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Abstract

Early stages of visual processing are thought to decorrelate, or whiten, the incom-
ing temporally varying signals. Motivated by the cascade structure of the visual
pathway (retina→ lateral geniculate nucelus (LGN)→ primary visual cortex, V1)
we propose to model its function using lattice filters - signal processing devices
for stage-wise decorrelation of temporal signals. Lattice filter models predict neu-
ronal responses consistent with physiological recordings in cats and primates. In
particular, they predict temporal receptive fields of two different types resembling
so-called lagged and non-lagged cells in the LGN. Moreover, connection weights
in the lattice filter can be learned using Hebbian rules in a stage-wise sequential
manner reminiscent of the neuro-developmental sequence in mammals. In addi-
tion, lattice filters can model visual processing in insects. Therefore, lattice filter
is a useful abstraction that captures temporal aspects of visual processing.

Our sensory organs face an ongoing barrage of stimuli from the world and must transmit as much
information about them as possible to the rest of the brain [1]. This is a formidable task because, in
sensory modalities such as vision, the dynamic range of natural stimuli (more than three orders of
magnitude) greatly exceeds the dynamic range of relay neurons (less than two orders of magnitude)
[2]. The reason why high fidelity transmission is possible at all is that the continuity of objects
in the physical world leads to correlations in natural stimuli, which imply redundancy. In turn,
such redundancy can be eliminated by compression performed by the front end of the visual system
leading to the reduction of the dynamic range [3, 4].

A compression strategy appropriate for redundant natural stimuli is called predictive coding [5, 6, 7].
In predictive coding, a prediction of the incoming signal value is computed from past values delayed
in the circuit. This prediction is subtracted from the actual signal value and only the prediction
error is transmitted. In the absence of transmission noise such compression is lossless as the original
signal could be decoded on the receiving end by inverting the encoder. If predictions are accurate, the
dynamic range of the error is much smaller than that of the natural stimuli. Therefore, minimizing
dynamic range using predictive coding reduces to optimizing prediction.

Experimental support for viewing the front end of the visual system as a predictive encoder comes
from the measurements of receptive fields [6, 7]. In particular, predictive coding suggests that, for
natural stimuli, the temporal receptive fields should be biphasic and the spatial receptive fields -
center-surround. These predictions are born out by experimental measurements in retinal ganglion
cells, [8], lateral geniculate nucleus (LGN) neurons [9] and fly second order visual neurons called
large monopolar cells (LMCs) [2]. In addition, the experimentally measured receptive fields vary
with signal-to-noise ratio as would be expected from optimal prediction theory [6]. Furthermore,
experimentally observed whitening of the transmitted signal [10] is consistent with removing corre-
lated components from the incoming signals [11].

As natural stimuli contain correlations on time scales greater than hundred milliseconds, experimen-
tally measured receptive fields of LGN neurons are equally long [12]. Decorrelation over such long
time scales requires equally long delays. How can such extended receptive field be produced by

1



biological neurons and synapses whose time constants are typically less than hundred milliseconds
[13]?

The field of signal processing offers a solution to this problem in the form of a device called a lattice
filter, which decorrelates signals in stages, sequentially adding longer and longer delays [14, 15, 16,
17]. Motivated by the cascade structure of visual systems [18], we propose to model decorrelation
in them by lattice filters. Naturally, visual systems are more complex than lattice filters and perform
many other operations. However, we show that the lattice filter model explains several existing
observations in vertebrate and invertebrate visual systems and makes testable predictions. Therefore,
we believe that lattice filters provide a convenient abstraction for modeling temporal aspects of visual
processing.

This paper is organized as follows. First, we briefly summarize relevant results from linear prediction
theory. Second, we explain the operation of the lattice filter in discrete and continuous time. Third,
we compare lattice filter predictions with physiological measurements.

1 Linear prediction theory

Despite the non-linear nature of neurons and synapses, the operation of some neural circuits in
vertebrates [19] and invertebrates [20] can be described by a linear systems theory. The advantage
of linear systems is that optimal circuit parameters may be obtained analytically and the results are
often intuitively clear. Perhaps not surprisingly, the field of signal processing relies heavily on the
linear prediction theory, offering a convenient framework [15, 16, 17]. Below, we summarize the
results from linear prediction that will be used to explain the operation of the lattice filter.

Consider a scalar sequence y = {yt} where time t = 1, . . . , n. Suppose that yt at each time
point depends on side information provided by vector zt. Our goal is to generate a series of linear
predictions, ŷt from the vector zt, ŷt = w · zt. We define a prediction error as:

et = yt − ŷt = yt −w · zt (1)

and look for values of w that minimize mean squared error:

〈e2〉 = 1

nt

∑
t

e2t =
1

nt

∑
t

(yt −w · zt)2. (2)

The weight vector, w is optimal for prediction of sequence y from sequence z if and only if the
prediction error sequence e = y −w · z is orthogonal to each component of vector z:

〈ez〉 = 0. (3)

When the whole series y is given in advance, i.e. in the offline setting, these so-called normal
equations can be solved for w, for example, by Gaussian elimination [21]. However, in signal
processing and neuroscience applications, another setting called online is more relevant: At every
time step t, prediction ŷt must be made using only current values of zt and w. Furthermore, after a
prediction is made, w is updated based on the prediction ŷt and observed yt, zt .

In the online setting, an algorithm called stochastic gradient descent is often used, where, at each
time step, w is updated in the direction of negative gradient of e2t :

w→ w − η∇w(yt −w · zt)2. (4)

This leads to the following weight update, known as least mean square (LMS) [15], for predicting
sequence y from sequence z:

w→ w + ηetzt, (5)

where η is the learning rate. The value of η represents the relative influence of more recent obser-
vations compared to more distant ones. The larger the learning rate the faster the system adapts to
recent observations and less past it remembers.

In this paper, we are interested in predicting a current value xt of sequence x from its past values
xt−1, . . . , xt−k restricted by the prediction order k > 0:

x̂t = wk · (xt−1, . . . , xt−k)
T . (6)
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This problem is a special case of the online linear prediction framework above, where yt = xt,
zt = (xt−1, . . . , xt−k)

T . Then the gradient update is given by:

w→ wk + ηet(xt−1, . . . , xt−k)
T . (7)

While the LMS algorithm can find the weights that optimize linear prediction (6), the filter wk has
a long temporal extent making it difficult to implement with neurons and synapses.

2 Lattice filters

One way to generate long receptive fields in circuits of biological neurons is to use a cascade ar-
chitecture, known as the lattice filter, which calculates optimal linear predictions for temporal se-
quences and transmits prediction errors [14, 15, 16, 17]. In this section, we explain the operation of
a discrete-time lattice filter, then adapt it to continuous-time operation.

2.1 Discrete-time implementation

The first stage of the lattice filter, Figure 1, calculates the error of the first order optimal prediction
(i.e. only using the preceding element of the sequence), the second stage uses the output of the first
stage and calculates the error of the second order optimal prediction (i.e. using only two previous
values) etc. To make such stage-wise error computations possible the lattice filter calculates at every
stage not only the error of optimal prediction of xt from past values xt−1, . . . , xt−k, called forward
error,

fkt = xt −wk · (xt−1, . . . , xt−k)
T , (8)

but, perhaps non-intuitively, also the error of optimal prediction of a past value xt−k from the more
recent values xt−k+1, . . . , xt, called backward error:

bkt = xt−k −w
′k · (xt−k+1, . . . , xt)

T , (9)

where wk and w
′k are the weights of the optimal prediction.

For example, the first stage of the filter calculates the forward error f1t of optimal prediction of xt
from xt−1: f1t = xt − u1xt−1 as well as the backward error b1t of optimal prediction of xt−1 from
xt: b1t = xt−1−v1xt, Figure 1. Here, we assume that coefficients u1 and v1 that give optimal linear
prediction are known and return to learning them below.

Each following stage of the lattice filter performs a stereotypic operation on its inputs, Figure 1. The
k-th stage (k > 1) receives forward, fk−1

t , and backward, bk−1
t , errors from the previous stage,

delays backward error by one time step and computes a forward error:

fkt = fk−1
t − ukbk−1

t−1 (10)

of the optimal linear prediction of fk−1
t from bk−1

t−1 . In addition, each stage computes a backward
error

bkt = bk−1
t−1 − vkf

k−1
t (11)

of the optimal linear prediction of bk−1
t−1 from fk−1

t .

As can be seen in Figure 1, the lattice filter contains forward prediction error (top) and backward
prediction error (bottom) branches, which interact at every stage via cross-links. Operation of the
lattice filter can be characterized by the linear filters acting on the input, x, to compute forward
or backward errors of consecutive order, so called prediction-error filters (blue bars in Figure 1).
Because of delays in the backward error branch the temporal extent of the filters grows from stage
to stage.

In the next section, we will argue that prediction-error filters correspond to the measurements of
temporal receptive fields in neurons. For detailed comparison with physiological measurements we
will use the result that, for bi-phasic prediction-error filters, such as the ones in Figure 1, the first
bar of the forward prediction-error filter has larger weight, by absolute value, than the combined
weights of the remaining coefficients of the corresponding filter. Similarly, in backward prediction-
error filters, the last bar has greater weight than the rest of them combined. This fact arises from
the observation that forward prediction-error filters are minimum phase, while backward prediction-
error filters are maximum phase [16, 17].
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Figure 1: Discrete-time lattice filter performs stage-wise computation of forward and back-
ward prediction errors. In the first stage, the optimal prediction of xt from xt−1 is computed by
delaying the input by one time step and multiplying it by u1. The upper summation unit subtracts the
predicted xt from the actual value and outputs prediction error f1t . Similarly, the optimal prediction
of xt−1 from xt is computed by multiplying the input by v1. The lower summation unit subtracts
the optimal prediction from the actual value and outputs backward error b1t . In each following stage
k, the optimal prediction of fk−1

t from bk−1
t is computed by delaying bk−1

t by one time step and
multiplying it by uk. The upper summation unit subtracts the prediction from the actual fk−1

t and
outputs prediction error fkt . Similarly, the optimal prediction of bk−1

t−1 from fk−1
t is computed by

multiplying it by uk. The lower summation unit subtracts the optimal prediction from the actual
value and outputs backward error bkt . Black connections have unitary weights and red connections
have learnable negative weights. One can view forward and backward error calculations as applica-
tions of so-called prediction-error filters (blue) to the input sequence. Note that the temporal extent
of the filters gets longer from stage to stage.

Next, we derive a learning rule for finding optimal coefficients u and v in the online setting. The uk

is used for predicting fk−1
t from bk−1

t−1 to obtain error fkt . By substituting yt = fk−1
t , zt = bk−1

t−1 and
et = fkt into (5) the update of uk becomes

uk → uk + ηfkt b
k−1
t−1 . (12)

Similarly, vk is updated by
vk → vk + ηbkt f

k−1
t . (13)

Interestingly, the updates of the weights are given by the product of the activities of outgoing and
incoming nodes of the corresponding cross-links. Such updates are known as Hebbian learning rules
thought to be used by biological neurons [22, 23].

Finally, we give a simple proof that, in the offline setting when the entire sequence x is known, fk
and bk, given by equations (10, 11), are indeed errors of optimal k-th order linear prediction. Let D
be one step time delay operator (Dx)t = xt−1. The induction statement at k is that fk and bk are
k-th order forward and backward errors of optimal linear prediction which is equivalent to fk and bk

being of the form fk = x−wk
1Dx−. . .−wk

kD
kx and bk = Dkx−w′k

1 D
k−1x−. . .−w′k

k x and, from
normal equations (3), satisfying 〈fkDix〉 = 0 and 〈DbkDix〉 = 〈bkDi−1x〉 = 0 for i = 1, . . . , k.
That this is true for k = 1 directly follows from the definition of f1 and b1. Now we assume that
this is true for k− 1 ≥ 1 and show it is true for k. It is easy to see from the forms of fk−1 and bk−1

and from fk = fk−1 − ukDbk−1 that fk has the correct form fk = x − wk
1Dx − . . . − wk

kD
kx.

Regarding orthogonality for i = 1, . . . , k − 1 we have 〈fkDix〉 = 〈(fk−1 − ukDbk−1)Dix〉 =
〈fk−1Dix〉 − uk〈(Dbk−1)Dix〉 = 0 using the induction assumptions of orhogonality at k − 1. For
the remaining i = k we note that fk is the error of the optimal linear prediction of fk−1 fromDbk−1

and therefore 0 = 〈fkDbk−1〉 = 〈fk(Dkx − w
′k−1
1 Dk−1x − . . . + w

′k−1
k−1 Dx)〉 = 〈fkDkx〉 as

desired. The bk case can be proven similarly.

2.2 Continuous-time implementation

The last hurdle remaining for modeling neuronal circuits which operate in continuous time with a
lattice filter is its discrete-time operation. To obtain a continuous-time implementation of the lattice
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filter we cannot simply take the time step size to zero as prediction-error filters would become
infinitesimally short. Here, we adapt the discrete-time lattice filter to continous-time operation in
two steps.

First, we introduce a discrete-time Laguerre lattice filter [24, 17] which uses Laguerre polynomials
rather than the shift operator to generate its basis functions, Figure 2. The input signal passes
through a leaky integrator whose leakage constant α defines a time-scale distinct from the time step
(14). A delay, D, at every stage is replaced by an all-pass filter, L, (15) with the same constant
α, which preserves the magnitude of every Fourier component of the input but shifts its phase in a
frequency dependent manner. Such all-pass filter reduces to a single time-step delay when α = 0.
The optimality of a general discrete-time Laguerre lattice filter can be proven similarly to that for
the discrete-time filter, simply by replacing operator D with L in the proof of section 2.1.

Figure 2: Continuous-time lattice filter using Laguerre polynomials. Compared to the discrete-
time version, it contains a leaky integrator, L0,(16) and replaces delays with all-pass filters, L, (17).

Second, we obtain a continuous-time formulation of the lattice filter by replacing t − 1 → t − δt,
defining the inverse time scale γ = (1 − α)/δt and taking the limit δt → 0 while keeping γ fixed.
As a result L0 and L are given by:

Discrete time

L0(x)t = αL0(x)t−1 + xt (14)
L(x)t = α(L(x)t−1 − xt) + xt−1 (15)

Continuous time

dL0(x)/dt = −γL0(x) + x (16)
L(x) = x− 2γL0(x) (17)

Representative impulse responses of the continuous Laguerre filter are shown in Figure 2. Note that,
similarly to the discrete-time case, the area under the first (peak) phase is greater than the area under
the second (rebound) phase in the forward branch and the opposite is true in the backward branch.
Moreover, the temporal extent of the rebound is greater than that of the peak not just in the forward
branch like in the basic discrete-time implementation but also in the backward branch. As will be
seen in the next section, these predictions are confirmed by physiological recordings.

3 Experimental evidence for the lattice filter in visual pathways

In this section we demonstrate that physiological measurements from visual pathways in vertebrates
and invertebrates are consistent with the predictions of the lattice filter model. For the purpose of
modeling visual pathways, we identify summation units of the lattice filter with neurons and propose
that neural activity represents forward and backward errors. In the fly visual pathway neuronal
activity is represented by continuously varying graded potentials. In the vertebrate visual system,
all neurons starting with ganglion cells are spiking and we identify their firing rate with the activity
in the lattice filter.

3.1 Mammalian visual pathway

In mammals, visual processing is performed in stages. In the retina, photoreceptors synapse onto
bipolar cells, which in turn synapse onto retinal ganglion cells (RGCs). RGCs send axons to the
LGN, where they synapse onto LGN relay neurons projecting to the primary visual cortex, V1.
In addition to this feedforward pathway, at each stage there are local circuits involving (usually
inhibitory) inter-neurons such as horizontal and amacrine cells in the retina. Neurons of each class
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come in many types, which differ in their connectivity, morphology and physiological response. The
bewildering complexity of these circuits has posed a major challenge to visual neuroscience.
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simple cells and geniculate cells differed for all temporal param-
eters measured, there was considerable overlap between the dis-
tributions (Fig. 7). This overlap raises the following question:
does connectivity depend on how well geniculate and cortical
responses are matched with respect to time? For instance, do
simple cells with fast subregions (early times to peak and early
zero crossings) receive input mostly from geniculate cells with
fast centers?

Figure 8 illustrates the visual responses from a geniculate cell
and a simple cell that were monosynaptically connected. A strong
positive peak was observed in the correlogram (shown with a 10
msec time window to emphasize its short latency and fast rise
time). In this case, an ON central subregion was well overlapped
with an ON geniculate center (precisely at the peak of the
subregion). Moreover, the timings of the visual responses from
the overlapped subregion and the geniculate center were very
similar (same onset, ;0–25 msec; same peak, ;25–50 msec). It is
worth noting that the two central subregions of the simple cell
were faster and stronger than the two lateral subregions. The
responses of the central subregions matched the timing of the
geniculate center. In contrast, the timing of the lateral subregions
resembled more closely the timing of the geniculate surround
(both peaked at 25–50 msec).

Unlike the example shown in Figure 8, a considerable number
of geniculocortical pairs produced responses with different tim-
ing. For example, Figure 9 illustrates a case in which a geniculate
center fully overlapped a strong simple-cell subregion of the same
sign, but with slower timing (LGN onset, ;0–25 msec; peak,
;25–50 msec; simple-cell onset, ;25–50 msec; peak, ;50–75
msec). The cross-correlogram between this pair of neurons was
flat, which indicates the absence of a monosynaptic connection
(Fig. 9, top right).

To examine the role of timing in geniculocortical connectivity,
we measured the response time course from all cell pairs that met
two criteria. First, the geniculate center overlapped a simple-cell

subregion of the same sign (n 5 104). Second, the geniculate
center overlapped the cortical subregion in a near-optimal posi-
tion (relative overlap . 50%, n 5 47; see Materials and Methods;
Fig. 5A). All these cell pairs had a high probability of being
monosynaptically connected because of the precise match in
receptive-field position and sign (31 of 47 were connected). The
distributions of peak time, zero-crossing time, and rebound index
from these cell pairs were very similar to the distributions from
the entire sample (Fig. 7; see also Fig. 10 legend). The selected
cell pairs included both presumed directional (predicted DI .
0.3, see Materials and Methods; 12/20 connected) and nondirec-
tional (19/27 connected) simple cells. Most geniculate cells had
small receptive fields (less than two simple-cell subregion widths;
see Receptive-field sign), although five cells with larger receptive
fields were also included (three connected). From the 47 cell pairs
used in this analysis, those with similar response time courses had
a higher probability of being connected (Fig. 10). In particular,
cell pairs that had both similar peak time and zero-crossing time
were all connected (n 5 12; Fig. 10A). Directionally selective
simple cells were included in all timing groups. For example, in
Figure 10A there were four, five, two, and one directionally
selective cells in the time groups ,20, 40, 60, and .60 msec,
respectively. Similar results were obtained if we restricted our
sample to geniculate centers overlapped with the dominant sub-
region of the simple cell (n 5 31). Interestingly, the efficacy and
contributions of the connections seemed to depend little on the
relative timing of the visual responses (Fig. 10, right).

Although our sample of them was quite small, lagged cells are
of considerable interest and therefore deserve comment. We
recorded from 13 potentially lagged LGN cells whose centers
were superimposed with a simple-cell subregion (eight with re-
bound indices between 1.2 and 1.5; five with rebound indices
.1.9). Only seven of these pairs could be used for timing com-
parisons (in one pair the baseline of the correlogram had insuf-
ficient spikes; in three pairs the geniculate receptive fields were

Figure 7. Distribution of geniculate cells and simple cells with respect to the timing of their responses. The distribution of three parameters derived
from impulse responses of geniculate and cortical neurons is shown. A, Peak time. B, Zero-crossing time. C, Rebound index. Peak time is the time with
the strongest response in the first phase of the impulse response. Zero-crossing time is the time between the first and second phases. Rebound index is
the area of the impulse response after the zero crossing divided by the area before the zero crossing. Only impulse responses with good signal to noise
were included (.5 SD above baseline; n 5 169).
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Figure 3: Electrophysiologically measured temporal receptive fields get progressively longer
along the cat visual pathway. Left: A cat LGN cell (red) has a longer receptive field than a
corresponding RGC cell (blue) (adapted from [12] which also reports population data). Right (A,B):
Extent of the temporal receptive fields of simple cells in cat V1 is greater than that of corresponding
LGN cells as quantified by the peak (A) and zero-crossing (B) times. Right (C): In the temporal
receptive fields of cat LGN and V1 cells the peak can be stronger or weaker than the rebound
(adapted from [25]).

Here, we point out several experimental observations related to temporal processing in the visual
system consistent with the lattice filter model. First, measurements of temporal receptive fields
demonstrate that they get progressively longer at each consecutive stage: i) LGN neurons have
longer receptive fields than corresponding pre-synaptic ganglion cells [12], Figure 3left; ii) simple
cells in V1 have longer receptive fields than corresponding pre-synaptic LGN neurons [25], Figure
3rightA,B. These observation are consistent with the progressively greater temporal extent of the
prediction-error filters (blue plots in Figure 2).

Second, the weight of the peak (integrated area under the curve) may be either greater or less than
that of the rebound both in LGN relay cells [26] and simple cells of V1 [25], Figure 3right(C).
Neurons with peak weight exceeding that of rebound are often referred to as non-lagged while the
others are known as lagged found both in cat [27, 28, 29] and monkey [30]. The reason for this
becomes clear from the response to a step stimulus, Figure 4(top).

By comparing experimentally measured receptive fields with those of the continuous lattice filter,
Figure 4, we identify non-lagged neurons with the forward branch and lagged neurons with the
backward branch. Another way to characterize step-stimulus response is whether the sign of the
transient is the same (non-lagged) or different (lagged) relative to sustained response.

Third, measurements of cross-correlation between RGCs and LGN cell spikes in lagged and non-
lagged neurons reveals a difference of the transfer function indicative of the difference in underlying
circuitry [30]. This is consistent with backward pathway circuit of the Laguerre lattice filter, Figure
2, being more complex then that of the forward path (which results in different transfer function). ”
(or replacing ”more complex” with ”different”)

Third, measurements of cross-correlation between RGCs and LGN cell spikes in lagged and non-
lagged neurons reveals a difference of the transfer function indicative of the difference in underlying
circuitry [31]. This is consistent with the backward branch circuit of the Laguerre lattice filter, Fig-
ure 2, being different then that of the forward branch (which results in different transfer function).
In particular, a combination of different glutamate receptors such as AMPA and NMDA, as well as
GABA receptors are thought to be responsible for observed responses in lagged cells [32]. How-
ever, further investigation of the corresponding circuitry, perhaps using connectomics technology, is
desirable.

Fourth, the cross-link weights of the lattice filter can be learned using Hebbian rules, (12,13) which
are biologically plausible [22, 23]. Interestingly, if these weights are learned sequentially, starting
from the first stage, they do not need to be re-learned when additional stages are added or learned.
This property maps naturally on the fact that in the course of mammalian development the visual
pathway matures in a stage-wise fashion - starting with the retina, then LGN, then V1 - and implying
that the more peripheral structures do not need to adapt to the maturation of the downstream ones.
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Figure 4: Comparison of electrophysiologically measured responses of cat LGN cells with the
continuous-time lattice filter model. Top: Experimentally measured temporal receptive fields and
step-stimulus responses of LGN cells (adapted from [26]). Bottom: Typical examples of responses
in the continuous-time lattice filter model. Lattice filter coefficients were u1 = v1 = 0.4, u2 = v2 =
0.2 and 1/γ = 50ms to model the non-lagged cell and u1 = v1 = u2 = v2 = 0.2 and 1/γ = 60ms
to model the lagged cell. To model photoreceptor contribution to the responses, an additional leaky
integrator L0 was added to the circuit of Figure 2.

While Hebbian rules are biologically plausible, one may get an impression from Figure 2 that they
must apply to inhibitory cross-links. We point out that this circuit is meant to represent only the com-
putation performed rather than the specific implementation in terms of neurons. As the same linear
computation can be performed by circuits with a different arrangement of the same components,
there are multiple implementations of the lattice filter. For example, activity of non-lagged OFF
cells may be seen as representing minus forward error. Then the cross-links between the non-lagged
OFF pathway and the lagged ON pathway would be excitatory. In general, classification of cells
into lagged and non-lagged seems independent of their ON/OFF and X/Y classification [31, 28, 29],
but see[33].

3.2 Insect visual pathway

In insects, two cell types, L1 and L2, both post-synaptic to photoreceptors play an important role
in visual processing. Physiological responses of L1 and L2 indicate that they decorrelate visual
signals by subtracting their predictable parts. In fact, receptive fields of these neurons were used as
the first examples of predictive coding in neuroscience [6]. Yet, as the numbers of synapses from
photoreceptors to L1 and L2 are the same [34] and their physiological properties are similar, it has
been a mystery why insects, have not just one but a pair of such seemingly redundant neurons per
facet. Previously, it was suggested that L1 and L2 provide inputs to the two pathways that map onto
ON and OFF pathways in the vertebrate retina [35, 36].

Here, we put forward a hypothesis that the role of L1 and L2 in visual processing is similar to that of
the two branches of the lattice filter. We do not incorporate the ON/OFF distinction in the effectively
linear lattice filter model but anticipate that such combined description will materialize in the future.
As was argued in Section 2, in forward prediction-error filters, the peak has greater weight than
the rebound, while in backward prediction-error filters the opposite is true. Such difference implies
that in response to a step-stimulus the signs of sustained responses compared to initial transients
are different between the branches. Indeed, Ca2+ imaging shows that responses of L1 and L2 to
step-stimulus are different as predicted by the lattice filter model [35], Figure 5b. Interestingly, the
activity of L1 seems to represent minus forward error and L2 - plus backward error, suggesting that
the lattice filter cross-links are excitatory. To summarize, the predictions of the lattice filter model
seem to be consistent with the physiological measurements in the fly visual system and may help
understand its operation.
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Figure 5: Response of the lattice filter and fruit fly LMCs to a step-stimulus. Left: Responses
of the first order discrete-time lattice filter to a step stimulus. Right: Responses of fly L1 and L2
cells to a moving step stimulus (adapted from [35]). Predicted and the experimentally measured
responses have qualitatively the same shape: a transient followed by sustained response, which has
the same sign for the forward error and L1 and the opposite sign for the backward error and L2.

4 Discussion

Motivated by the cascade structure of the visual pathway, we propose to model its operation with
the lattice filter. We demonstrate that the predictions of the continuous-time lattice filter model are
consistent with the course of neural development and the physiological measurement in the LGN,
V1 of cat and monkey, as well as fly LMC neurons. Therefore, lattice filters may offer a useful
abstraction for understanding aspects of temporal processing in visual systems of vertebrates and
invertebrates.

Previously, [11] proposed that lagged and non-lagged cells could be a result of rectification by
spiking neurons. Although we agree with [11] that LGN performs temporal decorrelation, our ex-
planation does not rely on non-linear processing but rather on the cascade architecture and, hence, is
fundamentally different. Our model generates the following predictions that are not obvious in [11]:
i) Not only are LGN receptive fields longer than RGC but also V1 receptive fields are longer than
LGN; ii) Even a linear model can generate a difference in the peak/rebound ratio; iii) The circuit
from RGC to LGN should be different for lagged and non-lagged cells consistent with [31]; iv) The
lattice filter circuit can self-organize using Hebbian rules, which gives a mechanistic explanation of
receptive fields beyond the normative framework of [11].

In light of the redundancy reduction arguments given in the introduction, we note that, if the only
goal of the system were to compress incoming signals using a given number of lattice filter stages,
then after the compression is peformed only one kind of prediction errors, forward or backward
needs to be transmitted. Therefore, having two channels, in the absence of noise, may seem redun-
dant. However, transmitting both forward and backward errors gives one the flexibility to continue
decorrelation further by adding stages performing relatively simple operations.

We are grateful to D.A. Butts, E. Callaway, M. Carandini, D.A. Clark, J.A. Hirsch, T. Hu, S.B.
Laughlin, D.N. Mastronarde, R.C. Reid, H. Rouault, A. Saul, L. Scheffer, F.T. Sommer, X. Wang
for helpful discussions.

References
[1] F. Rieke, D. Warland, R.R. van Steveninck, and W. Bialek. Spikes: exploring the neural code. MIT press,

1999.

[2] S.B. Laughlin. Matching coding, circuits, cells, and molecules to signals: general principles of retinal
design in the fly’s eye. Progress in retinal and eye research, 13(1):165–196, 1994.

[3] F. Attneave. Some informational aspects of visual perception. Psychological review, 61(3):183, 1954.

[4] H. Barlow. Redundancy reduction revisited. Network: Comp in Neural Systems, 12(3):241–253, 2001.

[5] R.M. Gray. Linear Predictive Coding and the Internet Protocol. Now Publishers, 2010.

[6] MV Srinivasan, SB Laughlin, and A. Dubs. Predictive coding: a fresh view of inhibition in the retina.
Proceedings of the Royal Society of London. Series B. Biological Sciences, 216(1205):427–459, 1982.

[7] T. Hosoya, S.A. Baccus, and M. Meister. Dynamic predictive coding by the retina. Nature, 436:71, 2005.

8



[8] HK Hartline, H.G. Wagner, and EF MacNichol Jr. The peripheral origin of nervous activity in the visual
system. Studies on excitation and inhibition in the retina: a collection of papers from the laboratories of
H. Keffer Hartline, page 99, 1974.

[9] N.A. Lesica, J. Jin, C. Weng, C.I. Yeh, D.A. Butts, G.B. Stanley, and J.M. Alonso. Adaptation to stimulus
contrast and correlations during natural visual stimulation. Neuron, 55(3):479–491, 2007.

[10] Y. Dan, J.J. Atick, and R.C. Reid. Efficient coding of natural scenes in the lateral geniculate nucleus:
experimental test of a computational theory. The Journal of Neuroscience, 16(10):3351–3362, 1996.

[11] D.W. Dong and J.J. Atick. Statistics of natural time-varying images. Network: Computation in Neural
Systems, 6(3):345–358, 1995.

[12] X. Wang, J.A. Hirsch, and F.T. Sommer. Recoding of sensory information across the retinothalamic
synapse. The Journal of Neuroscience, 30(41):13567–13577, 2010.

[13] C. Koch. Biophysics of computation: information processing in single neurons. Oxford Univ Press, 2005.
[14] F. Itakura and S. Saito. On the optimum quantization of feature parameters in the parcor speech synthe-

sizer. In Conference Record, 1972 International Conference on Speech Communication and Processing,
Boston, MA, pages 434–437, 1972.

[15] B. Widrow and S.D. Stearns. Adaptive signal processing. Prentice-Hall, Inc. Englewood Cliffs, NJ, 1985.
[16] S. Haykin. Adaptive filter theory. Prentice-Hall, Englewood-Cliffs, NJ, 2003.
[17] A.H. Sayed. Fundamentals of adaptive filtering. Wiley-IEEE Press, 2003.
[18] D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the primate cerebral cortex.

Cerebral cortex, 1(1):1–47, 1991.
[19] X. Wang, F.T. Sommer, and J.A. Hirsch. Inhibitory circuits for visual processing in thalamus. Current

Opinion in Neurobiology, 2011.
[20] SB Laughlin, J. Howard, and B. Blakeslee. Synaptic limitations to contrast coding in the retina of

the blowfly calliphora. Proceedings of the Royal society of London. Series B. Biological sciences,
231(1265):437–467, 1987.

[21] D.C. Lay. Linear Algebra and Its Applications. Addison-Wesley/Longman, New York/London, 2000.
[22] D.O. Hebb. The organization of behavior: A neuropsychological theory. Lawrence Erlbaum, 2002.
[23] O. Paulsen and T.J. Sejnowski. Natural patterns of activity and long-term synaptic plasticity. Current

opinion in neurobiology, 10(2):172–180, 2000.
[24] Z. Fejzo and H. Lev-Ari. Adaptive laguerre-lattice filters. Signal Processing, IEEE Transactions on,

45(12):3006–3016, 1997.
[25] J.M. Alonso, W.M. Usrey, and R.C. Reid. Rules of connectivity between geniculate cells and simple cells

in cat primary visual cortex. The Journal of Neuroscience, 21(11):4002–4015, 2001.
[26] D. Cai, G.C. Deangelis, and R.D. Freeman. Spatiotemporal receptive field organization in the lateral

geniculate nucleus of cats and kittens. Journal of Neurophysiology, 78(2):1045–1061, 1997.
[27] D.N. Mastronarde. Two classes of single-input x-cells in cat lateral geniculate nucleus. i. receptive-field

properties and classification of cells. Journal of Neurophysiology, 57(2):357–380, 1987.
[28] J. Wolfe and L.A. Palmer. Temporal diversity in the lateral geniculate nucleus of cat. Visual neuroscience,

15(04):653–675, 1998.
[29] AB Saul and AL Humphrey. Spatial and temporal response properties of lagged and nonlagged cells in

cat lateral geniculate nucleus. Journal of Neurophysiology, 64(1):206–224, 1990.
[30] A.B. Saul. Lagged cells in alert monkey lateral geniculate nucleus. Visual neurosci, 25:647–659, 2008.
[31] D.N. Mastronarde. Two classes of single-input x-cells in cat lateral geniculate nucleus. ii. retinal inputs

and the generation of receptive-field properties. Journal of Neurophysiology, 57(2):381–413, 1987.
[32] P. Heggelund and E. Hartveit. Neurotransmitter receptors mediating excitatory input to cells in the cat

lateral geniculate nucleus. i. lagged cells. Journal of neurophysiology, 63(6):1347–1360, 1990.
[33] J. Jin, Y. Wang, R. Lashgari, H.A. Swadlow, and J.M. Alonso. Faster thalamocortical processing for dark

than light visual targets. The Journal of Neuroscience, 31(48):17471–17479, 2011.
[34] M. Rivera-Alba, S.N. Vitaladevuni, Y. Mischenko, Z. Lu, S. Takemura, L. Scheffer, I.A. Meinertzhagen,

D.B. Chklovskii, and G.G. de Polavieja. Wiring economy and volume exclusion determine neuronal
placement in the drosophila brain. Current Biology, 21(23):2000–5, 2011.

[35] D.A. Clark, L. Bursztyn, M.A. Horowitz, M.J. Schnitzer, and T.R. Clandinin. Defining the computational
structure of the motion detector in drosophila. Neuron, 70(6):1165–1177, 2011.

[36] M. Joesch, B. Schnell, S.V. Raghu, D.F. Reiff, and A. Borst. On and off pathways in drosophila motion
vision. Nature, 468(7321):300–304, 2010.

9


