
Localizing 3D cuboids in single-view images

Jianxiong Xiao Bryan C. Russell∗ Antonio Torralba

Massachusetts Institute of Technology ∗University of Washington

Abstract

In this paper we seek to detect rectangular cuboids and localize their corners in
uncalibrated single-view images depicting everyday scenes. In contrast to recent
approaches that rely on detecting vanishing points of the scene and grouping line
segments to form cuboids, we build a discriminative parts-based detector that
models the appearance of the cuboid corners and internal edges while enforcing
consistency to a 3D cuboid model. Our model copes with different 3D viewpoints
and aspect ratios and is able to detect cuboids across many different object cate-
gories. We introduce a database of images with cuboid annotations that spans a
variety of indoor and outdoor scenes and show qualitative and quantitative results
on our collected database. Our model out-performs baseline detectors that use 2D
constraints alone on the task of localizing cuboid corners.

1 Introduction

Extracting a 3D representation from a single-view image depicting a 3D object has been a long-
standing goal of computer vision [20]. Traditional approaches have sought to recover 3D properties,
such as creases, folds, and occlusions of surfaces, from a line representation extracted from the
image [18]. Among these are works that have characterized and detected geometric primitives, such
as quadrics (or “geons”) and surfaces of revolution, which have been thought to form the components
for many different object types [1]. While these approaches have achieved notable early successes,
they could not be scaled-up due to their dependence on reliable contour extraction from natural
images.

In this work we focus on the task of detecting rectangular cuboids, which are a basic geometric
primitive type and occur often in 3D scenes (e.g. indoor and outdoor man-made scenes [22, 23, 24]).
Moreover, we wish to recover the shape parameters of the detected cuboids. The detection and
recovery of shape parameters yield at least a partial geometric description of the depicted scene,
which allows a system to reason about the affordances of a scene in an object-agnostic fashion [9,
15]. This is especially important when the category of the object is ambiguous or unknown.

There have been several recent efforts that revisit this problem [9, 11, 12, 17, 19, 21, 26, 28, 29].
Although there are many technical differences amongst these works, the main pipeline of these ap-
proaches is similar. Most of them estimate the camera parameters using three orthogonal vanishing
points with a Manhattan world assumption of a man-made scene. They detect line segments via
Canny edges and recover surface orientations [13] to form 3D cuboid hypotheses using bottom-
up grouping of line and region segments. Then, they score these hypotheses based on the image
evidence for lines and surface orientations [13].

In this paper we look to take a different approach for this problem. As shown in Figure 1, we aim to
build a 3D cuboid detector to detect individual boxy volumetric structures. We build a discriminative
parts-based detector that models the appearance of the corners and internal edges of cuboids while
enforcing spatial consistency of the corners and edges to a 3D cuboid model. Our model is trained
in a similar fashion to recent work that detects articulated human body joints [27].

1



Input Image Output Detection Result3D Cuboid Detector

detect

Synthesized New Views 

Figure 1: Problem summary. Given a single-view input image, our goal is to detect the 2D corner
locations of the cuboids depicted in the image. With the output part locations we can subsequently
recover information about the camera and 3D shape via camera resectioning.

Our cuboid detector is trained across different 3D viewpoints and aspect ratios. This is in contrast to
view-based approaches for object detection that train separate models for different viewpoints, e.g.
[7]. Moreover, instead of relying on edge detection and grouping to form an initial hypothesis of a
cuboid [9, 17, 26, 29], we use a 2D sliding window approach to exhaustively evaluate all possible
detection windows. Also, our model does not rely on any preprocessing step, such as computing
surface orientations [13]. Instead, we learn the parameters for our model using a structural SVM
framework. This allows the detector to adapt to the training data to identify the relative importance
of corners, edges and 3D shape constraints by learning the weights for these terms. We introduce an
annotated database of images with geometric primitives labeled and validate our model by showing
qualitative and quantitative results on our collected database. We also compare to baseline detectors
that use 2D constraints alone on the tasks of geometric primitive detection and part localization. We
show improved performance on the part localization task.

2 Model for 3D cuboid localization

We represent the appearance of cuboids by a set of parts located at the corners of the cuboid and
a set of internal edges. We enforce spatial consistency among the corners and edges by explicitly
reasoning about its 3D shape. Let I be the image and pi = (xi, yi) be the 2D image location of the
ith corner on the cuboid. We define an undirected loopy graph G = (V, E) over the corners of the
cuboid, with vertices V and edges E connecting the corners of the cuboid. We illustrate our loopy
graph layout in Figure 2(a). We define a scoring function associated with the corner locations in the
image:

S(I, p) =
∑
i∈V

wH
i · HOG(I, pi) +

∑
ij∈E

wD
ij · Displacement2D(pi, pj)

+
∑
ij∈E

wE
ij · Edge(I, pi, pj) + wS · Shape3D(p) (1)

where HOG(I, pi) is a HOG descriptor [4] computed at image location pi and
Displacement2D(pi, pj) = −[(xi − xj)

2, xi − xj , (yi − yj)
2, yi − yj ] is a 2D corner dis-

placement term that is used in other pictorial parts-based models [7, 27]. By reasoning about the
3D shape, our model handles different 3D viewpoints and aspect ratios, as illustrated in Figure 2.
Notice that our model is linear in the weights w. Moreover, the model is flexible as it adapts to
the training data by automatically learning weights that measure the relative importance of the
appearance and spatial terms. We define the Edge and Shape3D terms as follows.

Edge(I, pi, pj): The internal edge information on cuboids is informative and provides a salient
feature for the locations of the corners. For this, we include a term that models the appearance of
the internal edges, which is illustrated in Figure 3. For adjacent corners on the cuboid, we identify
the edge between the two corners and calculate the image evidence to support the existence of such
an edge. Given the corner locations pi and pj , we use Chamfer matching to align the straight line
between the two corners to edges extracted from the image. We find image edges using Canny edge
detection [3] and efficiently compute the distance of each pixel along the line segment to the nearest
edge via the truncated distance transform. We use Bresenham’s line algorithm [2] to efficiently find
the 2D image locations on the line between the two points. The final edge term is the negative mean
value of the Chamfer matching score for all pixels on the line. As there are usually 9 visible edges
for a cuboid, we have 9 dimensions for the edge term.

2



(a) Our Full Model. (b) 2D Tree Model. (c) Example Part Detections.
Figure 2: Model visualization. Corresponding model parts are colored consistently in the figure.
In (a) and (b) the displayed corner locations are the average 2D locations across all viewpoints and
aspect ratios in our database. In (a) the edge thickness corresponds to the learned weight for the edge
term. We can see that the bottom edge is significantly thicker, which indicates that it is informative
for detection, possibly due to shadows and contact with a supporting plane.

Shape3D(p): The 3D shape of a cuboid constrains the layout of the parts and edges in the image.
We propose to define a shape term that measures how well the configuration of corner locations
respect the 3D shape. In other words, given the 2D locations p of the corners, we define a term
that tells us how likely this configuration of corner locations p can be interpreted as the reprojection
of a valid cuboid in 3D. When combined with the weights wS , we get an overall evaluation of
the goodness of the 2D locations with respect to the 3D shape. Let X (written in homogeneous
coordinates) be the 3D points on the unit cube centered at the world origin. Then, X transforms as
x = PLX, where L is a matrix that transforms the shape of the unit cube and P is a 3 × 4 camera
matrix. For each corner, we use the other six 2D corner locations to estimate the product PL using
camera resectioning [10]. The estimated matrix is used to predict the corner location. We use the
negative L2 distance to the predicted corner location as a feature for the corner in our model. As we
model 7 corners on the cuboid, there are 7 dimensions in the feature vector. When combined with
the learned weights wS through dot-product, this represents a weighted reprojection error score.

2.1 Inference

Our goal is to find the 2D corner locations p over the HOG grid of I that maximizes the score given
in Equation (1). Note that exact inference is hard due to the global shape term. Therefore, we
propose a spanning tree approximation to the graph to obtain multiple initial solutions for possible
corner locations. Then we adjust the corner locations using randomized simple hill climbing.

For the initialization, it is important for the computation to be efficient since we need to evaluate all
possible detection windows in the image. Therefore, for simplicity and speed, we use a spanning
tree T to approximate the full graph G, as shown in Figure 2(b). In addition to the HOG feature as
a unary term, we use a popular pairwise spring term along the edges of the tree to establish weak
spatial constraints on the corners. We use the following scoring function for the initialization:

ST (I, p) =
∑
i∈V

wH
i · HOG(I, pi) +

∑
ij∈T

wD
ij · Displacement2D(pi, pj) (2)

Note that the model used for obtaining initial solutions is similar to [7, 27], which is only able
to handle a fixed viewpoint and 2D aspect ratio. Nonetheless, we use it since it meets our speed
requirement via dynamic programming and the distance transform [8].

With the tree approximation, we pick the top 1000 possible configurations of corner locations from
each image and optimize our scoring function by adjusting the corner locations using randomized
simple hill climbing. Given the initial corner locations for a single configuration, we iteratively
choose a random corner i with the goal of finding a new pixel location p̂i that increases the scoring
function given in Equation (1) while holding the other corner locations fixed. We compute the scores
at neighboring pixel locations to the current setting pi. We also consider the pixel location that the
3D rigid model predicts when estimated from the other corner locations. We randomly choose one
of the locations and update pi if it yields a higher score. Otherwise, we choose another random
corner and location. The algorithm terminates when no corner can reach a location that improves
the score, which indicates that we have reached a local maxima.

During detection, since the edge and 3D shape terms are non-positive and the weights are constrained
to be positive, this allows us to upper-bound the scoring function and quickly reject candidate loca-

3



−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

Image Distance Transformed Edge Map Pixels Covered by Line Segment

Dot-product is the Edge Term

Figure 3: Illustration of the edge term in our model. Given line endpoints, we compute a Chamfer
matching score for pixels that lie on the line using the response from a Canny edge detector.

tions without evaluating the entire function. Also, since only one corner can change locations at each
iteration, we can reuse the computed scoring function from previous iterations during hill climbing.
Finally, we perform non-maximal suppression among the parts and then perform non-maximal sup-
pression over the entire object to get the final detection result.

2.2 Learning

For learning, we first note that our scoring function in Equation (1) is linear in the weights w.
This allows us to use existing structured prediction procedures for learning. To learn the weights,
we adapt the structural SVM framework of [16]. Given positive training images with the 2D corner
locations labeled {In, pn} and negative training images {In}, we wish to learn weights and bias term
β = (wH , wD, wE , wS , b) that minimizes the following structured prediction objective function:

min
β,ξ≥0

1

2
β · β + C

∑
n

ξn (3)

∀n ∈ pos β · Φ (In, pn) ≥ 1− ξn
∀n ∈ neg,∀p ∈ P β · Φ (In, p) ≤ −1 + ξn

where all appearance and spatial feature vectors are concatenated into the vector Φ(In, p) and P
is the set of all possible part locations. During training we constrain the weights wD, wE , wS ≥
0.0001. We tried mining negatives from the wrong corner locations in the positive examples but
found that it did not improve the performance. We also tried latent positive mining and empirically
observed that it slightly helps. Since the latent positive mining helped, we also tried an offset
compensation as post-processing to obtain the offset of corner locations introduced during latent
positive mining. For this, we ran the trained detector on the training set to obtain the offsets and
used the mean to compensate for the location changes. However, we observed empirically that it did
not help performance.

2.3 Discussion

Sliding window object detectors typically use a root filter that covers the entire object [4] or a
combination of root filter and part filters [7]. The use of a root filter is sufficient to capture the
appearance for many object categories since they have canonical 3D viewpoints and aspect ratios.
However, cuboids in general span a large number of object categories and do not have a consistent
3D viewpoint or aspect ratio. The diversity of 3D viewpoints and aspect ratios causes dramatic
changes in the root filter response. However, we have observed that the responses for the part filters
are less affected.

Moreover, we argue that a purely view-based approach that trains separate models for the different
viewpoints and aspect ratios may not capture well this diversity. For example, such a strategy would
require dividing the training data to train each model. In contrast, we train our model for all 3D
viewpoints and aspect ratios. We illustrate this in Figure 2, where detected parts are colored con-
sistently in the figure. As our model handles different viewpoints and aspect ratios, we are able to
make use of the entire database during training.

Due to the diversity of cuboid appearance, our model is designed to capture the most salient features,
namely the corners and edges. While the corners and edges may be occluded (e.g. by self-occlusion,

4



(a ) (b) (c)

1° 9° 18° 26° 37° 43°0 15 30 45
−45

0

45

90

Azimuth

El
ev
at
io
n

Figure 4: Illustration of the labeling tool and 3D viewpoint statistics. (a) A cuboid being labeled
through the tool. A projection of the cuboid model is overlaid on the image and the user must
select and drag anchor points to their corresponding location in the image. (b) Scatter plot of 3D
azimuth and elevation angles for annotated cuboids with zenith angle close zero. We perform an
image left/right swap to limit the rotation range. (c) Crops of cuboids at different azimuth angles for
a fixed elevation, with the shown examples marked as red points in the scatter plot of (b).

other objects in front, or cropping), for now we do not handle these cases explicitly in our model.
Furthermore, we do not make use of other appearance cues, such as the appearance within the cuboid
faces, since they have a larger variation across the object categories (e.g. dice and fire alarm trigger)
and may not generalize as well. We also take into account the tractability of our model as adding
additional appearance cues will increase the complexity of our model and the detector needs to be
evaluated over a large number of possible sliding windows in an image.

Compared with recent approaches that detect cuboids by reasoning about the shape of the entire
scene [9, 11, 12, 17, 19, 29], one of the key differences is that we detect cuboids directly without
consideration of the global scene geometry. These prior approaches rely heavily on the assumption
that the camera is located inside a cuboid-like room and held at human height, with the parameters
of the room cuboid inferred through vanishing points based on a Manhattan world assumption.
Therefore, they cannot handle outdoor scenes or close-up snapshots of an object (e.g. the boxes on
a shelf in row 1, column 3 of Figure 6). As our detector is agnostic to the scene geometry, we are
able to detect cuboids even when these assumptions are violated.

While previous approaches reason over rigid cuboids, our model is flexible in that it can adapt
to deformations of the 3D shape. We observe that not all cuboid-like objects are perfect cuboids
in practice. Deformations of the shape may arise due to the design of the object (e.g. the printer
in Figure 1), natural deformation or degradation of the object (e.g. a cardboard box), or a global
transformation of the image (e.g. camera radial distortion). We argue that modeling the deformations
is important in practice since a violation of the rigid constraints may make a 3D reconstruction-
based approach numerically unstable. In our approach, we model the 3D deformation and allow the
structural SVM to learn based on the training data how to weight the importance of the 3D shape
term. Moreover, a rigid shape requires a perfect 3D reconstruction and it is usually done with non-
linear optimization [17], which is expensive to compute and becomes impractical in an exhaustive
sliding-window search in order to maintain a high recall rate. With our approach, if a rigid cuboid
is needed, we can recover the 3D shape parameters via camera resectioning, as shown in Figure 9.

3 Database of 3D cuboids

To develop and evaluate any models for 3D cuboid detection in real-world environments, it is nec-
essary to have a large database of images depicting everyday scenes with 3D cuboids labeled. In
this work, we seek to build a database by manually labeling point correspondences between images
and 3D cuboids. We have built a labeling tool that allows a user to select and drag key points on
a projected 3D cuboid model to its corresponding location in the image. This is similar to existing
tools, such as Google building maker [14], which has been used to build 3D models of buildings for
maps. Figure 4(a) shows a screenshot of our tool. For the database, we have harvested images from
four sources: (i) a subset of the SUN database [25], which contains images depicting a large variety
of different scene categories, (ii) ImageNet synsets [5] with objects having one or more 3D cuboids
depicted, (iii) images returned from an Internet search using keywords for objects that are wholly or
partially described by 3D cuboids, and (iv) a set of images that we manually collected from our per-
sonal photographs. Given the corner correspondences, the parameters for the 3D cuboids and camera
are estimated. The cuboid and camera parameters are estimated up to a similarity transformation via
camera resectioning using Levenberg-Marquardt optimization [10].

5



Figure 5: Single top 3D cuboid detection in each image. Yellow: ground truth, green: correct
detection, red: false alarm. Bottom row - false positives. The false positives tend to occur when a
part fires on a “cuboid-like” corner region (e.g. row 3, column 5) or finds a smaller cuboid (e.g. the
Rubik’s cube depicted in row 3, column 1).

Figure 6: All 3D cuboid detections above a fixed threshold in each image. Notice that our model is
able to detect the presence of multiple cuboids in an image (e.g. row 1, columns 2-5) and handles
partial occlusions (e.g. row 1, column 4), small objects, and a range of 3D viewpoints, aspect ratios,
and object classes. Moreover, the depicted scenes have varying amount of clutter. Yellow - ground
truth. Green - correct prediction. Red - false positive. Line thickness corresponds to detector
confidence.

For our database, we have 785 images with 1269 cuboids annotated. We have also collected a
negative set containing 2746 images that do contain any cuboid like objects. We perform an image
left/right swap to limit the rotation range. As a result, the min/max azimuth, elevation, and zenith
angles are 0/45, -90/90, -180/180 degrees respectively. In Figure 4(b) we show a scatter plot of the
azimuth and elevation angles for all of the labeled cuboids with zenith angle close to zero. Notice that
the cuboids cover a large range of azimuth angles for elevation angles between 0 (frontal view) and
45 degrees. We also show a number of cropped examples for a fixed elevation angle in Figure 4(c),
with their corresponding azimuth angles indicated by the red points in the scatter plot. Figure 8(c)
shows the distribution of objects from the SUN database [25] that overlap with our cuboids (there
are 326 objects total from 114 unique classes). Compared with [12], our database covers a larger set
of object and scene categories, with images focusing on both objects and scenes (all images in [12]
are indoor scene images). Moreover, we annotate objects closely resembling a 3D cuboid (in [12]
there are many non-cuboids that are annotated with a bounding cuboid) and overall our cuboids are
more accurately labeled.

4 Evaluation

In this section we show qualitative results of our model on the 3D cuboids database and report
quantitative results on two tasks: (i) 3D cuboid detection and (ii) corner localization accuracy. For
training and testing, we randomly split equally the positive and negative images. As discussed in
Section 3, there is rotational symmetry in the 3D cuboids. During training, we allow the image

6



(a)

(b)

(c)

Figure 7: Corner localization comparison for detected geometric primitives. (a) Input image and
ground truth annotation. (b) 2D tree-based initialization. (c) Our full model. Notice that our model
is able to better localize cuboid corners over the baseline 2D tree-based model, which corresponds
to 2D parts-based models used in object detection and articulated pose estimation [7, 27]. The last
column shows a failure case where a part fires on a “cuboid-like” corner region in the image.

to mirror left-right and orient the 3D cuboid to minimize the variation in rotational angle. During
testing, we run the detector on left-right mirrors of the image and select the output at each location
with the highest detector response. For the parts we extract HOG features [4] in a window centered at
each corner with scale of 10% of the object bounding box size. Figure 5 shows the single top cuboid
detection in each image and Figure 6 shows all of the most confident detections in the image. Notice
that our model is able to handle partial occlusions (e.g. row 1, column 4 of Figure 6), small objects,
and a range of 3D viewpoints, aspect ratios, and object classes. Moreover, the depicted scenes have
varying amount of clutter. We note that our model fails when a corner fires on a “cuboid-like” corner
region (e.g. row 3, column 5 of Figure 5).

We compare the various components of our model against two baseline approaches. The first base-
line is a root HOG template [4] trained over the appearance within a bounding box covering the
entire object. A single model using the root HOG template is trained for all viewpoints and as-
pect ratios. During detection, output corner locations corresponding to the average training corner
locations relative to the bounding boxes are returned. The second baseline is the 2D tree-based
approximation of Equation (2), which corresponds to existing 2D parts models used in object detec-
tion and articulated pose estimation [7, 27]. Figure 7 shows a qualitative comparison of our model
against the 2D tree-based model. Notice that our model localizes well and often provides a tighter
fit to the image data than the baseline model.

We evaluate geometric primitive detection accuracy using the bounding box overlap criteria in the
Pascal VOC [6]. We report precision recall in Figure 8(a). We have observed that all of the corner-
based models achieve almost identical detection accuracy across all recall levels, and out-perform
the root HOG template detector [4]. This is expected as we initialize our full model with the output
of the 2D tree-based model and it generally does not drift too far from this initialization. This in
effect does not allow us to detect additional cuboids but allows for better part localization.

In addition to detection accuracy, we also measure corner localization accuracy for correctly detected
examples for a given model. A corner is deemed correct if its predicted image location is within t
pixels of the ground truth corner location. We set t to be 15% of the square root of the area of the
ground truth bounding box for the object. The reported trends in the corner localization performance
hold for nearby values of t. In Figure 8 we plot corner localization accuracy as a function of recall
and compare our model against the two baselines. Moreover, we report performance when either the
edge term or the 3D shape term is omitted from our model. Notice that our full model out-performs
the other baselines. Also, the additional edge and 3D shape terms provide a gain in performance
over using the appearance and 2D spatial terms alone. The edge term provides a slightly larger gain
in performance over the 3D shape term, but when integrated together consistently provides the best
performance on our database.

7



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n 
re

ca
ll

Root Filter [0.16]
2D Tree Approximation [0.23]
Full Model−Edge [0.26]
Full Model−Shape [0.24]
Full Model [0.24]

(a) Cuboid detection

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

re
pr

oj
ec

tio
n 

ac
cu

ra
cy

 (c
rit

er
ia

=0
.1

50
)

Root Filter [0.25]
2D Tree Approximation [0.30]
Full Model−Edge [0.37]
Full Model−Shape [0.37]
Full Model [0.38]

(b) Corner localization

stove (5/13) refrigerator (5/8)
night table occluded (5/12)

kitchen island (5/6)
cabinets (5/22)

brick (5/5)
stand (7/11)

CPU (7/8)
table (8/26)
desk (8/22)
box (9/18)
chest of drawers (10/10)

bed (15/22)

cabinet (28/87)

others
97 categories

(168/883)

night table (15/29)

building (16/49)

screen (5/16)

(c) Object distribution

Figure 8: Cuboid detection (precision vs. recall) and corner localization accuracy (accuracy vs.
recall). The area under the curve is reported in the plot legends. Notice that all of the corner-based
models achieve almost identical detection accuracy across all recall levels and out-perform the root
HOG template detector [4]. For the task of corner localization, our full model out-performs the
two baseline detectors or when either the Edge or Shape3D terms are omitted from our model. (c)
Distribution of objects from the SUN database [25] that overlap with our cuboids. There are 326
objects total from 114 unique classes. The first number within the parentheses indicates the number
of instances in each object category that overlaps with a labeled cuboid, while the second number is
the total number of labeled instances for the object category within our dataset.

Figure 9: Detected cuboids and subsequent synthesized new views via camera resectioning.

5 Conclusion

We have introduced a novel model that detects 3D cuboids and localizes their corners in single-view
images. Our 3D cuboid detector makes use of both corner and edge information. Moreover, we
have constructed a dataset with ground truth cuboid annotations. Our detector handles different 3D
viewpoints and aspect ratios and, in contrast to recent approaches for 3D cuboid detection, does
not make any assumptions about the scene geometry and allows for deformation of the 3D cuboid
shape. As HOG is not invariant to viewpoint, we believe that part mixtures would allow the model
to be invariant to viewpoint. We believe our approach extends to other shapes, such as cylinders
and pyramids. Our work raises a number of (long-standing) issues that would be interesting to
address. For instance, which objects can be described by one or more geometric primitives and how
to best represent the compositionality of objects in general? By detecting geometric primitives, what
applications and systems can be developed to exploit this? Our dataset and source code is publicly
available at the project webpage: http://SUNprimitive.csail.mit.edu.

Acknowledgments: Jianxiong Xiao is supported by Google U.S./Canada Ph.D. Fellowship in Com-
puter Vision. Bryan Russell was funded by the Intel Science and Technology Center for Perva-
sive Computing (ISTC-PC). This work is funded by ONR MURI N000141010933 and NSF Career
Award No. 0747120 to Antonio Torralba.

8



References
[1] I. Biederman. Recognition by components: a theory of human image interpretation. Pyschological review,

94:115–147, 1987.
[2] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal, 4(1):25–30,

1965.
[3] J. F. Canny. A computational approach to edge detection. IEEE PAMI, 8(6):679–698, 1986.
[4] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, 2005.
[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image

database. In CVPR, 2009.
[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The Pascal visual object

classes (VOC) challenge. IJCV, 88(2):303–338, 2010.
[7] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively

trained part based models. IEEE PAMI, 32(9), 2010.
[8] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. IJCV, 61(1), 2005.
[9] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert. From 3d scene geometry to human workspace. In CVPR,

2011.
[10] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University

Press, ISBN: 0521540518, second edition, 2004.
[11] V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the box: Using appearance models and context

based on room geometry. In ECCV, 2010.
[12] V. Hedau, D. Hoiem, and D. Forsyth. Recovering free space of indoor scenes from a single image. In

CVPR, 2012.
[13] D. Hoiem, A. Efros, and M. Hebert. Geometric context from a single image. In ICCV, 2005.
[14] http://sketchup.google.com, 2012.
[15] K. Ikeuchi and T. Suehiro. Toward an assembly plan from observation: Task recognition with polyhedral

objects. In Robotics and Automation, 1994.
[16] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural svms. Machine Learning,

77(1), 2009.
[17] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial layout of rooms using volumetric

reasoning about objects and surfaces. In NIPS, 2010.
[18] J. L. Mundy. Object recognition in the geometric era: A retrospective. In Toward Category-Level Object

Recognition, volume 4170 of Lecture Notes in Computer Science, pages 3–29. Springer, 2006.
[19] L. D. Pero, J. C. Bowdish, D. Fried, B. D. Kermgard, E. L. Hartley, and K. Barnard. Bayesian geometric

modelling of indoor scenes. In CVPR, 2012.
[20] L. Roberts. Machine perception of 3-d solids. In PhD. Thesis, 1965.
[21] H. Wang, S. Gould, and D. Koller. Discriminative learning with latent variables for cluttered indoor scene

understanding. In ECCV, 2010.
[22] J. Xiao, T. Fang, P. Tan, P. Zhao, E. Ofek, and L. Quan. Image-based façade modeling. In SIGGRAPH

Asia, 2008.
[23] J. Xiao, T. Fang, P. Zhao, M. Lhuillier, and L. Quan. Image-based street-side city modeling. In SIG-

GRAPH Asia, 2009.
[24] J. Xiao and Y. Furukawa. Reconstructing the world’s museums. In ECCV, 2012.
[25] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition

from abbey to zoo. In CVPR, 2010.
[26] J. Xiao, B. C. Russell, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Basic level scene understanding:

From labels to structure and beyond. In SIGGRAPH Asia, 2012.
[27] Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures of parts. In CVPR, 2011.
[28] S. Yu, H. Zhang, and J. Malik. Inferring spatial layout from a single image via depth-ordered grouping.

In IEEE Workshop on Perceptual Organization in Computer Vision, 2008.
[29] Y. Zhao and S.-C. Zhu. Image parsing with stochastic scene grammar. In NIPS. 2011.

9


