
Bayesian Hierarchical Reinforcement Learning

Feng Cao
Department of EECS

Case Western Reserve University
Cleveland, OH 44106
fxc100@case.edu

Soumya Ray
Department of EECS

Case Western Reserve University
Cleveland, OH 44106
sray@case.edu

Abstract

We describe an approach to incorporating Bayesian priors in the MAXQ framework
for hierarchical reinforcement learning (HRL). We define priors on the primitive
environment model and on task pseudo-rewards. Since models for composite tasks
can be complex, we use a mixed model-based/model-free learning approach to
find an optimal hierarchical policy. We show empirically that (i) our approach
results in improved convergence over non-Bayesian baselines, (ii) using both task
hierarchies and Bayesian priors is better than either alone, (iii) taking advantage
of the task hierarchy reduces the computational cost of Bayesian reinforcement
learning and (iv) in this framework, task pseudo-rewards can be learned instead of
being manually specified, leading to hierarchically optimal rather than recursively
optimal policies.

1 Introduction

Reinforcement learning (RL) is a well known framework that formalizes decision making in un-
known, uncertain environments. RL agents learn policies that map environment states to available
actions while optimizing some measure of long-term utility. While various algorithms have been de-
veloped for RL [1], and applied successfully to a variety of tasks [2], the standard RL setting suffers
from at least two drawbacks. First, it is difficult to scale standard RL approaches to large state spaces
with many factors (the well-known “curse of dimensionality”). Second, vanilla RL approaches do
not incorporate prior knowledge about the environment and good policies.

Hierarchical reinforcement learning (HRL) [3] attempts to address the scaling problem by simpli-
fying the overall decision making problem in different ways. For example, one approach introduces
macro-operators for sequences of primitive actions. Planning at the level of these operators may
result in simpler policies [4]. Another idea is to decompose the task’s overall value function, for
example by defining task hierarchies [5] or partial programs with choice points [6]. The structure
of the decomposition provides several benefits: first, for the “higher level” subtasks, policies are
defined by calling “lower level” subtasks (which may themselves be quite complex); as a result
policies for higher level subtasks may be expressed compactly. Second, a task hierarchy or partial
program can impose constraints on the space of policies by encoding knowledge about the structure
of good policies and thereby reduce the search space. Third, learning within subtasks allows state
abstraction, that is, some state variables can be ignored because they do not affect the policy within
that subtask. This also simplifies the learning problem.

While HRL attempts to address the scalability issue, it does not take into account probabilistic prior
knowledge the agent may have about the task. For example, the agent may have some idea about
where high/low utility states may be located and what their utilities may be, or some idea about the
approximate shape of the value function or policy. Bayesian reinforcement learning addresses this
issue by incorporating priors on models [7], value functions [8, 9] or policies [10]. Specifying good

1

priors leads to many benefits, including initial good policies, directed exploration towards regions
of uncertainty, and faster convergence to the optimal policy.

In this paper, we propose an approach that incorporates Bayesian priors in hierarchical reinforcement
learning. We use the MAXQ framework [5], that decomposes the overall task into subtasks so that
value functions of the individual subtasks can be combined to recover the value function of the
overall task. We extend this framework by incorporating priors on the primitive environment model
and on task pseudo-rewards. In order to avoid building models for composite tasks (which can
be very complex), we adopt a mixed model-based/model-free learning approach. We empirically
evaluate our algorithm to understand the effect of the priors in addition to the task hierarchy. Our
experiments indicate that: (i) taking advantage of probabilistic prior knowledge can lead to faster
convergence, even for HRL, (ii) task hierarchies and Bayesian priors can be complementary sources
of information, and using both sources is better than either alone, (iii) taking advantage of the task
hierarchy can reduce the computational cost of Bayesian RL, which generally tends to be very
high, and (iv) task pseudo-rewards can be learned instead of being manually specified, leading to
automatic learning of hierarchically optimal rather than recursively optimal policies. In this way
Bayesian RL and HRL are synergistic: Bayesian RL improves convergence of HRL and can learn
hierarchy parameters, while HRL can reduce the significant computational cost of Bayesian RL.

Our work assumes the probabilistic priors to be given in advance and focuses on learning with
them. Other work has addressed the issue of obtaining these priors. For example, one source of
prior information is multi-task reinforcement learning [11, 12], where an agent uses the solutions of
previous RL tasks to build priors over models or policies for future tasks. We also assume the task
hierarchy is given. Other work has explored learning MAXQ hierarchies in different settings [13].

2 Background and Related Work

In the MAXQ framework, each composite subtask Ti defines a semi-Markov decision process with
parameters 〈Si, Xi, Ci, Gi〉. Si defines the set of “non-terminal” states for Ti, where Ti may be
called by its parent. Gi defines a set of “goal” states for Ti. The actions available within Ti are
described by the set of “child tasks” Ci. Finally, Xi denotes the set of “relevant state variables” for
Ti. Often, we unify the non-Si states and Gi into a single “termination” predicate, Pi. An (s, a, s′)
triple where Pi(s) is false, Pi(s

′) is true, a ∈ Ci, and the transition probability P (s′|s, a) > 0

is called an exit of the subtask Ti. A pseudo-reward function R̃(s, a) can be defined over exits to
express preferences over the possible exits of a subtask.

A hierarchical policy π for the overall task is an assignment of a local policy to each SMDP Ti.
A hierarchically optimal policy is a hierarchical policy that has the maximum expected reward. A
hierarchical policy is said to be recursively optimal if the local policy for each subtask is optimal
given that all its subtask policies are optimal. Given a task graph, model-free [5] or model-based [14]
methods can be used to learn value functions for each task-subtask pair. In the model-free method,
a policy is produced by maintaining a value and a completion function for each subtask. For a task
i, the value V (a, s) denotes the expected value of calling child task a in state s. This is (recursively)
estimated as the expected reward obtained while executing a. The completion function C(i, s, a)
denotes the expected reward obtained while completing i after having called a in s. The central idea
behind MAXQ is that the value of i, V (i, s), can be (recursively) decomposed in terms of V (a, s)
and C(i, s, a). The model-based RMAXQ [14] algorithm extends RMAX [15] to MAXQ by learning
models for all primitive and composite tasks. Value iteration is used with these models to learn a
policy for each subtask. An optimistic exploration strategy is used together with a parameter m that
determines how often a transition or reward needs to be seen to be usable in the planning step.

In the MAXQ framework, pseudo-rewards must be manually specified to learn hierarchically optimal
policies. Recent work has attempted to directly learn hierarchically optimal policies for ALisp
partial programs, that generalize MAXQ task hierarchies [6, 16], using a model-free approach. Here,
along with task value and completion functions, an “external”Q functionQE is maintained for each
subtask. This function stores the reward obtained after the parent of a subtask exits. A problem here
is that this hurts state abstraction, since QE is no longer “local” to a subtask. In later work [16],
this is addressed by recursively representing QE in terms of task value and completion functions,
linked by conditional probabilities of parent exits given child exits. The conditional probabilities
and recursive decomposition are used to compute QE as needed to select actions.

2

Bayesian reinforcement learning methods incorporate probabilistic prior knowledge on models [7],
value functions [8, 9], policies [10] or combinations [17]. One Bayesian model-based RL algorithm
proceeds as follows. At each step, a distribution over model parameters is maintained. At each
step, a model is sampled from this distribution (Thompson sampling [18, 19]). This model is then
solved and actions are taken according to the policy obtained. This yields observations that are used
to update the parameters of the current distribution to create a posterior distribution over models.
This procedure is then iterated to convergence. Variations of this idea have been investigated; for
example, some work converts the distribution over models to an empirical distribution over Q-
functions, and produces policies by sampling from this distribution instead [7].

Relatively little work exists that attempts to incorporate probabilistic priors into HRL. We have
found one preliminary attempt [20] that builds on the RMAX+MAXQ [14] method. This approach
adds priors to each subtask model and performs (separate) Bayesian model-based learning for each
subtask. 1 In our approach, we do not construct models for subtasks, which can be very complex
in general. Instead, we only maintain distributions over primitive actions, and use a mixed model-
based/model-free learning algorithm that is naturally integrated with the standard MAXQ learning
algorithm. Further, we show how to learn pseudo-rewards for MAXQ in the Bayesian framework.

3 Bayesian MAXQ Algorithm

In this section, we describe our approach to incorporating probabilistic priors into MAXQ. We use
priors over primitive models and pseudo-rewards. As we explain below, pseudo-rewards are value
functions; thus our approach uses priors both on models and value functions. While such an inte-
gration may not be needed for standard Bayesian RL, it appears naturally in our setting.

We first describe our approach to incorporating priors on environment models alone (assuming
pseudo-rewards are fixed). We do this following the Bayesian model-based RL framework. At
each step we have a distribution over environment models (initially the prior). The algorithm has
two main subroutines: the main BAYESIAN MAXQ routine (Algorithm 1) and an auxiliary RECOM-
PUTE VALUE routine (Algorithm 2). In this description, the value V and completion C functions
are assumed to be global. At the start of each episode, the BAYESIAN MAXQ routine is called with
the Root task and the initial state for the current episode. The MAXQ execution protocol is then
followed, where each task chooses an action based on its current value function (initially random).
When a primitive action is reached and executed, it updates the posterior over model parameters
(Line 3) and its own value estimate (which is just the reward function for primitive actions). When
a task exits and returns to its parent, the parent subsequently updates its completion function based
on the current estimates of the value of the exit state (Lines 14 and 15). Note that in MAXQ, the
value function of a composite task can be (recursively) computed using the completion functions of
subtasks and the rewards obtained by executing primitive actions, so we do not need to separately
store or update the value functions (except for the primitive actions where the value function is the
reward). Finally, each primitive action maintains a count of how many times it has been executed
and each composite task maintains a count of how many child actions have been taken.

When k (an algorithm parameter) steps have been executed in a composite task, BAYESIAN MAXQ
calls RECOMPUTE VALUE to re-estimate the value and completion functions (the check on k is
shown in RECOMPUTE VALUE, Line 2). When activated, this function recursively re-estimates the
value/completion functions for all subtasks of the current task. At the level of a primitive action,
this simply involves resampling the reward and transition parameters from the current posterior
over models. For a composite task, we use the MAXQ-Q algorithm (Table 4 in [5]). We run this
algorithm for Sim episodes, starting with the current subtask as the root, with the current pseudo-
reward estimates (we explain below how these are obtained). This algorithm recursively updates the
completion function of the task graph below the current task. Note that in this step, the subtasks
with primitive actions use model-based updates. That is, when a primitive action is “executed” in
such tasks, the currently sampled transition function (part of Θ in Line 5) is used to find the next
state, and then the associated reward is used to update the completion function. This is similar to
Lines 12, 14 and 15 in BAYESIAN MAXQ, except that it uses the sampled model Θ instead of the

1While we believe this description is accurate, unfortunately, due to language issues and some missing
technical and experimental details in the cited article, we have been unable to replicate this work.

3

Algorithm 1 BAYESIAN MAXQ

Input: Task i, State s, Update Interval k, Simulation Episodes Sim
Output: Next state s′, steps taken N , cumulative reward CR

1: if i is primitive then
2: Execute i, observe r, s′
3: Update current posterior parameters Ψ using (s, i, r, s′)
4: Update current value estimate: V (i, s)← (1− α) · V (i, s) + α · r
5: Count(i)← Count(i) + 1
6: return (s′, 1, r)
7: else
8: N ← 0, CR← 0, taskStack ← Stack(){i is composite}
9: while i is not terminated do

10: RECOMPUTE VALUE(i, k, Sim)
11: a← ε-greedy action from V (i, s)
12: 〈s′, Na, cr〉 ← BAYESIAN MAXQ(a, s)
13: taskStack.push(〈a, s′, Na, cr〉)
14: a∗s′ ← arg maxa′

[
C̃(i, s′, a′) + V (a′, s′)

]
15: C(i, s, a)← (1− α) · C(i, s, a) + α · γNa

[
C(i, s′, a∗s′) + V (a∗s′ , s

′)
]

16: C̃(i, s, a)← (1− α) · C̃(i, s, a) + α · γNa
[
R̃(i, s′) + C̃(i, s′, a∗s′) + V (a∗s′ , s

′)
]

17: s← s′, CR← CR+ γN · cr, N ← N +Na, Count(i)← Count(i) + 1
18: end while
19: UPDATE PSEUDO REWARD(taskStack, R̃(i, s′))
20: return (s′, N,CR)
21: end if

Algorithm 2 RECOMPUTE VALUE

Input: Task i, Update Interval k, Simulation Episodes Sim
Output: Recomputed value and completion functions for the task graph below and including i

1: if Count(i) < k then
2: return
3: end if
4: if i is primitive then
5: Sample new transition and reward parameters Θ from current posterior Ψ
6: else
7: for all child tasks a of i do
8: RECOMPUTE VALUE(a, k, Sim)
9: end for

10: for Sim episodes do
11: s← random nonterminal state of i
12: Run MAXQ-Q(i, s, Θ, R̃)
13: end for
14: end if
15: Count(i)← 0

real environment. After RECOMPUTE VALUE terminates, a new set of value/completion functions
are available for BAYESIAN MAXQ to use to select actions.

Next we discuss task pseudo-rewards (PRs). A PR is a value associated with a subtask exit that
defines how “good” that exit is for that subtask. The ideal PR for an exit is the expected reward under
the hierarchically optimal policy after exiting the subtask, until the global task (Root) ends; thus the
PR is a value function. This PR would enable the subtask to choose the “right” exit in the context
of what the rest of the task hierarchy is doing. In standard MAXQ, these have to be set manually.
This is problematic because it presupposes (quite detailed) knowledge of the hierarchically optimal
policy. Further, setting the wrong PRs can result in non-convergence or highly suboptimal policies.
Sometimes this problem is sidestepped simply by setting all PRs to zero, resulting in recursively
optimal policies. However, it is easy to construct examples where a recursively optimal policy

4

Algorithm 3 UPDATE PSEUDO REWARD

Input: taskStack, Parent’s pseudo reward R̃p

1: tempCR← R̃p, Na′ ← 0, cr′ ← 0
2: while taskStack is not empty do
3: 〈a, s,Na, cr〉 ← taskStack.pop()

4: tempCR← γN
′
a · tempCR+ cr′

5: Update pseudo-reward posterior Φ for R̃(a, s) using (a, s, tempCR)

6: Resample R̃(a, s) from Φ
7: Na′ ← Na, cr′ ← cr
8: end while

is arbitrarily worse than the hierarchically optimal policy. For all these reasons, PRs are major
“nuisance parameters” in the MAXQ framework.

What makes learning PRs tricky is that they are not only value functions, but also function as pa-
rameters of MAXQ. That is, setting different PRs essentially results in a new learning problem. For
this reason, simply trying to learn PRs in a standard temporal difference (TD) way fails (as we show
in our experiments). Fortunately, Bayesian RL allows us to address both these issues. First, we
can treat value functions as probabilistic unknown parameters. Second, and more importantly, a key
idea in Bayesian RL is the “lifting” of exploration to the space of task parameters. That is, instead
of exploration through action selection, Bayesian RL can perform exploration by sampling task pa-
rameters. Thus treating a PR as an unknown Bayesian parameter also leads to exploration over the
value of this parameter, until an optimal value is found. In this way, hierarchically optimal policies
can be learned from scratch—a major advantage over the standard MAXQ setting.

To learn PRs, we again maintain a distribution over all such parameters, Φ, initially a prior. For
simplicity, we only focus on tasks with multiple exits, since otherwise, a PR has no effect on the
policy (though the value function changes). When a composite task executes, we keep track of each
child task’s execution in a stack. When the parent itself exits, we obtain a new observation of the
PRs of each child by computing the discounted cumulative reward received after it exited, added to
the current estimate of the parent’s PR (Algorithm 3). This observation is used to update the current
posterior over the child’s PR. Since this is a value function estimate, early in the learning process,
the estimates are noisy. Following prior work [8], we use a window containing the most recent
observations. When a new observation arrives, the oldest observation is removed, the new one is
added and a new posterior estimate is computed. After updating the posterior, it is sampled to obtain
a new PR estimate for the associated exit. This estimate is used where needed (in Algorithms 1 and
2) until the next posterior update. Combined with the model-based priors above, we hypothesize
that this procedure, iterated till convergence, will produce a hierarchically optimal policy.

4 Empirical Evaluation

In this section, we evaluate our approach and test four hypotheses: First, does incorporating model-
based priors help speed up the convergence of MAXQ to the optimal policy? Second, does the
task hierarchy still matter if very good priors are available for primitive actions? Third, how does
Bayesian MAXQ compare to standard (flat) Bayesian RL? Does Bayesian RL perform better (in
terms of computational time) if a task hierarchy is available? Finally, can our approach effectively
learn PRs and policies that are hierarchically optimal?

We first focus on evaluating the first three hypotheses using domains where a zero PR results in
hierarchical optimality. To evaluate these hypotheses, we use two domains: the fickle version of
Taxi-World [5] (625 states) and Resource-collection [13] (8265 states). 2 In Taxi-World, the
agent controls a taxi in a grid-world that has to pick up a passenger from a source location and drop
them off at their destination. The state variables consist of the location of the taxi and the source
and destination of the passenger. The actions available to the agent consist of navigation actions and
actions to pickup and putdown the passenger. The agent gets a reward of +20 upon completing the
task, a constant−1 reward for every action and a−10 penalty for an erroneous action. Further, each

2Task hierarchies for all domains are available in the supplementary material.

5

-1000

-800

-600

-400

-200

 0

 0 100 200 300 400 500

A
ve

ra
ge

 C
um

ul
at

iv
e

R
ew

ar
d

P
er

 E
pi

so
de

B-MaxQ Uninformed
B-MaxQ Good

B-MB-Q Uninformed
B-MB-Q Good

B-MB-Q Good Comparable Simulations
-1000

-800

-600

-400

-200

 0

 0 100 200 300 400 500

B-MaxQ Uninformed
R-MaxQ

MaxQ
FlatQ

-1000

-800

-600

-400

-200

 0

 0 200 400 600 800 1000

A
ve

ra
ge

 C
um

ul
at

iv
e

R
ew

ar
d

P
er

 E
pi

so
de

Episode

B-MaxQ Uninformed
B-MaxQ Good

B-MB-Q Uninformed
B-MB-Q Good

-1000

-800

-600

-400

-200

 0

 0 200 400 600 800 1000

Episode

B-MaxQ Uninformed
MaxQ

R-MaxQ
FlatQ

Figure 1: Performance on Taxi-World (top row) and Resource-collection (bottom). The x-axis
shows episodes. The prefix “B-” denotes Bayesian, “Uninformed/Good” denotes the prior and “MB”
denotes model-based. Left column: Bayesian methods, right: non-Bayesian methods, with Bayesian
MAXQ for reference.

navigation action has a 15% chance of moving in each direction orthogonal to the intended move. In
the Resource-collection domain, the agent collects resources (gold and wood) from a grid world
map. Here the state variables consist of the location of the agent, what the agent is carrying, whether
a goldmine or forest is adjacent to its current location and whether a desired gold or wood quota has
been met. The actions available to the agent are to move to a specific location, chop gold or harvest
wood, and to deposit the item it is carrying (if any). For each navigation action, the agent has a 30%
chance of moving to a random location. In our experiments, the map contains two goldmines and
two forests, each containing two units of gold and two units of wood, and the gold and wood quota
is set to three each. The agent gets a +50 reward when it meets the gold/wood quota, a constant −1
reward for every action and an additional −1 for erroneous actions (such as trying to deposit when
it is not carrying anything).

For the Bayesian methods, we use Dirichlet priors for the transition function parameters and Normal-
Gamma priors for the reward function parameters. We use two priors: an uninformed prior, set
to approximate a uniform distribution, and a “good” prior where a previously computed model
posterior is used as the “prior.” The prior distributions we use are conjugate to the likelihood, so
we can compute the posterior distributions in closed form. In general, this is not necessary; more
complex priors could be used as long as we can sample from the posterior distribution.

The methods we evaluate are: (i) Flat Q, the standard Q-learning algorithm, (ii) MAXQ-0, the stan-
dard, Q-learning algorithm for MAXQ with no PR, (iii) Bayesian model-based Q-learning with an
uninformed prior and (iv) a “good” prior, (v) Bayesian MAXQ (our proposed approach) with an un-
informed prior and (vi) a “good” prior, and (vii) RMAXQ [14]. In our implementation, the Bayesian
model-based Q-learning uses the same code as the Bayesian MAXQ algorithm, with a “trivial” hi-
erarchy consisting of the Root task with only the primitive actions as children. For the Bayesian
methods, the update frequency k was set to 50 for Taxi-World and 25 for Resource-collection.
Sim was set to 200 for Bayesian MAXQ for Taxi-World and 1000 for Bayesian model-based Q, and
to 1000 for both for Resource collection. For RMAXQ, the threshold sample size m was set to
5 following prior work [14]. The value iteration was terminated either after 300 loops or when the
successive difference between iterations was less than 0.001. The theoretical version of RMAXQ
requires updating and re-solving the model every step. In practice for the larger problems, this is too

6

time-consuming, so we re-solve the models every 10 steps. This is similar to the update frequency
k for Bayesian MAXQ. The results are shown in Figure 1 (episodes on x-axis).

From these results, comparing the Bayesian versions of MAXQ to standard MAXQ, we observe that
for Taxi-World, the Bayesian version converges faster to the optimal policy even with the unin-
formed prior, while for Resource-collection, the convergence rates are similar. When a good prior
is available, convergence is very fast (almost immediate) in both domains. Thus, the availability
of model priors can help speed up convergence in many cases for HRL. We further observe that
RMAXQ converges more slowly than MAXQ or Bayesian MAXQ, though it is much better than Flat
Q. This is different from prior work [14]. This may be because our domains are more stochastic than
the Taxi-world on which prior results [14] were obtained. We conjecture that, as the environment
becomes more stochastic, errors in primitive model estimates may propagate into subtask models
and hurt the performance of this algorithm. In their analysis [14], the authors noted that the error in
the transition function for a composite task is a function of the total number of terminal states in the
subtask. The error is also compounded as we move up the task hierarchy. This could be countered by
increasing m, the sample size used to estimate model parameters. This would improve the accuracy
of the primitive model, but would further hurt the convergence rate of the algorithm.

Next, we compare the Bayesian MAXQ approach to “flat” Bayesian model-based Q learning. We
note that in Taxi-World, with uninformed priors, though the “flat” method initially does worse,
it soon catches up to standard MAXQ and then to Bayesian MAXQ. This is probably because in
this domain, the primitive models are relatively easy to acquire, and the task hierarchy provides no
additional leverage. For Resource-collection, however, even with a good prior, “flat” Bayesian
model-based Q does not converge. The difference is that in this case, the task hierarchy encodes
extra information that cannot be deduced just from the models. In particular, the task hierarchy
tells the agent that good policies consist of gold/wood collection moves followed by deposit moves.
Since the reward structure in this domain is very sparse, it is difficult to deduce this even if very
good models are available. Taken together, these results show that task hierarchies and model priors
can be complementary: in general, Bayesian MAXQ outperforms both flat Bayesian RL and MAXQ
(in speed of convergence, since here MAXQ can learn the hierarchically optimal policy).

Table 1: Time for 500 episodes, Taxi-World.
Method Time (s)
Bayesian MaxQ, Uninformed Prior 205
Bayesian Model-based Q, Uninformed
Prior

4684

Bayesian MaxQ, Good Prior 96
Bayesian Model-based Q, Good Prior 3089
Bayesian Model-based Q, Good Prior
& Comparable Simulations

4006

RMAXQ 229
MAXQ 2.06
Flat Q 1.77

Next, we compare the time taken by the dif-
ferent approaches in our experiments in Taxi-
World (Table 1). As expected, the Bayesian
RL approaches are significantly slower than
the non-Bayesian approaches. Further, among
non-Bayesian approaches, the hierarchical ap-
proaches (MAXQ and RMAXQ) are slower than
the non-hierarchical flat Q. Out of the Bayesian
methods, however, the Bayesian MAXQ ap-
proaches are significantly faster than the flat
Bayesian model-based approaches. This is be-

cause for the flat case, during the simulation in RECOMPUTE VALUE, a much larger task needs to be
solved, while the Bayesian MAXQ approach is able to take into account the structure of the hierarchy
to only simulate subtasks as needed, which ends up being much more efficient. However, we note
that we allowed the flat Bayesian model-based approach 1000 episodes of simulation as opposed to
200 for Bayesian MAXQ. Clearly this increases the time taken for the flat cases. But at the same
time, this is necessary: the “Comparable Simulations” row (and curve in Figure 1 top left) shows
that, if the simulations are reduced to 250 episodes for this approach, the resulting values are no
longer reliable and the performance of the Bayesian flat approach drops sharply. Notice that while
Flat Q runs faster than MAXQ (because of the additional “bookkeeping” overhead due to the task
hierarchy), Bayesian MAXQ runs much faster than Bayesian model-based Q. Thus, taking advantage
of the hierarchical task decomposition helps reduce the computational cost of Bayesian RL.

Finally we evaluate how well our approach estimates PRs. Here we use two domains: a Modified-
Taxi-World and a Hallway domain [5, 21] (4320 states). In Modified-Taxi-World, we allow
dropoffs at any one of the four locations and do not provide a reward for task termination. Thus
the Navigate subtask needs a PR (corresponding to the correct dropoff location) to learn a good
policy. The Hallway domain consists of a maze with a large scale structure of hallways and inter-
sections. The agent has stochastic movement actions. For these experiments, we use uninformed
priors on the environment model. The PR Gaussian-Gamma priors are set to prefer each exit from

7

-1000

-800

-600

-400

-200

 0

 0 100 200 300 400 500

A
ve

ra
ge

 C
um

ul
at

iv
e

R
ew

ar
d

P
er

 E
pi

so
de

B-MaxQ Bayes PR
B-MaxQ Manual PR

B-MaxQ No PR
-1000

-800

-600

-400

-200

 0

 0 100 200 300 400 500

B-MaxQ Bayes PR
MaxQ Non-Bayes PR

MaxQ Manual PR
MaxQ No PR

ALispQ
FlatQ

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

 0 1000 2000 3000 4000 5000

A
ve

ra
ge

 C
um

ul
at

iv
e

R
ew

ar
d

P
er

 E
pi

so
de

Episode

B-MaxQ Bayes PR
B-MaxQ Manual PR

B-MaxQ No PR
-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

 0 1000 2000 3000 4000 5000

Episode

Figure 2: Performance on Modified-Taxi-World (top row) and Hallway (bottom). “B-”: Bayesian,
“PR”: Pseudo Reward. Left: Bayesian methods, right: non-Bayesian methods, with Bayesian MAXQ
as reference. The x-axis is episodes. The bottom right figure has the same legend as the top right.

a subtask equally. The baselines we use are: (i) Bayesian MAXQ and MAXQ with fixed zero PR, (ii)
Bayesian MAXQ and MAXQ with fixed manually set PR, (iii) flat Q, (iv) ALISPQ [6] and (v) MAXQ
with a non-Bayesian PR update. This last method tracks PR just as our approach; however, instead
of a Bayesian update, it updates the PR using a temporal difference update, treating it as a simple
value function. The results are shown in Figure 2 (episodes on x-axis).

From these results, we first observe that the methods with zero PR always do worse than those with
“proper” PR, indicating that in these cases the recursively optimal policy is not the hierarchically
optimal policy. When a PR is manually set, in both domain, MAXQ converges to better policies. We
observe that in each case, the Bayesian MAXQ approach is able to learn a policy that is as good, start-
ing with no pseudo rewards; further, its convergence rates are often better. Further, we observe that
the simple TD update strategy (MAXQ Non-Bayes PR in Figure 2) fails in both cases—in Modified-
Taxi-World, it is able to learn a policy that is approximately as good as a recursively optimal policy,
but in the Hallway domain, it fails to converge completely, indicating that this strategy cannot gen-
erally learn PRs. Finally, we observe that the tripartite Q-decomposition of ALISPQ is also able to
correctly learn hierarchically optimal policies, however, it converges slowly compared to Bayesian
MAXQ or MAXQ with manual PRs. This is especially visible in the Hallway domain, where there are
not many opportunities for state abstraction. We believe this is likely because it is estimating entire
Q-functions rather than just the PRs. In a sense, it is doing more work than is needed to capture
the hierarchically optimal policy, because an exact Q-function may not be needed to capture the
preference for the best exit, rather, a value that assigns it a sufficiently high reward compared to the
other exits would suffice. Taken together, these results indicate that incorporating Bayesian priors
into MAXQ can successfully learn PRs from scratch and produce hierarchically optimal policies.

5 Conclusion

In this paper, we have proposed an approach to incorporating probabilistic priors on environment
models and task pseudo-rewards into HRL by extending the MAXQ framework. Our experiments
indicate that several synergies exist between HRL and Bayesian RL, and combining them is fruitful.
In future work, we plan to investigate approximate model and value representations, as well as
multi-task RL to learn the priors.

8

References
[1] R.S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[2] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996.

[3] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Dis-
crete Event Dynamic Systems, 13(4):341–379, 2003.

[4] Martin Stolle and Doina Precup. Learning Options in reinforcement Learning, volume 2371/2002 of
Lecture Notes in Computer Science, pages 212–223. Springer, 2002.

[5] Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value function decomposition.
Journal of Artificial Intelligence Research, 13:227–303, 2000.

[6] D. Andre and S. Russell. State Abstraction for Programmable Reinforcement Learning Agents. In Pro-
ceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI), 2002.

[7] R. Dearden, N. Friedman, and D. Andre. Model based bayesian exploration. In Proceedings of Fifteenth
Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, 1999.

[8] R. Dearden, N. Friedman, and S. Russell. Bayesian Q-learning. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, 1998.

[9] Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman:the Gaussian process approach to temporal
difference learning. In Proceedings of the Twentieth Internationl Conference on Machine Learning, 2003.

[10] Mohammad Ghavamzadeh and Yaakov Engel. Bayesian policy gradient algorithms. In Advances in
Neural Information Processing Systems 19. MIT Press, 2007.

[11] Alessandro Lazaric and Mohammad Ghavamzadeh. Bayesian multi-task reinforcement learning. In Pro-
ceedings of the 27th International Conference on Machine Learning, 2010.

[12] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In Proceedings of the 24th international conference on Machine learning,
pages 1015–1022, New York, NY, USA, 2007. ACM.

[13] N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich. Automatic discovery and transfer of MAXQ hierarchies.
In Andrew McCallum and Sam Roweis, editors, Proceedings of the 25th International Conference on
Machine Learning, pages 648–655. Omnipress, 2008.

[14] Nicholas K. Jong and Peter Stone. Hierarchical model-based reinforcement learning: R-MAX + MAXQ.
In Proceedings of the 25th International Conference on Machine Learning, 2008.

[15] Ronen I. Brafman, Moshe Tennenholtz, and Pack Kaelbling. R-MAX - a general polynomial time algo-
rithm for near-optimal reinforcement learning. Journal of Machine Learning Research, 2001.

[16] B. Marthi, S. Russell, and D. Andre. A compact, hierarchically optimal q-function decomposition. In
22nd Conference on Uncertainty in Artificial Intelligence, 2006.

[17] M. Ghavamzadeh and Y. Engel. Bayesian actor-critic algorithms. In Zoubin Ghahramani, editor, Pro-
ceedings of the 24th Annual International Conference on Machine Learning, pages 297–304. Omnipress,
2007.

[18] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence
of two samples. Biometrika, 25:285–294, 1933.

[19] M. J. A. Strens. A Bayesian framework for reinforcement learning. In Proceeding of the 17th International
Conference on Machine Learning, 2000.

[20] Zhaohui Dai, Xin Chen, Weihua Cao, and Min Wu. Model-based learning with bayesian and maxq value
function decomposition for hierarchical task. In Proceedings of the 8th World Congress on Intelligent
Control and Automation, 2010.

[21] Ronald Edward Parr. Hierarchical Control and Learning for Markov Decision Processes. PhD thesis,
1998.

9

