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Abstract

For phoneme classification, this paper describes an acoustic model based on the
variational Gaussian process dynamical system (VGPDS). The nonlinear and non-
parametric acoustic model is adopted to overcome the limitations of classical hid-
den Markov models (HMMs) in modeling speech. The Gaussian process prior
on the dynamics and emission functions respectively enable the complex dynamic
structure and long-range dependency of speech to be better represented than that
by an HMM. In addition, a variance constraint in the VGPDS is introduced to
eliminate the sparse approximation error in the kernel matrix. The effectiveness
of the proposed model is demonstrated with three experimental results, including
parameter estimation and classification performance, on the synthetic and bench-
mark datasets.

1 Introduction

Automatic speech recognition (ASR), the process of automatically translating spoken words into
text, has been an important research topic for several decades owing to its wide array of potential
applications in the area of human-computer interaction (HCI). The state-of-the-art ASR systems
typically use hidden Markov models (HMMs) [1] to model the sequential articulator structure of
speech signals. There are various issues to consider in designing a successful ASR and certainly
the following two limitations of an HMM need to be overcome. 1) An HMM with a first-order
Markovian structure is suitable for capturing short-range dependency in observations and speech
requires a more flexible model that can capture long-range dependency in speech. 2) Discrete latent
state variables and sudden state transitions in an HMM have limited capacity when used to represent
the continuous and complex dynamic structure of speech. These limitations must be considered
when seeking to improve the performance of an ASR.

To overcome these limitations, various models have been considered to model the complex structure
of speech. For example, the stochastic segment model [2] is a well-known generalization of the
HMM that represents long-range dependency over observations using a time-dependent emission
function. And the hidden dynamical model [3] is used for modeling the complex nonlinear dynamics
of a physiological articulator.

Another promising research direction is to consider a nonparametric Bayesian model for nonlinear
probabilistic modeling of speech. Owing to the fact that nonparametric models do not assume any

1



fixed model structure, they are generally more flexible than parametric models and can allow de-
pendency among observations naturally. The Gaussian process (GP) [4], a stochastic process over
a real-valued function, has been a key ingredient in solving such problems as nonlinear regression
and classification. As a standard supervised learning task using the GP, Gaussian process regression
(GPR) offers a nonparametric Bayesian framework to infer the nonlinear latent function relating the
input and the output data. Recently, researchers have begun focusing on applying the GP to un-
supervised learning tasks with high-dimensional data, such as the Gaussian process latent variable
model (GP-LVM) for reduction of dimensionality [5-6]. In [7], a variational inference framework
was proposed for training the GP-LVM. The variational approach is one of the sparse approxima-
tion approaches [8]. The framework was extended to the variational Gaussian process dynamical
system (VGPDS) in [9] by augmenting latent dynamics for modeling high-dimensional time series
data. High-dimensional time series have been incorporated in many applications of machine learn-
ing such as robotics (sensor data), computational biology (gene expression data), computer vision
(video sequences), and graphics (motion capture data). However, no previous work has considered
the GP-based approach for speech recognition tasks that involve high-dimensional time series data.

In this paper, we propose a GP-based acoustic model for phoneme classification. The proposed
model is based on the assumption that the continuous dynamics and nonlinearity of the VGPDS can
be better represent the statistical characteristic of real speech than an HMM. The GP prior over the
emission function allows the model to represent long-range dependency over the observations of
speech, while the HMM does not. Furthermore, the GP prior over the dynamics function enables
the model to capture the nonlinear dynamics of a physiological articulator.

Our contributions are as follows: 1) we introduce a GP-based model for phoneme classification tasks
for the first time, showing that the model has the potential of describing the underlying character-
istics of speech in a nonparametric way; 2) we propose a prior for hyperparameters and a variance
constraint that are specially designed for ASR; and 3) we provide extensive experimental results and
analyses to reveal clearly the strength of our proposed model.

The remainder of the paper is structured as follows: Section 2 introduces the proposed model after a
brief description of the VGPDS. Section 3 provides extensive experimental evaluations to prove the
effectiveness of our model, and Section 4 concludes the paper with a discussion and plans for future
work.

2 Acoustic modeling using Gaussian Processes

2.1 Variational Gaussian Process Dynamical System

The VGPDS [9] models time series data by assuming that there exist latent states that govern the
data. Let Y = [[y11, · · · yN1]T , · · · , [y1D, · · · yND]T ] ∈ RN×D, t = [t1, · · · , tN ]T ∈ RN+ , and
X = [[x11, · · ·xN1]T , · · · , [x1Q, · · ·xNQ]T ] ∈ RN×Q be observed data, time, and corresponding
latent state, where N , D, and Q(< D) are the number of samples, the dimension of the observation
space, and the dimension of the latent space, respectively. In the VGPDS, these variables are related
as follows:

xnj = gj(tn) + ηnj , ηnj ∼ N (0, 1/βxj ),

yni = fi(xn) + εni, εni ∼ N (0, 1/βyi ), (1)

where fi(x) ∼ GP(µfi (x), kfi (x,x′)) and gj(t) ∼ GP(µgj (t), k
g
j (t, t′)) are the emission function

from the latent space to the i-th dimension of the observation space and the dynamics function
from the time space to the j-th dimension of the latent space, respectively. Here, n ∈ {1, · · · , N},
i ∈ {1, · · · , D}, and j ∈ {1, · · · , Q}. In this paper, a zero-mean function is used for all GPs. Fig.
1 shows graphical representations of HMM and VGPDS. Although the Gaussian process dynamical
model (GPDM) [10], which involves an auto-regressive dynamics function, is also a GP-based model
for time-series, it is not considered in this paper.

The marginal likelihood of the VGPDS is given as

p(Y|t) =

∫
p(Y|X)p(X|t)dX. (2)
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Figure 1: Graphical representations of (left) the left-to-right HMM and (right) the VGPDS: In the
left figure, yn ∈ RD and xn ∈ {1, · · · , C} are observations and discrete latent states. In the right

figure, yni, fni, xnj , gnj , and tn are observations, emission function points, latent states, dynamics
function points, and times, respectively. All function points in the same plate are fully connected.

Since the integral in Eq. (2) is not tractable, a variational method is used by introducing a variational
distribution q(X). A variational lower bound on the logarithm of the marginal likelihood is

log p(Y|t) ≥
∫
q(X) log

p(Y|X)p(X|t)

q(X)
dX

=

∫
q(X) log p(Y|X)dX−

∫
q(X) log

q(X)

p(X|t)
dX

= L − KL(q(X)||p(X|t)). (3)

By the assumption of independence over the observation dimension, the first term in Eq. (3) is given
as

L =

D∑
i=1

∫
q(X) log p(yi|X)dX =

D∑
i=1

Li. (4)

In [9], a variational approach which involves sparse approximation of the covariance matrix obtained
from GP is proposed. The variational lower bound on Li is given as

Li ≥ log

[
(βyi )N/2|K̃i|1/2

(2π)N/2|βyi Ψ2i + K̃i|1/2
e(−

1
2y

T
i Wiyi)

]
− βyi

2
(ψ0i − Tr(K̃−1i Ψ2i)), (5)

where Wi = βyi IN − (βyi )2Ψ1i(β
y
i Ψ2i + K̃i)

−1ΨT
1i. Here, K̃i ∈ RM×M is a kernel matrix calcu-

lated using the i-th kernel function and inducing input variables X̃ ∈ RM×Q that are used for sparse
approximation of the full kernel matrix Ki. The closed-form of the statistics {ψ0i,Ψ1i,Ψ2i}Di=1,
which are functions of variational parameters and inducing points, can be found in [9]. In the sec-
ond term of Eq. (3), p(X|t) =

∏Q
j=1 p(xj) and q(X) =

∏N
n

∏Q
j=1N (µnj , snj) are the prior for

the latent state and the variational distribution that is used for approximating the posterior of the
latent state, respectively.

The parameter set Θ, which consists of the hyperparameters {θf ,θg} of the kernel functions,
the noise variances {βy,βx}, the variational parameters {[µn1, · · · , µnQ], [sn1, · · · , snQ]}Nn=1 of
q(X), and the inducing input points X̃, is estimated by maximizing the lower bound on log p(Y|t)
in Eq. (3) using a scaled conjugate gradient (SCG) algorithm.

2.2 Acoustic modeling using VGPDS

For several decades, HMM has been the predominant model for acoustic speech modeling. However,
as we mentioned in Section 1, the model suffers from two major limitations: discrete state variables
and first-order Markovian structure which can model short-range dependency over the observations.
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To overcome such limitations of the HMM, we propose an acoustic speech model based on the
VGPDS, which is a nonlinear and nonparametric model that can be used to represent the complex
dynamic structure of speech and long-range dependency over observations of speech. In addition,
to fit the model to large-scale speech data, we describe various implementation issues.

2.2.1 Time scale modification

The time length of each phoneme segment in an utterance varies with various conditions such as
position of the phoneme segment in the utterance, emotion, gender, and other speaker and environ-
ment conditions. To incorporate this fact into the proposed acoustic model, the time points tn are
modified as follows:

tn =
n− 1

N − 1
, (6)

where n and N are the observation index and the number of observations in a phoneme segment,
respectively. This time scale modification makes all phoneme signals have unit time length.

2.2.2 Hyperparameters

To compute the kernel matrices in Eq. (5), the kernel function must be defined. We use the radial
basis function (RBF) kernel for the emission function f as follows:

kf (x,x′) = αf exp

− Q∑
j=1

ωfj (xj − x′j)2
 , (7)

where αf and ωfj are the RBF kernel variance and the j-th inverse length scale, respectively. The
RBF kernel function is adopted for representing smoothness of speech. For the dynamics function
g, the following kernel function is used:

kg(t, t′) = αg exp
(
−ωg(t− t′)2

)
+ λtt′ + b, (8)

where λ and b are linear kernel variance and bias, respectively. The above dynamics kernel, which
consists of both linear and nonlinear components, is used for representing the complex dynamics of
the articulator. All hyperparameters are assumed to be independent in this paper.

In [11], same kernel function parameters are shared over all dimensions of human-motion capture
data and high-dimensional raw video data. However, this extensive sharing of the hyperparame-
ters is unsuitable for speech modeling. Even though each dimension of observations is normal-
ized in advance to have unit variance, the signal-to-noise ratio (SNR) is not consistent over all
dimensions. To handle this problem, this paper considers each dimension to be modeled indepen-
dently using different kernel function parameters. Therefore, the hyperparameter sets are defined as
θf = {αfi , {ω

f
1i, · · · , ω

f
Qi}}Di=1 and θg = {αgj , ω

g
j , λj , bj}

Q
j=1.

2.2.3 Priors on the hyperparameters

In the parameter estimation of the VGPDS, the SCG algorithm does not guarantee the optimal solu-
tion. To overcome this problem, we place the following prior on the hyperparameters of the kernel
functions as given below

p(γ) ∝ exp(−γ2/γ̄), (9)

where γ ∈ {θf ,θg} and γ̄ are the hyper-parameter and the model parameter of the prior, respec-
tively. In this paper, γ̄ is set to the sample variance for the hyperparameters of the emission kernel
functions, and γ̄ is set to 1 for the hyperparameters of the dynamics kernel functions. Uniform
priors are adopted for other hyperparameters, then the parameters of the VGPDS are estimated by
maximizing the joint distribution p(Y,Θ|t) = p(Y|t,Θ)p(Θ).

2.2.4 Variance constraint

In the lower bound of Eq. (5), the second term on the right-hand side is the regularization term that
represents the sparse approximation error of the full kernel matrix Ki. Note that with more inducing
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input points, approximation error becomes smaller. However, only a small number of inducing
input points can be used owing to the limited availability of computational power, which increases
the effect of the regularization term.

To mitigate this problem, we introduce the following constraint on the diagonal terms of the covari-
ance matrix as given below:

Tr(〈Ki〉q(X))

N
+ 1/βyi = σ2

i , (10)

where 〈Ki〉q(X) and σ2
i are the expectation of the full kernel matrix Ki and the sample variance of

the i-th dimension of the observation, respectively. This constraint is designed so that the variance
of each observation calculated from the estimated model is equal to the sample variance. By using
ψ0i = Tr(〈Ki〉q(X)), the inverse noise variance parameter is obtained directly by βyi = (σ2

i −
ψ0i/N)−1 without separate gradient-based optimization. Then, the partial derivative ∂ log βy

i

∂ψ0i
=

1
Nσ2−ψ0i

is used for SCG-based optimization. In Section 3.1, the effectiveness of the variance
constraint is demonstrated empirically.

2.3 Classification

For classification with trained VGPDSs, maximum-likelihood (ML) decoding is used. Let D(l) =
{Y(l), t(l)} and Θ(l) be the observation and parameter sets of the l-th VGPDS, respectively. Given
the test data D∗ = {Y∗, t∗}, the classification result l̂ ∈ {1, · · · , L} can be obtained by

l̂ = arg max
l

log p(Y∗|t∗,Y(l), t(l),Θ(l))

= arg max
l

log
p(Y(l),Y∗|t(l), t∗,Θ(l))

p(Y(l)|t(l),Θ(l))
. (11)

3 Experiments

To evaluate the effectiveness of the proposed model, three different kinds of experiments have been
designed:

1. Parameter estimation: validating the effectiveness of the proposed variance constraint (Sec-
tion 2.2.4) on model parameter estimation

2. Two-class classification using synthetic data: demonstrating explicitly the advantages of
the proposed model over the HMM with respect to the degree of dependency over the
observations

3. Phoneme classification: evaluating the performance of the proposed model on real speech
data

Each experiment is described in detail in the following subsections. In this paper, the proposed
model is referred to as the constrained-VGPDS (CVGPDS).

3.1 Parameter estimation

In this subsection, the experiments of parameter estimation on synthetic data are described. Syn-
thetic data are generated by using a phoneme model that is selected from the trained models in
Section 3.3 and then modified. The RBF kernel variances of the emission functions and the emis-
sion noise variances are modified from the selected model. In this experiment, the emission noise
variances and inducing input points are estimated, while all other parameters are fixed to the true
values used in generating the data.

Fig. 2 shows the parameter estimation results. The estimates of the 39-dimensional noise variance
of the emission functions are shown with the true noise variances, the true RBF kernel variances, and
the sample variances of the synthetic data. The top row denotes the estimation results without the
variance constraint, and the bottom row with the variance constraint. By comparing the two figures

5



Figure 2: Results of parameter estimation: (top-left) VGPDS with M = 5, (top-right) VGPDS with
M = 30, and (bottom) CVGPDS with M = 5

on the top row, we can confirm that the estimation result of the noise variance withM = 30 inducing
input points is better than that with M = 5 inducing input points. This result is obvious in the sense
that smaller values of M produce more errors in the sparse approximation of the covariance matrix.
However, both noise variance estimates are still different from the true values. By comparing the
top and bottom rows, we can see that the proposed CVGPDS outperforms the VGPDS in terms of
parameter estimation. Remarkably, the estimation result of the CVGPDS withM = 5 inducing input
points is much better than the result of the VGPDS with M = 30. Based on these observations, we
can conclude that the proposed CVGPDS is considerably more robust to the sparse approximation
error compared to the VGPDS, as we claimed in Section 2.2.4.

3.2 Two-class classification using synthetic data

This section aims to show that when there is strong dependency over the observations, the proposed
CVGPDS is a more appropriate model than the HMM for the classification task. To this end, we
first generated several sets of two-class classification datasets with different degrees of dependency
over the observations. The considered classification task is to map each input segment to one of two
class labels. Using s ∈ {1, ..., S} as the segment index, the synthetic dataset D = {Ys, ts, ls}Ss=1
consists of S segments, where the s-th segment has Ns samples. Here, Ys ∈ RNs×D, ts ∈ RNs ,
and ls are the observation data, time, and class label of the s-th segment, respectively. The synthetic
dataset is generated as follows:

• Mean and kernel functions of two GPs gj(t) and fi(x) are defined as

gj(t) : µgj (t) = ajt+ bj , kgj (t, t′) = 1t=t′

fi(x) : µfi (x) =
∑Zi

z=1 wzN(x; mz
iΛ

z
i ), kfi (x,x′) = αi exp(−ωi||x− x′||) (12)

where {aj , bj}, {wz , mz
i , Λz

i }, and {αi, ωi} are respectively the parameters of the linear,
Gaussian mixture, and RBF kernel functions. The superscript z denotes the component
index of the Gaussian mixture, and Zi is the number of components in fi(x).
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• For the s-th segment, {Ys, ts, ls},
1. ls is selected as either class 1 or 2.
2. Ns is randomly selected from interval [20, 30], and ts is obtained by using Eq. (6).
3. From ts, the mean vector µgj (ts) and covariance matrix Kg

j are obtained for j =

1, ..., Q. Let Xs ∈ RNs×Q be the latent state of the s-th segment. Then, the j-th col-
umn of Xs is generated by theNs-dimensional Gaussian distributionN (µgj (ts),K

g
j ).

4. From Xs, the mean vector µfi (Xs) and covariance matrix Kf
i are obtained for i =

1, ..., D. Then, the i-th column of Ys is generated by the Ns-dimensional Gaussian
distribution, N (µfi (Xs),K

f
i ).

Note that parameter ωi controls the degree of dependency over the observations. For instance, if ωi
decreases, the off-diagonal terms of the emission kernel matrix Kf

i increase, which means stronger
correlations over the observations.

The experimental setups are as follows. The synthesized dataset consists of 200 segments in total
(100 segments per class). The dimensions of the latent space and observation space are set to Q = 2
and D = 5, respectively. We use 6(= Zi) components for the mean function of the emission kernel
function. In this experiment, three datasets are synthesized and used to compare the CVGPDS and
the HMM. When generating each dataset, we use two different ωi values, one for each class, while
all other parameters in Eq. (12) are shared between the two classes. As a result, the degree of
correlation between the observations is the only factor that distinguishes the two classes. The three
generated datasets have different degrees of correlation over the observations, as a result of setting
different ωi values for generating each dataset. In particular, the third dataset is constructed with two
limitations of HMM such that it is well represented by an HMM. This could be achieved simply by
changing the form of the mean function µgj (t) from a linear to a step function, and setting ωi =∞ so
that each data sample is generated independently of the others. In the third dataset, the two classes
are set to have different αi values. The classification experiments are conducted using an HMM and
CVGPDS.

Table 1: Classification accuracy for the two-class synthetic datasets (10-fold CV average [%]):
All parameters except ωi are set to be equal for classes 1 and 2.

In the case of ωi =∞, αi are set to be different.

ωi (class 1 : class 2) 0.1 : 0.5 1.0 : 2.0 ∞ :∞
HMM 61.0 68.5 88.5

CVGPDS 78.0 79.0 92.0

Table 1 summarizes the classification performance of the HMM and CVGPDS for the three synthetic
datasets. Remarkably, in all cases, the proposed CVGPDS outperforms the HMM, even in the case
of ωi = ∞ (the fourth column), where we assumed the dataset follows HMM-like characteristics.
Comparing the second and the third columns of Table 1, we can see that the performance of the
HMM degrades by 6.5% as ωi becomes smaller, while the proposed CVGPDS almost maintains
its performance with only 1.0% reduction. This result demonstrates the superiority of the proposed
CVGPDS in modeling data with strong correlations over the observations. Apparently, the HMM
failed to distinguish the two classes with different degree of dependency over the observations. In
contrast, the proposed CVGPDS distinguishes the two classes more effectively by capturing the
different degrees of inter-dependencies over the observations incorporated in each class.

3.3 Phoneme classification

In this section, phoneme classification experiments is described on real speech data from the TIMIT
database. The TIMIT database contains a total of 6300 phonetically rich utterances, each of which
is manually segmented based on 61 phoneme transcriptions. Following the standard regrouping of
phoneme labels [11], 61 phonemes are reduced to 48 phonemes selected for modeling. As observa-
tions, 39-dimensional Mel-frequency cepstral coefficients (MFCCs) (13 static coefficients, ∆, and

7



∆∆) extracted from the speech signals with standard 25 ms frame size, and 10 ms frame shifts are
used. The dimension of the latent space is set to Q = 2.

For the first phoneme classification experiment, 100 segments per phoneme are randomly selected
using the phoneme boundary provided information in the TIMIT database. The number of inducing
input points is set toM = 10. A 10-fold cross-validation test was conducted to evaluate the proposed
model in comparison with an HMM that has three states and a single Gaussian distribution with a
full covariance matrix per state. Parameters of the HMMs are estimated by using the conventional
expectation-maximization (EM) algorithm with a maximum likelihood criterion.

Table 2: Classification accuracy on the 48-phoneme dataset (10-fold CV average [%]):
100 segments are used for training and testing each phoneme model

HMM VGPDS CVGPDS

49.19 48.17 49.36

Table 2 shows the experimental results of a 48-phoneme classification. Compared to the HMM and
VGPDS, the proposed CVGPDS performs more effectively.

For the second phoneme classification experiment, the TIMIT core test set consisting of 192 sen-
tences is used for evaluation. We use the same 100 segments for training the phoneme models as in
the first phoneme classification experiment. The size of the training dataset is smaller than that of
conventional approaches due to our limited computational ability. When evaluating the models, we
merge the labels of 48 phonemes into the commonly used 39 phonemes [11]. Given speech obser-
vations with boundary information, a sequence of log-likelihoods is obtained, and then a bigram is
constructed to incorporate linguistic information into the classification score. In this experiment, the
number of inducing input points is set to M = 5.

Table 3: Classification accuracy on the TIMIT core test set [%]:
100 segments are used for training each phoneme model

HMM VGPDS CVGPDS

57.83 61.44 61.54

Table 3 shows the experimental results of phoneme classification for the TIMIT core test set. As
shown by the results in Table 2, the proposed CVGPDS performed better than the HMM and VG-
PDS. However, the classification accuracies in Table 3 are lower than the state-of-the-art phoneme
classification results [12-13]. The reasons for low accuracy are as follows: 1) insufficient amount
of data is used for training the model owing to limited availability of computational power; 2) a
mixture model for the emission is not considered. These remaining issues need to be addressed for
improved performance.

4 Conclusion

In this paper, a VGPDS-based acoustic model for phoneme classification was considered. The pro-
posed acoustic model can represent the nonlinear latent dynamics and dependency among observa-
tions by GP priors. In addition, we introduced a variance constraint on the VGPDS. Although the
proposed model could not achieve the state-of-the-art performance of phoneme classification, the
experimental results showed that the proposed acoustic model has potential for speech modeling.
For future works, extension to phonetic recognition and mixture of the VGPDS will be considered.
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