the quadratic loss function for all the compared algorithms.

5.1 Synthetic Data Experiments

We generate synthetic data by setting the number of tasks as m and each task has n samples which
are of dimensionality d; each element of the data matrix Xi ∈ Rn×d (i ∈ Nm) for the i-th task is
sampled i.i.d. from the Gaussian distribution N(0, 1) and we then normalize all columns to length 1;
each entry of the underlying true weight W̄ ∈ Rd×m is sampled i.i.d. from the uniform distribution
in the interval [−10, 10]; we randomly set 90% rows of W̄ as zero vectors and 80% elements of
the remaining nonzero entries as zeros; each entry of the noise δi ∈ Rn is sampled i.i.d. from the
Gaussian distribution N(0, σ2); the responses are computed as yi = Xiw̄i + δi (i ∈ Nm).

We first report the averaged parameter estimation error ∥Ŵ−W̄∥2,1 vs. Stage (ℓ) plots for MSMTFL
(Figure 1). We observe that the error decreases as ℓ increases, which shows the advantage of our pro-
posed algorithm over Lasso. This is consistent with the theoretical result in Theorem 1. Moreover,
the parameter estimation error decreases quickly and converges in a few stages.
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We then report the averaged parameter estimation error ∥Ŵ − W̄∥2,1 in comparison with four al-
gorithms in different parameter settings (Figure 2). For a fair comparison, we compare the smallest
estimation errors of the four algorithms in all the parameter settings [25, 26]. As expected, the pa-
rameter estimation error of the MSMTFL algorithm is the smallest among the four algorithms. This
empirical result demonstrates the effectiveness of the MSMTFL algorithm. We also have the follow-
ing observations: (a) When λ is large enough, all four algorithms tend to have the same parameter
estimation error. This is reasonable, because the solutions Ŵ ’s obtained by the four algorithms are
all zero matrices, when λ is very large. (b) The performance of the MSMTFL algorithm is similar
for different θ’s, when λ exceeds a certain value.
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Figure 1: Averaged parameter estimation error ∥Ŵ − W̄∥2,1 vs. Stage (ℓ) plots for MSMTFL on
the synthetic data set (averaged over 10 runs). Here we set λ = α

√
ln(dm)/n, θ = 50mλ. Note

that ℓ = 1 corresponds to Lasso; the results show the stage-wise improvement over Lasso.
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Figure 2: Averaged parameter estimation error ∥Ŵ − W̄∥2,1 vs. λ plots on the synthetic data set
(averaged over 10 runs). MSMTFL has the smallest parameter estimation error among the four al-
gorithms. Both DirtyMTL and MSMTFL have two parameters; we set λs/λb = 1, 0.5, 0.2, 0.1
for DirtyMTL (1/m ≤ λs/λb ≤ 1 was adopted in Jalali et al. (2010) [9]) and θ/λ =
50m, 10m, 2m, 0.4m for MSMTFL.

5.2 Real-World Data Experiments

We conduct experiments on two real-world data sets: MRI and Isolet data sets. (1) The MRI data
set is collected from the ANDI database, which contains 675 patients’ MRI data preprocessed using
FreeSurfer1. The MRI data include 306 features and the response (target) is the Mini Mental State
Examination (MMSE) score coming from 6 different time points: M06, M12, M18, M24, M36, and
M48. We remove the samples which fail the MRI quality controls and have missing entries. Thus,
we have 6 tasks with each task corresponding to a time point and the sample sizes corresponding to
6 tasks are 648, 642, 293, 569, 389 and 87, respectively. (2) The Isolet data set2 is collected from
150 speakers who speak the name of each English letter of the alphabet twice. Thus, there are 52
samples from each speaker. The speakers are grouped into 5 subsets which respectively include 30
similar speakers, and the subsets are named Isolet1, Isolet2, Isolet3, Isolet4, and Isolet5. Thus, we
naturally have 5 tasks with each task corresponding to a subset. The 5 tasks respectively have 1560,
1560, 1560, 1558, and 1559 samples (Three samples are historically missing), where each sample
includes 617 features and the response is the English letter label (1-26).

In the experiments, we treat the MMSE and letter labels as the regression values for the MRI data
set and the Isolet data set, respectively. For both data sets, we randomly extract the training samples
from each task with different training ratios (15%, 20% and 25%) and use the rest of samples to form
the test set. We evaluate the four multi-task feature learning algorithms in terms of normalized mean
squared error (nMSE) and averaged means squared error (aMSE), which are commonly used in

1www.loni.ucla.edu/ADNI/
2www.zjucadcg.cn/dengcai/Data/data.html
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Table 1: Comparison of four multi-task feature learning algorithms on the MRI data set in terms of
averaged nMSE and aMSE (standard deviation), which are averaged over 10 random splittings.

measure traning ratio Lasso L1,2 DirtyMTL MSMTFL

nMSE

0.15 0.6651(0.0280) 0.6633(0.0470) 0.6224(0.0265) 0.5539(0.0154)
0.20 0.6254(0.0212) 0.6489(0.0275) 0.6140(0.0185) 0.5542(0.0139)
0.25 0.6105(0.0186) 0.6577(0.0194) 0.6136(0.0180) 0.5507(0.0142)

aMSE

0.15 0.0189(0.0008) 0.0187(0.0010) 0.0172(0.0006) 0.0159(0.0004)
0.20 0.0179(0.0006) 0.0184(0.0005) 0.0171(0.0005) 0.0161(0.0004)
0.25 0.0172(0.0009) 0.0183(0.0006) 0.0167(0.0008) 0.0157(0.0006)

multi-task learning problems [28, 29]. For each training ratio, both nMSE and aMSE are averaged
over 10 random splittings of training and test sets and the standard deviation is also shown. All
parameters of the four algorithms are tuned via 3-fold cross validation.
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Figure 3: Averaged test error (nMSE and aMSE) vs. training ratio plots on the Isolet data set. The
results are averaged over 10 random splittings.

Table 1 and Figure 3 show the experimental results in terms of averaged nMSE (aMSE) and the
standard deviation. From these results, we observe that: (a) Our proposed MSMTFL algorithm out-
performs all the competing feature learning algorithms on both data sets, with the smallest regression
errors (nMSE and aMSE) as well as the smallest standard deviations. (b) On the MRI data set, the
MSMTFL algorithm performs well even in the case of a small training ratio. The performance for
the 15% training ratio is comparable to that for the 25% training ratio. (c) On the Isolet data set,
when the training ratio increases from 15% to 25%, the performance of the MSMTFL algorithm
increases and the superiority of the MSMTFL algorithm over the other three algorithms is more
significant. Our results demonstrate the effectiveness of the proposed algorithm.

6 Conclusions

In this paper, we propose a non-convex multi-task feature learning formulation based on the capped-
ℓ1,ℓ1 regularization. The proposed formulation learns the specific features of each task as well as the
common features shared among tasks. We propose to solve the non-convex optimization problem
by employing a Multi-Stage Multi-Task Feature Learning (MSMTFL) algorithm, using concave
duality. We also present a detailed theoretical analysis in terms of the parameter estimation error
bound for the MSMTFL algorithm. The analysis shows that our MSMTFL algorithm achieves good
performance under the sparse eigenvalue condition, which is weaker than the incoherence condition.
Experimental results on both synthetic and real-world data sets demonstrate the effectiveness of our
proposed MSMTFL algorithm in comparison with the state of the art multi-task feature learning
algorithms. In our future work, we will focus on a general non-convex regularization framework for
multi-task feature learning settings (involving different loss functions and non-convex regularization
terms) and derive theoretical bounds.
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