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Abstract

A key function of brains is undoubtedly the abstraction and maintenance of in-
formation from the environment for later use. Neurons in association cortex play
an important role in this process: by learning these neurons become tuned to rel-
evant features and represent the information that is required later as a persistent
elevation of their activity [1]. It is however not well known how such neurons
acquire these task-relevant working memories. Here we introduce a biologically
plausible learning scheme grounded in Reinforcement Learning (RL) theory [2]
that explains how neurons become selective for relevant information by trial and
error learning. The model has memory units which learn useful internal state rep-
resentations to solve working memory tasks by transforming partially observable
Markov decision problems (POMDP) into MDPs. We propose that synaptic plas-
ticity is guided by a combination of attentional feedback signals from the action
selection stage to earlier processing levels and a globally released neuromodula-
tory signal. Feedback signals interact with feedforward signals to form synaptic
tags at those connections that are responsible for the stimulus-response mapping.
The neuromodulatory signal interacts with tagged synapses to determine the sign
and strength of plasticity. The learning scheme is generic because it can train
networks in different tasks, simply by varying inputs and rewards. It explains
how neurons in association cortex learn to 1) temporarily store task-relevant in-
formation in non-linear stimulus-response mapping tasks [1, 3, 4] and 2) learn to
optimally integrate probabilistic evidence for perceptual decision making [5, 6].

1 Introduction

By giving reward at the right times, animals like monkeys can be trained to perform complex tasks
that require the mapping of sensory stimuli onto responses, the storage of information in working
memory and the integration of uncertain sensory evidence. While significant progress has been
made in reinforcement learning theory [2, 7, 8, 9], a generic learning rule for neural networks that is
biologically plausible and also accounts for the versatility of animal learning has yet to be described.

We propose a simple biologically plausible neural network model that can solve a variety of working
memory tasks. The network predicts action-values (Q-values) for different possible actions [2],
and it learns to minimize SARSA [10, 2] temporal difference (TD) prediction errors by stochastic
gradient descent. The model has memory units inspired by neurons in lateral intraparietal (LIP)
cortex and prefrontal cortex. Such neurons exhibit persistent activations for task related cues in
visual working memory tasks [1, 11, 4]. Memory units learn to represent an internal state that
allows the network to solve working memory tasks by transforming POMDPs into MDPs [25]. The
updates for synaptic weights have two components. The first is a synaptic tag [12] that arises from
an interaction between feedforward and feedback activations. Tags form on those synapses that are
responsible for the chosen actions by an attentional feedback process [13]. The second factor is a
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Figure 1: Model and learning (see section 2). Pentagons represent synaptic tags.

global neuromodulatory signal δ that reflects the TD error, and this signal interacts with the tags to
yield synaptic plasticity. TD-errors are represented by dopamine neurons in the ventral tegmental
area and substantia nigra [9, 14]. The persistence of tags permits learning if time passes between
synaptic activity and the animal’s choice, for example if information is stored in working memory
or evidence accumulates before a decision is made. The learning rules are biologically plausible
because the information required for computing the synaptic updates is available at the synapse. We
call the new learning scheme AuGMEnT (Attention-Gated MEmory Tagging).

We first discuss the model and then show that it explains how neurons in association cortex learn to 1)
temporarily store task-relevant information in non-linear stimulus-response mapping tasks [1, 3, 4]
and 2) learn to optimally integrate probabilistic evidence for perceptual decision making [5, 6].

2 Model

AuGMEnT is modeled as a three layer neural network (Fig. 1). Units in the motor (output) layer
predict Q-values [2] for their associated actions. Predictions are learned by stochastic gradient
descent on prediction errors.

The sensory layer contains two types of units; instantaneous and transient on(+)/off(-) units. Instan-
taneous units xi encode sensory inputs si(t), and + and - units encode positive and negative changes
in sensory inputs with respect to the previous time step t− 1:

x+
i (t) = [si(t)− si(t− 1)]+ ; x−i (t) = [si(t− 1)− si(t)]+ , (1)

where [.]+ is a threshold operator that returns 0 for all negative inputs but leaves positive inputs
unchanged. Each sensory variable si is thus represented by three units xi, x

+
i , x

−
i (we only explicitly

write the time dependence if it is ambiguous). We denote the set of differentiating units as x′. The
hidden layer models the association cortex and it contains regular units and memory units. The
regular units j (Fig. 1, circles) are fully connected to the instantaneous units i in the sensory layer
by connections vR

ij ; vR
0j is a bias weight. Regular unit activations yR

j are computed as:

yR
j = σ(aR

j ) =
1

1 + exp (θ − aR
j )

with aR
j =

∑
i

vR
ijxi . (2)

Memory units m (Fig. 1, diamonds) are fully connected to the +/- units in the sensory layer by
connections vM

lm and they derive their activations yM
j (t) by integrating their inputs:

yM
m = σ(aM

m ) with aM
m = aM

m (t− 1) +
∑

l

vM
lmx
′
l , (3)

with σ as defined in eqn. (2). Output layer units k are fully connected to the hidden layer by connec-
tions wR

jk (for regular hiddens, wR
0k is a bias weight) and wM

mk (for memory hiddens). Activations
are computed as:

qk =
∑

j

yR
j w

R
jk +

∑
m

yM
mwM

mk . (4)

2



A Winner Takes All (WTA) competition now selects an action based on the estimated Q-values.
We used a max-Boltzmann [15] controller which executes the action with the highest estimated Q-
value with probability 1 − ε and otherwise it chooses an action with probabilities according to the
Boltzmann distribution:

Pr(zk = 1) =
exp qk∑
k′ exp qk′

. (5)

The WTA mechanism then sets the activation of the winning unit to 1 and the activation of all
other units to 0; zk = δkK where δkK is the Kronecker delta function. The winning unit sends
feedback signals to the earlier processing layers, informing the rest of the network about the action
that was taken. This feedback signal interacts with the feedforward activations to give rise to synaptic
tags on those synapses that were involved in taking the decision. The tags then interact with a
neuromodulatory signal δ, which codes a TD error, to modify synaptic strengths.

2.1 Learning

After executing an action, the environment returns a new observation s′, a scalar reward r, and
possibly a signal indicating the end of a trial. The network computes a SARSA TD error [10, 2]:

δ = r + γqK′ − qK , (6)

where qK′ is the predicted value of the winning action for the new observation, and γ ∈ [0, 1] is the
temporal discount parameter [2]. AuGMEnT learns by minimizing the squared prediction error E:

E =
1
2

(δ)2 =
1
2

(r + γqK′ − qK)2 , (7)

The synaptic updates have two factors. The first is a synaptic tag (Fig. 2, pentagons; equivalent
to an eligibility trace in RL [2]) that arises from an interaction between feedforward and feedback
activations. The second is a global neuromodulatory signal δ which interacts with these tags to yield
synaptic plasticity. The updates can be derived by the chain rule for derivatives [16].

The update for synapses wR
jk is:

∆wR
jk = −β ∂E

∂qK
TagR

jk = βδ(t)TagR
jk , (8)

∆TagR
jk = (λγ − 1)TagR

jk +
∂qK
∂wR

jk

= (λγ − 1)TagR
jk + yR

j zk , (9)

where β is a learning rate, TagR
jk are the synaptic tags on synapses between regular hidden units

and the motor layer, and λ is a decay parameter [2]. Note that ∆wR
jk ∝ −β ∂E

∂qK

∂qK

∂wR
jk

= −β ∂E
∂wR

jk

,

holding with equality if λγ = 0. If λγ > 0, tags decay exponentially so that synapses that were
responsible for previous actions are also assigned credit for the currently observed error.

Equivalently, updates for synapses between memory units and motor units are:

∆wM
mk = βδ(t)TagM

mk , (10)

∆TagM
mk = (λγ − 1)TagM

mk + yM
m zk . (11)

The updates for synapses between instantaneous sensory units and regular association units are:

∆vR
ij = −β ∂E

∂qK
TagR

ij = βδTagR
ij , (12)

∆TagR
ij = (λγ − 1)TagR

ij +
∂qK
∂yR

j

∂yR
j

∂aR
j

∂aR
j

∂vR
ij

, (13)

= (λγ − 1)TagR
ij + w

′R
Kjy

R
j (1− yR

j )xi , (14)

where w
′R
Kj are feedback weights from the motor layer back to the association layer. The intuition

for the last equation is that the winning output unit K provides feedback to the units in the asso-
ciation layer that were responsible for its activation. Association units with a strong feedforward
connection also have a strong feedback connection. As a result, synapses onto association units that
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provided strong input to the winning unit will have the strongest plasticity. This ‘attentional feed-
back’ mechanism was introduced in [13]. For convenience, we have assumed that feedforward and
feedback weights are symmetrical, but they can also be trained as in [13].

For the updates for the synapses between +/- sensory units and memory units we first approximate
the activation aM

m (see eqn. (3)) as:

aM
m = aM

m (t− 1) +
∑

l

vM
lmx
′
l ≈ vM

lm

t∑
t′=0

x′l(t
′) , (15)

which is a good approximation if the synapses vM
lm change slowly. We can then write the updates as:

∆vM
lm = −β ∂E

∂qK
TagM

lm = βδTagM
lm , (16)

∆TagM
lm = −TagM

lm +
∂qK
∂yM

m

∂yM
m

∂aM
m

∂aM
m

∂vM
lm

, (17)

= −TagM
lm + w

′M
Kjy

M
m (t)(1− yM

m (t))

[
t∑

t′=0

x′l(t
′)

]
. (18)

Note that one can interpret a memory unit as a regular one that receives all sensory input in a trial
simultaneously. For synapses onto memory units, we set λ = 0 to arrive at the last equation. The
intuition behind the last equation is that because the activity of a memory unit does not decay, the
influence of its inputs x′l on the activity in the motor layer does not decay either (λγ = 0).

A special condition occurs when the environment returns the end-trial signal. In this case, the
estimate qK in eqn. (6) is set to 0 (see [2]) and after the synaptic updates we reset the memory units
and synaptic tags, so that there is no confounding between different trials.

AuGMEnT is biologically plausible because the information required for the synaptic updates is
locally available by the interaction of feedforward and feedback signals and a globally released
neuromodulator coding TD errors. As we will show, this mechanism is powerful enough to learn
non-linear transformations and to create relevant working memories.

3 Experiments

We tested AuGMEnT on a set of memory tasks that have been used to investigate the effects of
training on neuronal activity in area LIP. Across all of our simulations, we fixed the configuration
of the association layer (three regular units, four memory units) and Q-layer (three output units,
for directing gaze to the left, center or right of a virtual screen). The input layer was tailored to
the specific task (see below). In all tasks, we trained the network by trial and error to fixate on a
fixation mark and to respond to task-related cues. As is usual in training animals for complex tasks,
we used a small shaping reward rfix (arbitrary units) to facilitate learning to fixate [17]. At the end
of trials the model had to make an eye-movement to the left or right. The full task reward rfin was
given if this saccade was accurate, while we aborted trials and gave no reward if the model made
the wrong eye-movement or broke fixation before the go signal. We used a single set of parameters
for the network; β = 0.15;λ = 0.20; γ = 0.90; ε = 0.025 and θ = 2.5, which shifts the sigmoidal
activation function for association units so that that units with little input have almost zero output.
Initial synaptic weights were drawn from a uniform distribution U ∼ [−0.25, 0.25]. For all tasks we
used rfix = 0.2 and rfin = 1.5.

3.1 Saccade/Antisaccade

The memory saccade/anti-saccade task (Fig. 2A) is based on [3]. This task requires a non-linear
transformation and cannot be solved by a direct mapping from sensory units toQ-value units. Trials
started with an empty screen, shown for one time step. Then either a black or white fixation mark
was shown indicating a pro-saccade or anti-saccade trial, respectively. The model had to fixate on
the fixation mark within ten time-steps, or the trial was terminated. After fixating for two time-
steps, a cue was presented on the left or right and a small shaping reward rfix was given. The
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Figure 2: A Memory saccade/antisaccade task. B Model network. In the association layer, a regular
unit and two memory units are color coded gray, green and orange, respectively. Output units L,F ,R
are colored green, blue and red, respectively. C Unit activation traces for a sample trained network.
Symbols in bottom graph indicate highest valued action. F, fixation onset; C, cue onset; D, delay; G,
fixation offset (‘Go’ signal). Thick blue: fixate, dashed green: left, red: right. D Selectivity indices
of memory units in saccade/antisaccade task (black) and in pro-saccade only task (red).

cue was shown for one time-step, and then only the fixation mark was visible for two time-steps
before turning off. In the pro-saccade condition, the offset of the fixation mark indicated that the
model should make an eye-movement towards the cue location to collect rfin. In the anti-saccade
condition, the model had to make an eye-movement away from the cue location. The model had to
make the correct eye-movement within eight time steps. The input to the model (Fig. 2B) consisted
of four binary variables representing the information on the virtual screen; two for the fixation marks
and two for the cue location. Due to the +/− cells, the input layer thus had 12 binary units.

We trained the models for at most 25, 000 trials, or until convergence. We measured convergence as
the proportion of correct trials for the last 50 examples of all trial-types (N = 4). When this propor-
tion reached 0.9 or higher for all trial-types, learning in the network was stopped and we evaluated
accuracy on all trial types without stochastic exploration of actions. We considered learning suc-
cessful if the model performed all trial-types accurately.

We trained 10, 000 randomly initialized networks with and without a shaping reward (rfix = 0).
Of the networks that received fixation rewards, 9, 945 learned the task versus 7, 641 that did not
receive fixation rewards; χ2(1, N = 10, 000) = 2, 498, P < 10−6. The 10, 000 models trained
with shaping learned the complete task in a median of 4, 117 trials. This is at least an order of
magnitude faster than monkeys that typically learn such a task after months of training with more
than 1, 000 trials per day, e. g. [6].

The activity of a trained network is illustrated in Fig. 2C. The Q-unit for fixating at the center had
strongest activity at fixation onset and throughout the fixation and memory delays, whereas the Q-
unit for the appropriate eye movement became more active after the go-signal. Interestingly, the
activity of the Q-cells also depended on cue-location during the memory delay, as is observed, for
example, in the frontal eye fields [18]. This activity derives from memory units in the association
layer that maintain a trace of the cue as persistent elevation of their activity and are also tuned to
the difference between pro- and antisaccade trials. To illustrate this, we defined selectivity indices
(SIs) to characterize the tuning of memory units to the difference between pro- or antisaccade trials
and to the difference in cue location. The sensitivity of units to differences in trial types, SItype

was |0.5((RPL + RPR) − (RAL + RAR))|, with R representing a units’ activation level (at ‘Go’
time) in pro (P) and anti-saccade trials (A) with a left (L) or right (R) cue. A unit has an SI of
0 if it does not distinguish between pro- and antisaccade trials, and an SI of 1 if it is fully active
for one trial type and inactive for the other. The sensitivity to cue location, SIcue, was defined
|0.5((RPL + RAL) − (RPR + RAR))|. We trained 100 networks and found that units tuned to
cue-location also tended to be selective for trial-type (black data points in Fig. 2D; SI correlation
0.79, (N = 400, P < 10−6)). To show that the association layer only learns to represent relevant
features, we trained the same 100 networks using the same stimuli, but now only required pro-
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Figure 3: A Probabilistic classification task (redrawn from [6]). B Model network C Population
averages, conditional on LogLR-quintile (inset) for LIP neurons (redrawn from [6]) (top) and model
memory units over 100, 000 trials after learning had converged (bottom). D Subjective weights
inferred for a trained monkey (redrawn from [6]) (left) and average synaptic weights to an example
memory unit (right) versus true symbol weights (A, right). E Histogram of weight correlations for
400 memory units from 100 trained networks.

saccades, rendering the color of the fixation point irrelevant. Memory units in the 97 converged
networks now became tuned to cue-location but not to fixation point color (Fig. 2D, red data points.
SI Correlation 0.04, (N = 388, P > 0.48)), indicating that the association layer indeed only learns
to represent relevant features.

3.2 Probabilistic Classification

Neurons in area LIP also play a role in perceptual decision making [5]. We hypothesized that
memory units could learn to integrate probabilistic evidence for a decision. Yang and Shadlen [6]
investigated how monkeys learn to combine information about four briefly presented symbols, which
provided probabilistic cues whether a red or green eye movement target was baited with reward
(Fig. 3A). A previous model with only one layer of modifiable synapses could learn a simplified,
linear version of this task [19]. We tested if AuGMEnT could train the network to adapt to the full
complexity of the task that demands a non-linear combination of information about the four symbols
with the position of the red and green eye-movement targets. Trials followed the same structure as
described in section 3.1, but now four cues were subsequently added to the display. Cues were
drawn with replacement from a set of ten (Fig. 3A, right), each with a different associated weight.
The sum of these weights, W , determined the probability that rfin was assigned to the red target
(R) as follows: P (R|W ) = 10W /(1 + 10W ). For the green target G, P (G|W ) = 1 − P (R|W ).
At fixation mark offset, the model had to make a saccade to the target with the highest reward
probability. The sensory layer of the model (Fig. 3B) had four retinotopic fields with binary units
for all possible symbols, a binary unit for the fixation mark and four binary units coding the locations
of the colored targets on the virtual screen. Due to the +/- units, this made 45× 3 units in total.

As in [6], we increased the difficulty of the task gradually (i. e. we used a shaping strategy) by
increasing the set of input symbols (2, 4, . . . , 10) and sequence length (1−4) in eight steps. Training
started with the ‘trump’ shapes which guarantee reward for the correct decision (Fig. 3A, right; see
[6]) and then added the symbols with the next absolute highest weights. We determined that the
task had been learned when the proportion of trials on which the correct decision was taken over
the last n trials reached 0.85, where n was increased with the difficulty level l of the task. For the
first 5 levels, n(l) = 500 + 500l and for l = 6, 7, 8 n was 10, 000; 10, 000 and 20, 000, respectively.
Networks were trained for at most 500, 000 trials.

The behavior of a trained network is shown in figure 3C (bottom). Memory units integrated informa-
tion for one of the choices over the symbol sequence and maintained information about the value of
this choice as persistent activity during the memory delay. Their activation was correlated to the log
likelihood that the targets were baited, just like LIP neurons [6] (Fig. 3C). The graphs show average
activations of populations of real and model neurons in the four cue presentation epochs. Each pos-
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Figure 4: Association layer scaling behavior for A default learning parameters and, B optimized
learning parameters. Error bars are 95% confidence intervals. Parameters used are indicated by
shading (see inset)

sible sub-sequence of cues was assigned to a log-likelihood ratio (logLR) quintile, which correlates
with the probability that the neurons’ preferred eye-movement is rewarded. Note that sub-sequences
from the same trial might be assigned to different quintiles. We computed LogLR quintiles by
enumerating all combinations of four symbols and then computing the probabilities of reward for
saccades to red and green targets. Given these probabilities, we computed reward probability for
all sub-sequences by marginalizing over the unknown symbols, i. e. to compute the probability that
the red target was baited given only a first symbol si, P (R|si), we summed the probabilities for full
sequences starting with si and divided by the number of such full sequences. We then computed the
logLR for the sub-sequences and divided those into quintiles. For model units we rearranged the
quintiles so that they were aligned in the last epoch to compute the population average.

Synaptic weights from input neurons to memory cells became strongly correlated to the true weights
of the symbols (Fig. 3D, right; Spearman correlation, ρ = 1, P < 10−6). Thus, the training of
synaptic weights to memory neurons in parietal cortex can explain how the monkeys valuate the
symbols [19]. We trained 100 networks on the same task and computed Spearman correlations for
the memory unit weights with the true weights and found that in general they learn to represent
the symbols (Fig. 3E). The learning scheme thus offers a biologically realistic explanation of how
neurons in LIP learn to integrate relevant information in a probabilistic classification task.

3.3 Scaling behavior

To show that the learning scheme scales well, we ran a series of simulations with increasing numbers
of association units. We scaled the number of association units by powers of two, from 21 = 2
(yielding 6 regular units and 8 memory units) to 27 = 128 (yielding 384 regular and 512 memory
units). For each scale, we trained 100 networks on the saccade/antisaccade task, as described in
section 3.1. We first evaluated these scaled networks with the standard set of learning parameters
and found that these yielded stable results within a wide range but that performance deteriorated
for the largest networks (from 26 = 64; 192 regular units and 256 memory units) (Fig. 4A). In a
second experiment (Fig. 4B), we also varied the learning rate (β) and trace decay (λ) parameters.
We jointly scaled these parameters by 1

2 ,
1
4 and 1

8 and selected the parameter combination which
resulted in the highest convergence rate and the fastest median convergence speed. It can be seen
that the performance of the larger networks was at least as good as that of the default network,
provided the learning parameters were scaled. Furthermore, we ran extensive grid-searches over the
λ, β parameter space using default networks (not shown) and found that the model robustly learns
both tasks with a wide range of parameters.

4 Discussion

We have shown that AuGMEnT can train networks to solve working memory tasks that require non-
linear stimulus-response mappings and the integration of sensory evidence in a biologically plausible
way. All the information required for the synaptic updates is available locally, at the synapses. The
network is trained by a form of SARSA(λ) [10, 2], and synaptic updates minimize TD errors by
stochastic gradient descent. Although there is an ongoing debate whether SARSA or Q-learning
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[20] like algorithms are used by the brain [21, 22], we used SARSA because this has stronger con-
vergence guarantees than Q-learning when used to train neural networks [23]. Although stability
is considered a problem for neural networks implementing reinforcement learning methods [24],
AuGMEnT robustly trained networks on our tasks for a wide range of model parameters.

Technically, working memory tasks are Partially Observable Markov Decision Processes
(POMDPs), because current observations do not contain the information to make optimal decisions
[25]. Although AuGMEnT is not a solution for all POMDPs, as these are in general intractable [25],
its simple learning mechanism is well able to learn challenging working memory tasks.

The problem of learning new working memory representations by reinforcement learning is not
well-studied. Some early work used the biologically implausible backpropagation-through-time
algorithm to learn memory representations [26, 27]. Most other work pre-wires some aspects of
working memory and only has a single layer of plastic weights (e. g. [19]), so that the learning
mechanism is not general. To our knowledge, the model by O’Reilly and Frank [7] is most closely
related to AuGMEnT. This model is able to learn a variety of working memory tasks, but it requires
a teaching signal that provides the correct actions on each time-step and the architecture and learning
rules are elaborate. AuGMEnT only requires scalar rewards and the learning rules are simple and
well-grounded in RL theory [2].

AuGMEnT explains how neurons become tuned to relevant sensory stimuli in sequential decision
tasks that animals learn by trial and error. The scheme uses units with properties that resemble cor-
tical and subcortical neurons: transient and sustained neurons in sensory cortices [28], action-value
coding neurons in frontal cortex and basal ganglia [29, 30] and neurons which integrate input and
therefore carry traces of previously presented stimuli in association cortex. The persistent activity of
these memory cells could derive from intracellular processes, local circuit reverberations or recurrent
activity in larger networks spanning cortex, thalamus and basal ganglia [31]. The learning scheme
adopts previously proposed ideas that globally released neuromodulatory signals code deviations
from reward expectancy and gate synaptic plasticity [8, 9, 14]. In addition to this neuromodula-
tory signal, plasticity in AuGMEnT is gated by an attentional feedback signal that tags synapses
responsible for the chosen action. Such a feedback signal exists in the brain because neurons at
the motor stage that code a selected action enhance the activity of upstream neurons that provided
input for this action [32], a signal that explains a corresponding shift of visual attention [33]. AuG-
MEnT trains networks to direct feedback (i.e. selective attention) to features that are critical for the
stimulus-response mapping and are associated with reward. Although the hypothesis that attentional
feedback controls the formation of tags is new, there is ample evidence for the existence of synaptic
tags [34, 12]. Recent studies have started to elucidate the identity of the tags [35, 36] and future
work could investigate how they are influenced by attention. Interestingly, neuromodulatory signals
influence synaptic plasticity even if released seconds or minutes later than the plasticity-inducing
event [12, 35], which supports that they interact with a trace of the stimulus, i.e. some form of tag.

Here we have shown how interactions between synaptic tags and neuromodulatory signals explain
how neurons in association areas acquire working memory representations for apparently disparate
tasks that rely on working memory or decision making. These tasks now fit in a single, unified
reinforcement learning framework.
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