
Bayesian Nonparametric Modeling of Suicide
Attempts

Francisco J. R. Ruiz
Department of Signal Processing

and Communications
University Carlos III in Madrid
franrruiz@tsc.uc3m.es

Isabel Valera
Department of Signal Processing

and Communications
University Carlos III in Madrid
ivalera@tsc.uc3m.es

Carlos Blanco
Columbia University College of

Physicians and Surgeons
Cblanco@nyspi.columbia.edu

Fernando Perez-Cruz
Department of Signal Processing

and Communications
University Carlos III in Madrid
fernando@tsc.uc3m.es

Abstract

The National Epidemiologic Survey on Alcohol and Related Conditions (NE-
SARC) database contains a large amount of information, regarding the way of
life, medical conditions, etc., of a representative sample of the U.S. population. In
this paper, we are interested in seeking the hidden causes behind the suicide at-
tempts, for which we propose to model the subjects using a nonparametric latent
model based on the Indian Buffet Process (IBP). Due to the nature of the data, we
need to adapt the observation model for discrete random variables. We propose
a generative model in which the observations are drawn from a multinomial-logit
distribution given the IBP matrix. The implementation of an efficient Gibbs sam-
pler is accomplished using the Laplace approximation, which allows integrating
out the weighting factors of the multinomial-logit likelihood model. Finally, the
experiments over the NESARC database show that our model properly captures
some of the hidden causes that model suicide attempts.

1 Introduction

Every year, more than 34,000 suicides occur and over 370,000 individuals are treated for self-
inflicted injuries in emergency rooms in the U.S., where suicide prevention is one of the top public
health priorities [1]. The current strategies for suicide prevention have focused mainly on both the
detection and treatment of mental disorders [13], and on the treatment of the suicidal behaviors
themselves [4]. However, despite prevention efforts including improvements in the treatment of de-
pression, the lifetime prevalence of suicide attempts in the U.S. has remained unchanged over the
past decade [8]. This suggests that there is a need to improve understanding of the risk factors for
suicide attempts beyond psychiatric disorders, particularly in non-clinical populations.

According to the National Strategy for Suicide Prevention, an important first step in a public health
approach to suicide prevention is to identify those at increased risk for suicide attempts [1]. Suicide
attempts are, by far, the best predictor of completed suicide [12] and are also associated with major
morbidity themselves [11]. The estimation of suicide attempt risk is a challenging and complex task,
with multiple risk factors linked to increased risk. In the absence of reliable tools for identifying
those at risk for suicide attempts, be they clinical or laboratory tests, risk detection still relays mainly
on clinical variables. The adequacy of the current predictive models and screening methods has been
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questioned [12], and it has been suggested that the methods currently used for research on suicide
risk factors and prediction models need revamping [9].

Databases that model the behavior of human populations present typically many related questions
and analyzing each one of them individually, or a small group of them, do not lead to conclusive
results. For example, the National Epidemiologic Survey on Alcohol and Related Conditions (NE-
SARC) samples the U.S. population with nearly 3,000 questions regarding, among others, their
way of life, their medical conditions, depression and other mental disorders. It contains yes-or-no
questions, and some multiple-choice and questions with ordinal answers.

In this paper, we propose to model the subjects in this database using a nonparametric latent model
that allows us to seek hidden causes and compact in a few features the immense redundant informa-
tion. Our starting point is the Indian Buffet Process (IBP) [5], because it allows us to infer which
latent features influence the observations and how many features there are. We need to adapt the ob-
servation model for discrete random variables, as the discrete nature of the database does not allow
us to use the standard Gaussian observation model. There are several options for modeling discrete
outputs given the hidden latent features, like a Dirichlet distribution or sampling from the features,
but we prefer a generative model in which the observations are drawn from a multinomial-logit
distribution because it is similar to the standard Gaussian observation model, where the observa-
tion probability distribution depends on the IBP matrix weighted by some factors. Furthermore,
the multinomial-logit model, besides its versatility, allows the implementation of an efficient Gibbs
sampler where the Laplace approximation [10] is used to integrate out the weighting factors, which
can be efficiently computed using the Matrix Inversion Lemma.

The IBP model combined with discrete observations has already been tackled in several related
works. In [17], the authors propose a model that combines properties from both the hierarchical
Dirichlet process (HDP) and the IBP, called IBP compound Dirichlet (ICD) process. They apply the
ICD to focused topic modeling, where the instances are documents and the observations are words
from a finite vocabulary, and focus on decoupling the prevalence of a topic in a document and its
prevalence in all documents. Despite the discrete nature of the observations under this model, these
assumptions are not appropriate for categorical observations such as the set of possible responses to
the questions in the NESARC database. Titsias [14] introduced the infinite gamma-Poisson process
as a prior probability distribution over non-negative integer valued matrices with a potentially infinite
number of columns, and he applies it to topic modeling of images. In this model, each (discrete)
component in the observation vector of an instance depends only on one of the active latent features
of that object, randomly drawn from a multinomial distribution. Therefore, different components
of the observation vector might be equally distributed. Our model is more flexible in the sense that
it allows different probability distributions for every component in the observation vector, which is
accomplished by weighting differently the latent variables.

2 The Indian Buffet Process

In latent feature modeling, each object can be represented by a vector of latent features, and the
observations are generated from a distribution determined by those latent feature values. Typically,
we have access to the set of observations and the main goal of these models is to find out the latent
variables that represent the data. The most common nonparametric tool for latent feature modeling
is the Indian Buffet Process (IBP).

The IBP places a prior distribution over binary matrices where the number of columns (features) K
is not bounded, i.e., K → ∞. However, given a finite number of data points N , it ensures that the
number of non-zero columns K+ is finite with probability one. Let Z be a random N ×K binary
matrix distributed following an IBP, i.e., Z ∼ IBP(α), where α is the concentration parameter of
the process. The nth row of Z, denoted by zn·, represents the vector of latent features of the nth

data point, and every entry nk is denoted by znk. Note that each element znk ∈ {0, 1} indicates
whether the kth feature contributes to the nth data point.

Given a binary latent feature matrix Z, we assume that the N ×D observation matrix X, where the
nth row contains a D-dimensional observation vector xn·, is distributed according to a probability
distribution p(X|Z). Additionally, x·d stands for the dth column of X, and each element of the
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matrix is denoted by xnd. For instance, in the standard observation model described in [5], p(X|Z)
is a Gaussian probability density function.

MCMC (Markov Chain Monte Carlo) methods have been broadly applied to infer the latent structure
Z from a given observation matrix X (see, e.g., [5, 17, 15, 14]). In particular, we focus on the use of
Gibbs sampling for posterior inference over the latent variables. The algorithm iteratively samples
the value of each element znk given the remaining variables, i.e., it samples from

p(znk = 1|X,Z¬nk) ∝ p(X|Z)p(znk = 1|Z¬nk), (1)
where Z¬nk denotes all the entries of Z other than znk. The distribution p(znk = 1|Z¬nk) can be
readily derived from the exchangeable IBP and can be written as p(znk = 1|Z¬nk) = m−n,k/N,
where m−n,k is the number of data points with feature k, not including n, i.e., m−n,k =

∑
i 6=n zik.

3 Observation model

Let us consider that the observations are discrete, i.e., each element xnd ∈ {1, . . . , Rd}, where this
finite set contains the indexes to all the possible values of xnd. For simplicity and without loss of
generality, we consider that Rd = R, but the following results can be readily extended to a different
cardinality per input dimension, as well as mixing continuous variables with discrete variables, since
given the latent matrix Z the columns of X are assumed to be independent.

We introduce matrices Bd of size K × R to model the probability distribution over X, such that
Bd links the hidden latent variables with the dth column of the observation matrix X. We assume
that the probability of xnd taking value r (r = 1, . . . , R), denoted by πr

nd, is given by the multiple-
logistic function, i.e.,

πr
nd = p(xnd = r|zn·,Bd) =

exp (zn·bd
·r)

R∑
r′=1

exp (zn·bd
·r′)

, (2)

where bd
·r denotes the rth column of Bd. Note that the matrices Bd are used to weight differently

the contribution of every latent feature for every component d, similarly as in the standard Gaussian
observation model in [5]. We assume that the mixing vectors bd

·r are Gaussian distributed with zero
mean and covariance matrix Σb = σ2

BI.

The choice of the observation model in Eq. 2, which combines the multiple-logistic function with
Gaussian parameters, is based on the fact that it induces dependencies among the probabilities πr

nd
that cannot be captured with other distributions, such as the Dirichlet distribution [2]. Furthermore,
this multinomial-logistic normal distribution has been widely used to define probability distributions
over discrete random variables (see, e.g., [16, 2]).

We consider that elements xnd are independent given the latent feature matrix Z and the D matrices
Bd. Then, the likelihood for any matrix X can be expressed as

p(X|Z,B1, . . . ,BD) =
N∏

n=1

D∏
d=1

p(xnd|zn·,Bd) =
N∏

n=1

D∏
d=1

πxnd

nd . (3)

3.1 Laplace approximation for inference

In Section 2, the (heuristic) Gibbs sampling algorithm for the posterior inference over the latent
variables of the IBP has been reviewed and it is detailed in [5]. To sample from Eq. 1, we need to
integrate out Bd in (3), as sequentially sampling from the posterior distribution of Bd is intractable,
for which an approximation is required. We rely on the Laplace approximation to integrate out the
parameters Bd for simplicity and ease of implementation. We first consider the finite form of the
proposed model, where K is bounded.

Recall that our model assumes independence among the observations given the hidden latent vari-
ables. Then, the posterior p(B1, . . . ,BD|X,Z) factorizes as

p(B1, . . . ,BD|X,Z) =
D∏

d=1

p(Bd|x·d,Z) =
D∏

d=1

p(x·d|Bd,Z)p(Bd)
p(x·d|Z)

. (4)
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Hence, we only need to deal with each term p(Bd|x·d,Z) individually. Although the prior p(Bd)
is Gaussian, due to the non-conjugacy with the likelihood term, the computation of the posterior
p(Bd|x·d,Z) turns out to be intractable. Following a similar procedure as in Gaussian processes for
multiclass classification [16], we approximate the posterior p(Bd|x·d,Z) as a Gaussian distribution
using Laplace’s method. In order to obtain the parameters of the Gaussian distribution, we define
ψ(Bd) as the un-normalized log-posterior of p(Bd|x·d,Z), i.e.,

ψ(Bd) = log p(x·d|Bd,Z) + log p(Bd)

= trace
{
Md>Bd

}
−

N∑
n=1

log

(
R∑

r′=1

exp(zn·bd
·r′)

)
− 1

2σ2
B

trace
{
Bd>Bd

}
− RK

2
log(2πσ2

B),

(5)

where (Md)kr counts the number of data points for which xnd = r and znk = 1, namely, (Md)kr =∑N
n=1 δ(xnd = r)znk, where δ(·) is the Kronecker delta function.

As we prove below, the function ψ(Bd) is a strictly concave function of Bd and therefore it has a
unique maximum, which is reached at Bd

MAP, denoted by the subscript ‘MAP’ because it coincides
with the mean value of the Gaussian distribution in the Laplace’s method (MAP stands for maximum
a posteriori). We apply Newton’s method to compute this maximum.

By defining (ρd)kr =
∑N

n=1 znkπ
r
nd, the gradient of ψ(Bd) can be derived as

∇ψ = Md − ρd − 1
σ2

B

Bd. (6)

To compute the Hessian, it is easier to define the gradient ∇ψ as a vector, instead of a matrix, and
hence we stack the columns of Bd into βd, i.e., for avid Matlab users, βd = Bd(:). The Hessian
matrix can now be readily computed taking the derivatives of the gradient, yielding

∇∇ψ = − 1
σ2

B

IRK +∇∇ log p(x·d|βd,Z)

= − 1
σ2

B

IRK −
N∑

n=1

(
diag(πnd)− (πnd)>πnd

)
⊗ (z>n·zn·), (7)

where πnd =
[
π1

nd, π2
nd, . . . , πR

nd

]
, and diag(πnd) is a diagonal matrix with the values of

the vector πnd as its diagonal elements. The posterior p(βd|x·d,Z) can be approximated as

p(βd|x·d,Z) ≈ q(βd|x·d,Z) = N (βd|βd
MAP, (−∇∇ψ)|βd

MAP
), (8)

where βd
MAP contains all the columns of Bd

MAP stacked into a vector.

Since p(x·d|βd,Z) is a log-concave function of βd (see [3, p. 87]), −∇∇ψ is a positive definite
matrix, which guarantees that the maximum of ψ(βd) is unique. Once the maximum Bd

MAP has
been determined, the marginal likelihood p(x·d|Z) can be readily approximated by

log p(x·d|Z) ≈ log q(x·d|Z) = − 1
2σ2

B

trace
{
(Bd

MAP)>Bd
MAP

}
− 1

2
log

∣∣∣∣∣IRK + σ2
B

N∑
n=1

(
diag(π̂nd)− (π̂nd)>π̂nd

)
⊗ (z>n·zn·)

∣∣∣∣∣+ log p(x·d|Bd
MAP,Z), (9)

where π̂nd is the vector πnd evaluated at Bd = Bd
MAP.

Similarly as in [5], it is straightforward to prove that the limit of Eq. 9 is well-defined if Z has an un-
bounded number of columns, i.e., as K →∞. The resulting expression for the marginal likelihood
p(x·d|Z) can be readily obtained from Eq. 9 by replacing K by K+, Z by the submatrix containing
only the non-zero columns of Z, and Bd

MAP by the submatrix containing the K+ corresponding
rows. Through the rest of the paper, let us denote with Z the matrix that contains only the K+

non-zero columns of the full IBP matrix.
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3.2 Speeding up the matrix inversion

The inverse of the Hessian matrix, as well as its determinant in (9), can be efficiently carried out if
we rearrange the inverse of ∇∇ψ as follows

(−∇∇ψ)−1 =

(
D−

N∑
n=1

vnv>n

)−1

, (10)

where vn = (πnd)> ⊗ z>n· and D is a block-diagonal matrix, in which each diagonal submatrix is

Dr =
1
σ2

B

IK+ + Z> diag (πr
·d)Z, (11)

with πr
·d = [ πr

1d, . . . , π
r
Nd ]>. Since vnv>n is a rank-one matrix, we can apply the Woodbury

identity [18] N times to invert the matrix −∇∇ψ, similar to the RLS (Recursive Least Squares)
updates [7]. At each iteration n = 1, . . . , N , we compute

(D(n))−1 =
(
D(n−1) − vnv>n

)−1

= (D(n−1))−1 +
(D(n−1))−1vnv>n (D(n−1))−1

1− v>n (D(n−1))−1vn
. (12)

For the first iteration, we define D(0) as the block-diagonal matrix D, whose inverse matrix involves
computing the R matrix inversions of size K+ × K+ of the matrices in (11), which can be effi-
ciently solved applying the Matrix Inversion Lemma. After N iterations of (12), it turns out that
(−∇∇ψ)−1 = (D(N))−1.

For the determinant in (9), similar recursions can be applied using the Matrix Determinant Lemma
[6], which states that |D + vu>| = (1 + v>Du)|D|, and |D(0)| =

∏R
r=1 |Dr|.

4 Experiments

4.1 Inference over synthetic images

We generate a simple example inspired by the experiment in [5, p. 1205] to show that the proposed
model works as it should. We define four base black-and-white images that can be present or absent
with probability 0.5 independently of each other (Figure 1a), which are combined to create a binary
composite image. We also multiply each pixel independently with equiprobable binary noise, hence
each white pixel in the composite image can be turned black 50% of the times, while black pixels
always remain black. Several examples can be found in Figure 1c. We generate 200 examples to
learn the IBP model. The Gibbs sampler has been initialized with K+ = 2, setting each znk = 1
with probability 1/2, and the hyperparameters have been set to α = 0.5 and σ2

B = 1.

After 200 iterations, the Gibbs sampler returns four latent features. Each of the four features recovers
one of the base images with a different ordering, which is inconsequential. In Figure 1b, we have
plotted the posterior probability for each pixel being white, when only one of the components is
active. As expected, the black pixels are known to be black (almost zero probability of being white)
and the white pixels have about a 50/50 chance of being black or white, due to the multiplicative
noise. The Gibbs sampler has used as many as nine hidden features, but after iteration 60, the first
four features represent the base images and the others just lock on a noise pattern, which eventually
fades away.

4.2 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC)

The NESARC was designed to determine the magnitude of alcohol use disorders and their associated
disabilities. Two waves of interviews have been fielded for this survey (first wave in 2001-2002 and
second wave in 2004-2005). For the following experimental results, we only use the data from the
first wave, for which 43,093 people were selected to represent the U.S. population 18 years of age
and older. Public use data are currently available for this wave of data collection.

Through 2,991 entries, the NESARC collects data on the background of participants, alcohol and
other drug consumption and abuse, medicine use, medical treatment, mental disorders, phobias,
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Figure 1: Experimental results of the infinite binary multinomial-logistic model over the image data
set. (a) The four base images used to generate the 200 observations. (b) Probability of each pixel
being white, when a single feature is active (ordered to match the images on the left), computed
using Bd

MAP. (c) Four data points generated as described in the text. The numbers above each figure
indicate which features are present in that image. (d) Probabilities of each pixel being white after
200 iterations of the Gibbs sampler inferred for the four data points on (c). The numbers above each
figure show the inferred value of zn· for these data points. (e) The number of latent features K+ and
(f) the approximate log of p(X|Z) over the 200 iterations of the Gibbs sampler.

family history, etc. The survey includes a question about having attempted suicide as well as other
related questions such as ‘felt like wanted to die’ and ‘thought a lot about own death’. In the present
paper, we use the IBP with discrete observations for a preliminary study in seeking the latent causes
which lead to committing suicide. Most of the questions in the survey (over 2,500) are yes-or-no
questions, which have four possible outcomes: ‘blank’ (B), ‘unknown’ (U), ‘yes’ (Y) and ‘no’ (N).
If a question is left blank the question was not asked1. If a question is said to be unknown either it
was not answered or was unknown to the respondent.

In our ongoing study, we want to find a latent model that describes this database and can be used
to infer patterns of behavior and, specifically, be able to predict suicide. In this paper, we build
an unsupervised model with the 20 variables that present the highest mutual information with the
suicide attempt question, which are shown in Table 1 together with their code in the questionnaire.

We run the Gibbs sampler over 500 randomly chosen subjects out of the 13,670 that have answered
affirmatively to having had a period of low mood. In this study, we use another 9,500 as test cases
and have left the remaining samples for further validation. We have initialized the sampler with an
active feature, i.e., K+ = 1, and have set znk = 1 randomly with probability 0.5, and fixing α = 1
and σ2

B = 1. After 200 iterations, we obtain seven latent features.

In Figure 2, we have plotted the posterior probability for each question when a single feature is
active. In these plots, white means 0 and black 1, and each row sums up to one. Feature 1 is active
for modeling the ‘blank’ and ‘no’ answers and, fundamentally, those who were not asked Questions
8 and 10. Feature 2 models the ‘yes’ and ‘no’ answers and favors affirmative responses to Questions
1, 2, 5, 9, 11, 12, 17 and 18, which indicates depression. Feature 3 models blank answers for most
of the questions and negative responses to 1, 2, 5, 8 and 10, which are questions related to suicide.
Feature 4 models the affirmative answers to 1, 2, 5, 9 and 11 and also have higher probability for
unknowns in Questions 3, 4, 6 and 7. Feature 5 models the ‘yes’ answer to Questions 3, 4, 6, 7, 8,

1In a questionnaire of this size some questions are not asked when a previous question was answered in a
predetermined way to reduce the burden of taking the survey. For example, if a person has never had a period
of low mood, the attempt suicide question is not asked.
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10, 17 and 18, being ambivalent in Questions 1 and 2. Feature 6 favors ‘blank’ and ‘no’ answers in
most questions. Feature 7 models answering affirmatively to Questions 15, 16, 19 and 20, which are
related to alcohol abuse.

We show the percentage of respondents that answered positively to the suicide attempt questions in
Table 2, independently for the 500 samples that were used to learn the IBP and the 9,500 hold-out
samples, together with the total number of respondents. A dash indicates that the feature can be
active or inactive. Table 2 is divided in three parts. The first part deals with each individual feature
and the other two study some cases of interest. Throughout the database, the prevalence of suicide
attempt is 7.83%. As expected, Features 2, 4, 5 and 7 favor suicide attempt risk, although Feature 5
only mildly, and Features 1, 3 and 6 decrease the probability of attempting suicide. From the above
description of each feature, it is clear that having Features 4 or 7 active should increase the risk of
attempting suicide, while having Features 3 and 1 active should cause the opposite effect.

Features 3 and 4 present the lowest and the highest risk of suicide, respectively, and they are studied
together in the second part of Table 2, in which we can see that having Feature 3 and not having
Feature 4 reduces this risk by an order of magnitude, and that combination is present in 70% of
the population. The other combinations favor an increased rate of suicide attempts that goes from
doubling (‘11’) to quadrupling (‘00’), to a ten-fold increase (‘01’), and the percentages of population
with these features are, respectively, 21%, 6% and 3%.

In the final part of Table 2, we show combinations of features that significantly increase the suicide
attempt rate for a reduced percentage of the population, as well as combinations of features that
significantly decrease the suicide attempt rate for a large chunk of the population. These results are
interesting as they can be used to discard significant portions of the population in suicide attempt
studies and focus on the groups that present much higher risk. Hence, our IBP with discrete obser-
vations is being able to obtain features that describe the hidden structure of the NESARC database
and makes it possible to pin-point the people that have a higher risk of attempting suicide.

# Source Code Description
01 S4AQ4A17 Thought about committing suicide
02 S4AQ4A18 Felt like wanted to die
03 S4AQ17A Stayed overnight in hospital because of depression
04 S4AQ17B Went to emergency room for help because of depression
05 S4AQ4A19 Thought a lot about own death
06 S4AQ16 Went to counselor/therapist/doctor/other person for help to improve mood
07 S4AQ18 Doctor prescribed medicine/drug to improve mood/make you feel better
08 S4CQ15A Stayed overnight in hospital because of dysthymia
09 S4AQ4A12 Felt worthless most of the time for 2+ weeks
10 S4CQ15B Went to emergency room for help because of dysthymia
11 S4AQ52 Had arguments/friction with family, friends, people at work, or anyone else
12 S4AQ55 Spent more time than usual alone because didn’t want to be around people
13 S4AQ21C Used medicine/drug on own to improve low mood prior to last 12 months
14 S4AQ21A Ever used medicine/drug on own to improve low mood/make self feel better
15 S4AQ20A Ever drank alcohol to improve low mood/make self feel better
16 S4AQ20C Drank alcohol to improve mood prior to last 12 months
17 S4AQ56 Couldn’t do things usually did/wanted to do
18 S4AQ54 Had trouble doing things supposed to do -like working, doing schoolwork, etc.
19 S4AQ11 Any episode began after drinking heavily/more than usual
20 S4AQ15IR Only/any episode prior to last 12 months began after drinking/drug use

Table 1: Enumeration of the 20 selected questions in the experiments, sorted in decreasing order
according to their mutual information with the ‘attempted suicide’ question.

5 Conclusions

In this paper, we have proposed a new model that combines the IBP with discrete observations using
the multinomial-logit distribution. We have used the Laplace approximation to integrate out the
weighting factors, which allows us to efficiently run the Gibbs sampler. We have applied our model
to the NESARC database to find out the hidden features that characterize the suicide attempt risk. We
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Hidden features Suicide attempt probability Number of cases
Train Hold-out Train Hold-out

1 - - - - - - 6.74% 5.55% 430 8072
- 1 - - - - - 10.56% 11.16% 322 6083
- - 1 - - - - 3.72% 4.60% 457 8632
- - - 1 - - - 25.23% 22.25% 111 2355
- - - - 1 - - 8.64% 9.69% 301 5782
- - - - - 1 - 6.90% 7.18% 464 8928
- - - - - - 1 14.29% 14.18% 91 1664

- - 0 0 - - - 30.77% 28.55% 26 571
- - 0 1 - - - 82.35% 61.95% 17 297
- - 1 0 - - - 0.83% 0.87% 363 6574
- - 1 1 - - - 14.89% 16.52% 94 2058

- - 0 1 - - 1 100.00% 69.41% 4 85
0 - 0 1 - - - 80.00% 66.10% 5 118
1 - 1 0 - 1 0 0.00% 0.25% 252 4739
- - 1 0 - - 0 0.33% 0.63% 299 5543
1 - 1 0 - - - 0.32% 0.41% 317 5807

Table 2: Probabilities of attempting suicide for different values of the latent feature vector, together
with the number of subjects possessing those values. The symbol ‘-’ denotes either 0 or 1. The ‘train
ensemble’ columns contain the results for the 500 data points used to obtain the model, whereas the
‘hold-out ensemble’ columns contain the results for the remaining subjects.

Figure 2: Probability of answering ‘blank’ (B), ‘unknown’ (U), ‘yes’ (Y) and ‘no’ (N) to each of
the 20 selected questions, sorted as in Table 1, after 200 iterations of the Gibbs sampler. These
probabilities have been obtained with the posterior mean weights Bd

MAP , when only one of the
seven latent features (sorted from left to right to match the order in Table 2) is active.

have analyzed how each of the seven inferred features contributes to the suicide attempt probability.
We are developing a variational inference algorithm to be able to extend these remarkable results for
larger fractions (subjects and questions) of the NESARC database.
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