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Abstract

We present a general method for deriving collapsed variational inference algo-
rithms for probabilistic models in the conjugate exponential family. Our method
unifies many existing approaches to collapsed variational inference. Our collapsed
variational inference leads to a new lower bound on the marginal likelihood. We
exploit the information geometry of the bound to derive much faster optimization
methods based on conjugate gradients for these models. Our approach is very
general and is easily applied to any model where the mean field update equations
have been derived. Empirically we show significant speed-ups for probabilistic
inference using our bound.

1 Introduction

Variational bounds provide a convenient approach to approximate inference in a range of intractable
models [Ghahramani and Beal, 2001]. Classical variational optimization is achieved through coordi-
nate ascent which can be slow to converge. A popular solution [King and Lawrence, 2006, Teh et al.,
2007, Kurihara et al., 2007, Sung et al., 2008, Lázaro-Gredilla and Titsias, 2011, Lázaro-Gredilla
et al., 2011] is to marginalize analytically a portion of the variational approximating distribution,
removing this from the optimization. In this paper we provide a unifying framework for collapsed
inference in the general class of models composed of conjugate-exponential graphs (CEGs).

First we review the body of earlier work with a succinct and unifying derivation of the collapsed
bounds. We describe how the applicability of the collapsed bound to any particular CEG can be
determined with a simple d-separation test. Standard variational inference via coordinate ascent
turns out to be steepest ascent with a unit step length on our unifying bound. This motivates us
to consider natural gradients and conjugate gradients for fast optimization of these models. We
apply our unifying approach to a range of models from the literature obtaining, often, an order of
magnitude or more increase in convergence speed. Our unifying view allows collapsed variational
methods to be integrated into general inference tools like infer.net [Minka et al., 2010].
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2 The Marginalised Variational Bound

The advantages to marginalising analytically a subset of variables in variational bounds seem to
be well understood: several different approaches have been suggested in the context of specific
models. In Dirichlet process mixture models Kurihara et al. [2007] proposed a collapsed approach
using both truncated stick-breaking and symmetric priors. Sung et al. [2008] proposed ‘latent space
variational Bayes’ where both the cluster-parameters and mixing weights were marginalised, again
with some approximations. Teh et al. [2007] proposed a collapsed inference procedure for latent
Dirichlet allocation (LDA). In this paper we unify all these results from the perspective of the ‘KL
corrected bound’ [King and Lawrence, 2006]. This lower bound on the model evidence is also an
upper bound on the original variational bound, the difference between the two bounds is given by a
Kullback Leibler divergence. The approach has also been referred to as the marginalised variational
bound by Lázaro-Gredilla et al. [2011], Lázaro-Gredilla and Titsias [2011]. The connection between
the KL corrected bound and the collapsed bounds is not immediately obvious. The key difference
between the frameworks is the order in which the marginalisation and variational approximation are
applied. However, for CEGs this order turns out to be irrelevant. Our framework leads to a more
succinct derivation of the collapsed approximations. The resulting bound can then be optimised
without recourse to approximations in either the bound’s evaluation or its optimization.

2.1 Variational Inference

Assume we have a probabilistic model for data, D, given parameters (and/or latent variables), X, Z,
of the form p(D,X,Z) = p(D |Z,X)p(Z |X)p(X). In variational Bayes (see e.g. Bishop [2006])
we approximate the posterior p(Z,X|D) by a distribution q(Z,X). We use Jensen’s inequality
to derive a lower bound on the model evidence L, which serves as an objective function in the
variational optimisation:

p(D) ≥ L =

∫
q(Z,X) ln

p(D,Z,X)

q(Z,X)
dZ dX. (1)

For tractability the mean field (MF) approach assumes q factorises across its variables, q(Z,X) =
q(Z)q(X). It is then possible to implement an optimisation scheme which analytically optimises
each factor alternately, with the optimal distribution given by

q?(X) ∝ exp

{∫
q(Z) ln p(D,X|Z) dZ

}
, (2)

and similarly for Z: these are often referred to as VBE and VBM steps. King and Lawrence [2006]
substituted the expression for the optimal distribution (for example q?(X)) back into the bound (1),
eliminating one set of parameters from the optimisation, an approach that has been reused by Lázaro-
Gredilla et al. [2011], Lázaro-Gredilla and Titsias [2011]. The resulting bound is not dependent on
q(X). King and Lawrence [2006] referred to this new bound as ‘the KL corrected bound’. The
difference between the bound, which we denote LKL, and a standard mean field approximation LMF,
is the Kullback Leibler divergence between the optimal form of q∗(X) and the current q(X).

We re-derive their bound by first using Jensen’s inequality to construct the variational lower bound
on the conditional distribution,

ln p(D|X) ≥
∫
q(Z) ln

p(D,Z|X)

q(Z)
dZ , L1. (3)

This object turns out to be of central importance in computing the final KL-corrected bound and
also in computing gradients, curvatures and the distribution of the collapsed variables q?(X). It is
easy to see that it is a function of X which lower-bounds the log likelihood p(D |X), and indeed
our derivation treats it as such. We now marginalize the conditioned variable from this expression,

ln p(D) ≥ ln

∫
p(X) exp{L1} dX , LKL, (4)

giving us the bound of King and Lawrence [2006] & Lázaro-Gredilla et al. [2011]. Note that one set
of parameters was marginalised after the variational approximation was made.

Using (2), this expression also provides the approximate posterior for the marginalised variables X:
q?(X) = p(X)eL1−LKL (5)

and eLKL appears as the constant of proportionality in the mean-field update equation (2).
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3 Partial Equivalence of the Bounds

We can recover LMF from LKL by again applying Jensen’s inequality,

LKL = ln

∫
q(X)

p(X)

q(X)
exp{L1} dX ≥

∫
q(X) ln

{
p(X)

q(X)
exp{L1}

}
dX, (6)

which can be re-arranged to give the mean-field bound,

LKL ≥
∫
q(X)q(Z) ln

{
p(D|Z,X)p(Z)p(X)

q(Z)q(X)

}
dX dZ, (7)

and it follows that LKL = LMF +KL(q∗(X)||q(X)) and1 LKL ≥ LMF. For a given q(Z), the bounds
are equal after q(X) is updated via the mean field method: the approximations are ultimately the
same. The advantage of the new bound is to reduce the number of parameters in the optimisation. It
is particularly useful when variational parameters are optimised by gradient methods. Since VBEM
is equivalent to a steepest descent gradient method with a fixed step size, there appears to be a lot to
gain by combining the KLC bound with more sophisticated optimization techniques.

3.1 Gradients

Consider the gradient of the KL corrected bound with respect to the parameters of q(Z):

∂LKL

∂θz
= exp{−LKL}

∂

∂θz

∫
exp{L1}p(X) dX = Eq?(X)

[∂L1

∂θz

]
, (8)

where we have used the relation (5). To find the gradient of the mean-field bound we note that it can
be written in terms of our conditional bound (3) as LMF = Eq(X)

[
L1 + ln p(X)− ln q(X)

]
giving

∂LMF

∂θz
= Eq(X)

[∂L1

∂θz

]
(9)

thus setting q(X) = q?(X) not only makes the bounds equal, LMF = LKL, but also their gradients
with respect to θZ .

Sato [2001] has shown that the variational update equation can be interpreted as a gradient method,
where each update is also a step in the steepest direction in the canonical parameters of q(Z). We
can combine this important insight with the above result to realize that we have a simple method for
computing the gradients of the KL corrected bound: we only need to look at the update expressions
for the mean-field method. This result also reveals the weakness of standard variational Bayesian
expectation maximization (VBEM): it is a steepest ascent algorithm. Honkela et al. [2010] looked to
rectify this weakness by applying a conjugate gradient algorithm to the mean field bound. However,
they didn’t obtain a significant improvement in convergence speed. Our suggestion is to apply
conjugate gradients to the KLC bound. Whilst the value and gradient of the MF bound matches
that of the KLC bound after an update of the collapsed variables, the curvature is always greater. In
practise this means that much larger steps (which we compute using conjugate gradient methods) can
be taken when optimizing the KLC bound than for the MF bound leading to more rapid convergence.

3.2 Curvature of the Bounds

King and Lawrence [2006] showed empirically that the KLC bound could lead to faster convergence
because the bounds differ in their curvature: the curvature of the KLC bound enables larger steps to
be taken by an optimizer. We now derive analytical expressions for the curvature of both bounds.
For the mean field bound we have

∂2LMF

∂θ2z
= Eq(X)

[∂2L1

∂θ2z

]
, (10)

1We use KL(·||·) to denote the Kullback Leibler divergence between two distributions.
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and for the KLC bound, with some manipulation of (4) and using (5):

∂2LKL

∂θ
[i]
z ∂θ

[j]
z

= e−LKL
∂2eLKL

∂θ
[i]
z ∂θ

[j]
z

− e−2LKL

{∂eLKL

∂θ
[i]
z

}{∂eLKL

∂θ
[j]
z

}
= Eq?(X)

[ ∂2L1

∂θ
[i]
z ∂θ

[j]
z

]
+ Eq?(X)

[ ∂L1

∂θ
[i]
z

∂L1

∂θ
[j]
z

]
−
{
Eq?(X)

[ ∂L1

∂θ
[i]
z

]}{
Eq?(X)

[ ∂L1

∂θ
[j]
z

]}
.

(11)

In this result the first term is equal to (10), and the second two terms combine to be always positive
semi-definite, proving King and Lawrence [2006]’s intuition about the curvature of the bound. When
curvature is negative definite (e.g. near a maximum), the KLC bound’s curvature is less negative
definite, enabling larger steps to be taken in optimization. Figure 1(b) illustrates the effect of this as
well as the bound’s similarities.

3.3 Relationship to Collapsed VB

In collapsed inference some parameters are marginalized before applying the variational bound. For
example, Sung et al. [2008] proposed a latent variable model where the model parameters were
marginalised, and Teh et al. [2007] proposed a non-parametric topic model where the document
proportions were collapsed. These procedures lead to improved inference, or faster convergence.

The KLC bound derivation we have provided also marginalises parameters, but after a variational
approximation is made. The difference between the two approaches is distilled in these expressions:

lnEp(X)

[
exp

{
Eq(Z)

[
ln p(D|X,Z)

]}]
Eq(Z)

[
ln

{
Ep(X)

[
p(D|X,Z)

]}]
(12)

where the left expression appears in the KLC bound, and the right expression appears in the bound
for collapsed variational Bayes, with the remainder of the bounds being equal. Whilst appropri-
ately conjugate formulation of the model will always ensure that the KLC expression is analytically
tractable, the expectation in the collapsed VB expression is not. Sung et al. [2008] propose a first
order approximation to the expectation of the form Eq(Z)

[
f(Z)

]
≈ f(Eq(Z)

[
Z
]
), which reduces

the right expression to the that on the left. Under this approximation2 the KL corrected approach is
equivalent to the collapsed variational approach.

3.4 Applicability

To apply the KLC bound we need to specify a subset, X, of variables to marginalize. We select
the variables that break the dependency structure of the graph to enable the analytic computation
of the integral in (4). Assuming the appropriate conjugate exponential structure for the model we
are left with the requirement to select a sub-set that induces the appropriate factorisation. These
induced factorisations are discussed in some detail in Bishop [2006]. They are factorisations in
the approximate posterior which arise from the form of the variational approximation and from the
structure of the model. These factorisations allow application of KLC bound, and can be identified
using a simple d-separation test as Bishop discusses.

The d-separation test involves checking for independence amongst the marginalised variables (X in
the above) conditioned on the observed dataD and the approximated variables (Z in the above). The
requirement is to select a sufficient set of variables, Z, such that the effective likelihood for X, given
by (3) becomes conjugate to the prior. Figure 1(a) illustrates the d-separation test with application
to the KLC bound.

For latent variable models, it is often sufficient to select the latent variables for X whilst collapsing
the model variables. For example, in the specific case of mixture models and topic models, ap-
proximating the component labels allows for the marginalisation of the cluster parameters (topics

2Kurihara et al. [2007] and Teh et al. [2007] suggest a further second order correction and assume that that
q(Z) is Gaussian to obtain tractability. This leads to additional correction terms that augment KLC bound. The
form of these corrections would need to be determined on a case by case basis, and has in fact been shown to
be less effective than those methods unified here [Asuncion et al., 2012].
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Figure 1: (a) An example directed graphical model on which we could use the KLC bound. Given
the observed node C, the nodes A,F d-separate given nodes B,D,E. Thus we could make an explicit
variational approximation for A,F, whilst marginalising B,D,E. Alternatively, we could select B,D,E
for a parameterised approximate distribution, whilst marginalising A,F. (b) A sketch of the KLC
and MF bounds. At the point where the mean field method has q(X) = q?(X), the bounds are
equal in value as well as in gradient. Away from the this point, the different between the bounds
is the Kullback Leibler divergence between the current MF approximation for X and the implicit
distribution q?(X) of the KLC bound.

allocations) and mixing proportions. This allowed Sung et al. [2008] to derive a general form for
latent variable models, though our formulation is general to any conjugate exponential graph.

4 Riemannian Gradient Based Optimisation

Sato [2001] and Hoffman et al. [2012] showed that the VBEM procedure performs gradient ascent in
the space of the natural parameters. Using the KLC bound to collapse the problem, gradient methods
seem a natural choice for optimisation, since there are fewer parameters to deal with, and we have
shown that computation of the gradients is straightforward (the variational update equations contain
the model gradients). It turns out that the KLC bound is particularly amenable to Riemannian or
natural gradient methods, because the information geometry of the exponential family distrubu-
tion(s), over which we are optimising, leads to a simple expression for the natural gradient. Previous
investigations of natural gradients for variational Bayes [Honkela et al., 2010, Kuusela et al., 2009]
required the inversion of the Fisher information at every step (ours does not), and also used VBEM
steps for some parameters and Riemannian optimisation for other variables. The collapsed nature
of the KLC bound means that these VBEM steps are unnecessary: the bound can be computed by
parameterizing the distribution of only one set of variables (q(Z)) whilst the implicit distribution of
the other variables is given in terms of the first distribution and the data by equation (5).

We optimize the lower bound LKL with respect to the parameters of the approximating distribution
of the non-collapsed variables. We showed in section 2 that the gradient of the KLC bound is given
by the gradient of the standard MF variational bound, after an update of the collapsed variables. It
is clear from their definition that the same is true of the natural gradients.

4.1 Variable Transformations

We can compute the natural gradient of our collapsed bound by considering the update equations of
the non-collapsed problem as described above. However, if we wish to make use of more powerful
optimisation methods like conjugate gradient ascent, it is helpful to re-parameterize the natural pa-
rameters in an unconstrained fashion. The natural gradient is given by [Amari and Nagaoka, 2007]:

g̃(θ) = G(θ)−1
∂LKL

∂θ
(13)

where G(θ) is the Fisher information matrix whose i,jth element is given by

G(θ)[i,j] = −Eq(X | θ)

[∂2 ln q(X |θ)
∂θ[i]∂θ[j]

]
. (14)
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For exponential family distributions, this reduces to∇2
θψ(θ), where ψ is the log-normaliser. Further,

for exponential family distributions, the Fisher information in the canonical parameters (θ) and that
in the expectation parameters (η) are reciprocal, and we also have G(θ) = ∂η/∂θ. This means that
the natural gradient in θ is given by

g̃(θ) = G(θ)−1
∂η

∂θ

∂LKL

∂η
=
∂LKL

∂η
and g̃(η) =

∂LKL

∂θ
. (15)

The gradient in one set of parameters provides the natural gradient in the other. Thus when our
approximating distribution q is exponential family, we can compute the natural gradient without the
expensive matrix inverse.

4.2 Steepest Ascent is Coordinate Ascent

Sato [2001] showed that the VBEM algorithm was a gradient based algorithm. In fact, VBEM
consists of taking unit steps in the direction of the natural gradient of the canonical parameters.
From equation (9) and the work of Sato [2001], we see that the gradient of the KLC bound can
be obtained by considering the standard mean-field update for the non-collapsed parameter Z. We
confirm these relationships for the models studied in the next section in the supplementary material.

Having confirmed that the VB-E step is equivalent to steepest-gradient ascent we now explore
whether the procedure could be improved by the use of conjugate gradients.

4.3 Conjugate Gradient Optimization

One idea for solving some of the problems associated with steepest ascent is to ensure each gradient
step is conjugate (geometrically) to the previous. Honkela et al. [2010] applied conjugate gradients
to the standard mean field bound, we expect much faster convergence for the KLC bound due to
its differing curvature. Since VBEM uses a step length of 1 to optimize,3 we also used this step
length in conjugate gradients. In the natural conjugate gradient method, the search direction at the
ith iteration is given by si = −g̃i + βsi−1. Empirically the Fletcher-Reeves method for estimating
β worked well for us:

βFR =
〈g̃i, g̃i〉i

〈g̃i−1, g̃i−1〉i−1
(16)

where 〈·, ·〉i denotes the inner product in Riemannian geometry, which is given by g̃>G(ρ)g̃. We
note from Kuusela et al. [2009] that this can be simplified since g̃>Gg̃ = g̃>GG−1g = g̃>g, and
other conjugate methods, defined in the supplementary material, can be applied similarly.

5 Experiments

For empirical investigation of the potential speed ups we selected a range of probabilistic models.
We provide derivations of the bound and fuller explanations of the models in the supplementary
material. In each experiment, the algorithm was considered to have converged when the change
in the bound or the Riemannian gradient reached below 10−6. Comparisons between optimisation
procedures always used the same initial conditions (or set of initial conditions) for each method.
First we recreate the mixture of Gaussians example described by Honkela et al. [2010].

5.1 Mixtures of Gaussians

For a mixture of Gaussians, using the d-separation rule, we select for X the cluster allocation (latent)
variables. These are parameterised through the softmax function for unconstrained optimisation.
Our model includes a fully Bayesian treatment of the cluster parameters and the mixing proportions,
whose approximate posterior distributions appear as (5). Full details of the algorithm derivation are
given in the supplementary material. A neat feature is that we can make use of the discussion above
to derive an expression for the natural gradient without a matrix inverse.

3We empirically evaluated a line-search procedure, but found that in most cases that Wolfe-Powell condi-
tions were met after a single step of unit length.
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Table 1: Iterations to convergence for the mixture of Gaussians problem, with varying overlap (R). This table
reports the average number of iterations taken to reach (within 10 nats of) the best known solution. For the more
difficult scenarios (with more overlap in the clusters) the VBEM method failed to reach the optimum solution
within 500 restarts

CG. method R = 1 R = 2 R = 3 R = 4 R = 5
Polack-Ribiére 3, 100.37 15, 698.57 5, 767.12 1, 613.09 3, 046.25

Hestenes-Stiefel 1, 371.55 5, 501.25 5, 922.4 358.03 172.39
Fletcher-Reeves 416.18 1,161.35 5,091.0 792.10 494.24

VBEM ∞ ∞ ∞ 992.07 429.57

Table 2: Time and iterations taken to run LDA on the NIPS 2011 corpus, ± one standard deviation, for two
conjugate methods and VBEM. The Fletcher-Reeves conjugate algorithm is almost ten times as fast as VBEM.
The value of the bound at the optimum was largely the same: deviations are likely just due to the choice of
initialisations, of which we used 12.

Method Time (minutes) Iterations Bound
Hestenes-Steifel 56.4± 18.5 644.3± 214.5 −1, 998, 780± 201
Fletcher-Reeves 38.5± 8.7 447.8± 100.5 −1, 998, 743± 194

VBEM 370± 105 4, 459± 1, 296 −1, 998, 732± 241

In Honkela et al. [2010] data are drawn from a mixture of five two-dimensional Gaussians with
equal weights, each with unit spherical covariance. The centers of the components are at (0, 0) and
(±R,±R). R is varied from 1 (almost completely overlapping) to 5 (completely separate). The
model is initialised with eight components with an uninformative prior over the mixing proportions:
the optimisation procedure is left to select an appropriate number of components.

Sung et al. [2008] reported that their collapsed method led to improved convergence over VBEM.
Since our objective is identical, though our optimisation procedure different, we devised a metric for
measuring the efficacy of our algorithms which also accounts for their propensity to fall into local
minima. Using many randomised restarts, we measured the average number of iterations taken to
reach the best-known optimum. If the algorithm converged at a lesser optimum, those iterations were
included in the denomiator, but we didn’t increment the numerator when computing the average. We
compared three different conjugate gradient approaches and standard VBEM (which is also steepest
ascent on the KLC bound) using 500 restarts.

Table 1 shows the number of iterations required (on average) to come within 10 nats of the best
known solution for three different conjugate-gradient methods and VBEM. VBEM sometimes failed
to find the optimum in any of the 500 restarts. Even relaxing the stringency of our selection to 100
nats, the VBEM method was always at least twice as slow as the best conjugate method.

5.2 Topic Models

Latent Dirichlet allocation (LDA) [Blei et al., 2003] is a popular approach for extracting topics
from documents. To demonstrate the KLC bound we applied it to 200 papers from the 2011 NIPS
conference. The PDFs were preprocessed with pdftotext, removing non-alphabetical characters
and coarsely filtering words by popularity to form a vocabulary size of 2000.4 We selected the latent
topic-assignment variables for parameterisation, collapsing the topics and the document proportions.
Conjugate gradient optimization was compared to the standard VBEM approach.

We used twelve random initializations, starting each algorithm from each initial condition. Topic and
document distributions where treated with fixed, uninformative priors. On average, the Hestenes-
Steifel algorithm was almost ten times as fast as standard VB, as shown in Table 2, whilst the final
bound varied little between approaches.

4Some extracted topics are presented in the supplementary material.
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5.3 RNA-seq alignment

An emerging problem in computational biology is inference of transcript structure and expression
levels using next-generation sequencing technology (RNA-Seq). Several models have been pro-
posed. The BitSeq method [Glaus et al., 2012] is based on a probabilistic model and uses Gibbs
sampling for approximate inference. The sampler can suffer from particularly slow convergence
due to the large size of the problem, which has six million latent variables for the data considered
here. We implemented a variational version of their model and optimised it using VBEM and our
collapsed Riemannian method. We applied the model to data described in Xu et al. [2010], a study
of human microRNA. The model was initialised using four random initial conditions, and optimised
using standard VBEM and the conjugate gradient versions of the algorithm. The Polack-Ribiére
conjugate method performed very poorly for this problem, often giving negative conjugation: we
omit it here. The solutions found for the other algorithms were all fairly close, with bounds com-
ing within 60 nats. The VBEM method was dramatically outperformed by the Fletcher-Reeves and
Hestenes-Steifel methods: it took 4600 ± 20 iterations to converge, whilst the conjugate methods
took only 268±4 and 265±1 iterations to converge. At about 8 seconds per iteration, our collapsed
Riemannian method requires around forty minutes, whilst VBEM takes almost eleven hours. All the
variational approaches represent an improvement over a Gibbs sampler, which takes approximately
one week to run for this data [Glaus et al., 2012].

6 Discussion

Under very general conditions (conjugate exponential family) we have shown the equivalence of
collapsed variational bounds and marginalized variational bounds using the KL corrected perspec-
tive of King and Lawrence [2006]. We have provided a succinct derivation of these bounds, unifying
several strands of work and laying the foundations for much wider application of this approach.

When the collapsed variables are updated in the standard MF bound the KLC bound is identical to
the MF bound in value and gradient. Sato [2001] has shown that coordinate ascent of the MF bound
(as proscribed by VBEM updates) is equivalent to steepest ascent of the MF bound using natural
gradients. This implies that standard variational inference is also performing steepest ascent on the
KLC bound. This equivalence between natural gradients and the VBEM update equations means
our method is quickly implementable for any model where the mean field update equations have
been computed. It is only necessary to determine which variables to collapse using a d-separation
test. Importantly this implies our approach can readily be incorporated in automated inference en-
gines such as that provided by infer.net [Minka et al., 2010]. We’d like to emphasise the ease with
which the method can be applied: we have provided derivations of equivalencies of the bounds and
gradients which should enable collapsed conjugate optimisation of any existing mean field algo-
rithm, with minimal changes to the software. Indeed our own implementations (see supplementary
material) use just a few lines of code to switch between the VBEM and conjugate methods.

The improved performance arises from the curvature of the KLC bound. We have shown that it is
always less negative than that of the original variational bound allowing much larger steps in the
variational parameters as King and Lawrence [2006] suggested. This also provides a gateway to
second-order optimisation, which could prove even faster.

We provided empirical evidence of the performance increases that are possible using our method in
three models. In a thorough exploration of the convergence properties of a mixture of Gaussians
model, we concluded that a conjugate Riemannian algorithm can find solutions that are not found
with standard VBEM. In a large LDA model, we found that performance can be improved many
times over that of the VBEM method. In the BitSeq model for differential expression of genes
transcripts we showed that very large improvements in performance are possible for models with
huge numbers of latent variables.
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