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Abstract

We propose an efficient, generalized, nonparametric, statistical Kolmogorov-
Smirnov test for detecting distributional change in high-dimensional data. To
implement the test, we introduce a novel, hierarchical, minimum-volume sets es-
timator to represent the distributions to be tested. Our work is motivated by the
need to detect changes in data streams, and the test is especially efficient in this
context. We provide the theoretical foundations of our test and show its superiority
over existing methods.

1 Introduction

The Kolmogorov-Smirnov (KS) test is efficient, simple, and often considered the choice method for
comparing distributions. Let X = {x1, . . . , xn} and X ′ = {x′1, . . . , x′m} be two sets of feature
vectors sampled i.i.d. with respect to F and F ′ distributions. The goal of the KS test is to determine
whether F 6= F ′. For one-dimensional distributions, the KS statistics are based on the maximal
difference between cumulative distribution functions (CDFs) of the two distributions. However,
nonparametric extensions of this test to high-dimensional data are hard to define since there are
2d−1 ways to represent a d-dimensional distribution by a CDF. Indeed, due to this limitation, several
extensions of the KS test to more than one dimension have been proposed [17, 9] but their practical
applications are mostly limited to a few dimensions.

One prominent approach of generalizing the KS test to beyond one-dimensional data is that
of Polonik [18]. It is based on a generalized quantile transform to a set of high-density hierar-
chical regions. The transform is used to construct two sets of plots, expected and empirical, which
serve as the two input CDFs for the KS test. Polonik’s transform is based on a density estimation
over X . It maps the input quantile in [0, 1] to a level-set of the estimated density such that the ex-
pected probability of feature vectors to lie within it is equal to its associated quantile. The expected
plots are the quantiles, and the empirical plots are fractions of examples in X ′ that lie within each
mapped region.

Polonik’s approach can handle multivariate data, but is hard to apply in high-dimensional or small-
sample-sized settings where a reliable density estimation is hard. In this paper we introduce a gen-
eralized KS test, based on Polonik’s theory, to determine whether two samples are drawn from dif-
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ferent distributions. However, instead of a density estimator, we use a novel hierarchical minimum-
volume sets estimator to estimate the set of high-density regions directly. Because the estimation of
such regions is intrinsically simpler than density estimation, our test is more accurate than density-
estimation approaches. In addition, whereas Polonik’s work was largely theoretical, we take a prac-
tical approach and empirically show the superiority of our test over existing nonparametric tests in
realistic, high-dimensional data.

To use Polonik’s generalization of the KS test, the high-density regions should be hierarchical.
Using classical minimum-volume set (MV-set) estimators, however, does not, in itself, guarantee
this property. We present here a novel method for approximate MV-sets estimation that guarantees
the hierarchy, thus allowing the KS test to be generalized to high dimensions. Our method uses
classical MV-set estimators as a basic component. We test our method with two types of estimators:
one-class SVMs (OCSVMs) and one-class neighbor machines (OCNMs).

While the statistical test introduced in this paper traces distributional changes in high dimensional
data in general, it is effective in particular for change detection in data streams. Many real-world
applications (e.g. process control) work in dynamic environments where streams of multivariate
data are collected over time, during which unanticipated distributional changes in data streams might
prevent the proper operation of these applications. Change-detection methods are thus required to
trace such changes (e.g. [6]). We extensively evaluate our test on a collection of change-detection
tasks. We also show that our proposed test can be used for the classical setting of the two-sample
problem using symmetric and asymmetric variations of our test.

2 Learning Hierarchical High-Density Regions

Our approach for generalizing the KS test is based on estimating a hierarchical set of MV-sets in
input space. In this section we introduce a method for finding such a set in high-dimensional data.

Following the notion of multivariate quantiles [8], let X = {x1, . . . , xn} be a set of examples i.i.d.
with respect to a probability distribution F defined on a measurable space

(
Rd,S

)
. Let λ be a real-

valued function defined on C ⊂ S . Then, the minimum-volume set (MV-set) with respect to F , λ,
and C at level α is

C (α) = argmin
C′∈C

{λ(C ′) : F (C ′) ≥ α} . (1)

If more than one set attains the minimum, one will be picked. Equivalently, if F (C) is replaced with
Fn (C) = 1

n

∑n
1 1C (xi), then Cn(α) is one of the empirical MV-sets that attains the minimum. In

the following we think of λ as a Lebesgue measure on Rd.

Polonik introduced a new approach that uses a hierarchical set of MV-sets to generalize the KS test
beyond one dimension. Assume F has a density function f with respect to λ, and let Lf (c) =
{x : f(x) ≥ c} be the level set of f at level c. Sufficient regularity conditions on f are assumed.
Polonik observed that if Lf (c) ∈ C, then Lf (c) is an MV-set of F at level α = F (Lf (c)). He thus
suggested that level-sets can be used as approximations of the MV-sets of a distribution. Hence, a
density estimator was used to define a family of MV-sets {C(α), α ∈ [0, 1]} such that a hierarchy
constraint C(α) ⊂ C(β) is satisfied for 0 ≤ α < β ≤ 1.

We also use hierarchical MV-sets to represent distributions in our research. However, since a density
estimation is hard to apply in high-dimensional data, a more practical solution is proposed. Instead
of basing our method on the products of a density estimation method, we introduce a novel non-
parametric method, which uses MV-set estimators (OCSVM and OCNM) as a basic component, to
estimate hierarchical MV-sets without the need for a density estimation step.

2.1 Learning Minimum-Volume Sets with One-Class SVM Estimators

OCSVM is a nonparametric method for estimating a high-density region in a high-dimensional dis-
tribution [19]. Consider a function Φ : Rd → F mapping the feature vectors in X to a hyper-
sphere in an infinite Hilbert space F . Let H be a hypothesis space of half-space decision functions
fC(x) = sgn ((w · Φ(x))− ρ) such that fC(x) = +1 if x ∈ C, and −1 otherwise. To separate X
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from the origin, the learner is asked to solve this quadratic program:

min
w∈F,ξ∈Rn,ρ∈R

1

2
||w||2 − ρ+

1

νn

∑
i

ξi, s.t . (w · Φ (xi)) ≥ ρ− ξi, ξi ≥ 0, (2)

where ξ is the vector of the slack variables, and 0 < ν < 1 is a regularization parameter related to the
proportion of outliers in the training data. All training examples xi for which (w · Φ(x))−ρ ≤ 0 are
called support vectors (SVs). Outliers are referred to as examples that strictly satisfy (w · Φ(x)) −
ρ < 0. Since the algorithm only depends on the dot product in F , Φ never needs to be explicitly
computed, and a kernel function k (·, ·) is used instead such that k (xi, xj) = (Φ(xi) · Φ(xj))F .
The following theorem draws the connection between the ν regularization parameter and the region
C provided by the solution of Equation 2:

Theorem 1 (Schölkopf et al. [19]). Assume the solution of Equation 2 satisfies ρ 6= 0. The following
statements hold: (1) ν is an upper bound on the fraction of outliers. (2) ν is a lower bound on the
fraction of SVs. (3) Suppose X were generated i.i.d. from a distribution F which does not contain
discrete components. Suppose, moreover, that the kernel k is analytic and non-constant. Then, with
probability 1, asymptotically, ν is equal to both the fraction of SVs and to the fraction of outliers.

This theorem shows that we can use OCSVMs to estimate high-density regions in the input space
while bounding the number of examples inX lying outside these regions. Thus, by setting ν = 1−α,
we can use OCSVMs to estimate regions approximating C(α). We use this estimation method with
its original quadratic optimization scheme to learn a family of MV-sets. However, a straightforward
approach of training a set of OCSVMs, each with different ν ∈ (0, 1), would not necessarily satisfy
the hierarchy requirement. In the following algorithm, we propose a modified construction of these
regions such that both the hierarchical constraint and the density assumption (Theorem 1) will hold
for each region.

Let 0 < α1 < α2, . . . , < αq < 1 be a sequence of quantiles. Given X and a kernel function k (·, ·),
our hierarchical MV-sets estimator iteratively trains a set of q OCSVMs, one for each quantile,
and returns a set of decision functions, f̂C(α1), . . . , f̂C(αq) that satisfy both hierarchy and density
requirements. Training starts from the largest quantile (αq). LetDi be the training set of the OCSVM
trained for the αi quantile. Let fC(αi), SVbi be the decision function and the calculated outliers
(bounded SVs) of the OCSVM trained for the i-th quantile. Let Oi =

⋃q
j=i SVbj . At each iteration,

Di contains examples in X that were not classified as outliers in previous iterations (not in Oi+1).
In addition, ν is set to the required fraction of outliers over Di that will keep the total fraction of
outliers over X equal to 1−αi. After each iteration, f̂C(αi) corresponds to the intersection between
the region associated with the previous decision function and the half-space associated with the
current learned OCSVM. Thus f̂C(αi) corresponds to the region specified by an intersection of half-
spaces. The outliers inOi are points that lie strictly outside the constructed region. The pseudo-code
of our estimator is given in Algorithm 1.

Algorithm 1 Hierarchical MV-sets Estimator (HMVE)

1: Input: X , 0 < α1 < α2, . . . , < αq < 1, k (·, ·)
2: Output: f̂C(α1), . . . , f̂C(αq)

3: Initialize: Dq ← X , Oq+1 ← ∅
4: for i = q to 1 do
5: ν ← (1−αi)|X|−|Oi+1|

|Di|
6: fC(αi)

, SVbi ← OCSVM(Di, ν, k)

7: if i = q then
8: f̂C(αi)

(x)← fC(αi(x))

9: else
10: f̂C(αi)

(x)←
{

fC(αi(x))
: f̂C(αi+1)

(x)
−1 : otherwise

11: Oi ← Oi+1 ∪ SVbi , Di−1 ← Di \ SVbi
12: return f̂C(α1), . . . , f̂C(αq)

The following theorem shows that the regions specified by the decision functions f̂C(α1), . . . , f̂C(αq)

are: (a) approximations for the MV-sets in the same sense suggested by Schölkopf et al., and (b)
hierarchically nested. In the following, Ĉ(αi) is denoted as the estimates of C(αi) with respect to
f̂C(αi).

Theorem 2. Let f̂C(α1), . . . , f̂eC(αq) be the decision functions returned by Algorithm 1 with param-
eters {α1, . . . , αq},X , k (·, ·). Assume X is separable. Let Ĉ(αi) be the region in the input space
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Figure 1: Left: Estimated MV-sets Ĉ(αi) in
the original input space, q = 3. Right: the
projected Ĉ(αi) in F .
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Figure 2: Averaged symmetric differences
against the number of training points for the
OCSVM / OCNM versions of our estimator,
and the KDE2d density estimator

associated with f̂C(αi), and SVubi be the set of (unbounded) SVs lying on the separating hyperplane
in the region associated with fC(αi(x)). Then, the following statements hold:(1) Ĉ(αi) ⊆ Ĉ(αj) for

αi < αj . (2) |Oi||X | ≤ 1 − αi ≤
|SVubi |+|Oi|

|X | . (3) Suppose X were i.i.d. drawn from a distribution
F which does not contain discrete components, and k is analytic and non-constant. Then, 1− αi is
asymptotically equal to |Oi||X | .

Proof. Statement (1) holds by definition of f̂C(αi). Statements (2)-(3) are proved by induction
on the number of iterations. In the first iteration f̂C(αq) equals fC(αq). Thus, since Oq = SVbq
and ν = 1 − αq , statements (2)-(3) follow directly from Theorem 1 1. Then, by the induction
hypothesis, statements (2)-(3) hold for the first n − 1 iterations over the αq, . . . , αq−n+1 quantiles.
We now prove that statements (2)-(3) hold for f̂C(αq−n) in the next iteration. Since f̂C(αq−n+1)(x) =

−1 implies f̂C(αq−n)(x) = −1, Oq−n+1 are outliers with respect to f̂C(αq−n). In addition, ν =
(1−αq−n)|X |−|Oq−n+1|

|Di| . Hence, following Theorem 1, the total proportion of outliers with respect to
X is |Oq−n| = |SVbq−n | + |Oq−n+1| ≤ ν|Di| + |Oq−n+1| = (1 − αq−n)|X |, and |SVubq−n | +
|Oq−n+1| ≥ (1− αq−n)|X |. Hence, |Oq−n||X | ≤ 1− αq−n ≤

|SVubq−n |+|Oq−n|
|X | . In the same manner,

under the conditions of statement (3), |Oq−n| is asymptotically equal to (1− αq−n)|X |, and hence,
asymptotically, 1− αq−n =

|Oq−n|
|X | .

Figure 1 illustrates the estimated MV-sets Ĉ(αi) in both the original and the projected spaces. On
the left, all Ĉ(αi) regions in the original input space are colored with decreased gray levels. Note
that Ĉ(αi) is a subset of Ĉ(αj) if i < j. On the right, the projected regions of all Ĉ(αi)s in F are
marked with the same colors. Examples xi in the input space and their mapped vectors φ(xi) in F
are contained in the same relative regions in both spaces. It can be seen that the projections of Ĉ(αi)
in F are the intersecting half-spaces learned by Algorithm 1.

2.2 Learning Minimum-Volume Sets with One-Class Neighbor Machine Estimators

OCNM [15] is as an alternative method to the OCSVM estimator for finding regions close to C(α).
Unlike OCSVM, the OCNM solution is proven to be asymptotically close to the MV-set specified 2.
Degenerated structures in data that may damage the generalization of SVMs could be another reason
for choosing OCNM [24]. In practice, for finite sample size, it is not clear which estimator is more
accurate.

1Note that the separability of the data implies that the solution of Equation 2 satisfies ρ 6= 0.
2Schölkopf et al. [19] proved that the set provided by OCSVM converges asymptotically to the correct

probability and not to the correct MV-set. Although this property should be sufficient for the correctness of our
test, Polonik observed that MV-sets are preferred.
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OCNM uses either a sparsity or a concentration neighborhood measure. M(Rd,X ) → R is a
sparsity measure if f(x) > f(y) implies lim|X |→∞P (M(x,X ) < M(y,X )) = 1. An example
for a valid sparsity measure is the distance of x to its kth-nearest neighbor in X . When a sparsity
measure is used, the OCNM estimator solves the following linear problem

max
ξ∈Rn,ρ∈R

νnρ−
n∑
i

ξi, s.t . M (xi,X ) ≥ ρ− ξi, ξi ≥ 0, (3)

such that the resulting decision function fC(x) = sgn (ρ−M(x,X )) satisfies bounds and conver-
gence properties similar to those mentioned in Theorem 1 (ν-property).

OCNM can replace OCSVM in our hierarchical MV-sets estimator. In contrast to OCSVMs, when
OCNMs are iteratively trained on X using a growing sequence of ν values, outliers need not be
moved from previous iterations to ensure that the ν-property will hold for each decision function.
Hence, a simpler version of Algorithm 1 can be used, where X is used for training all OCNMs and
ν = 1 − αi for each step 3. Since Theorem 2 relies on the ν-property of the estimator, it can be
shown that similar statements to those of Theorem 2 also hold when OCNM is used.

As previously discussed, since the estimation of MV-sets is simpler than density estimation,
our test can achieve higher accuracy than approaches based on density estimation. To illus-
trate this hypothesis empirically, we conducted the following preliminary experiment. We sam-
pled 10 to 50 i.i.d. points with respect to a two-dimensional, mixture of Gaussians, distribution
p = 1

2N (µ = (0.5, 0.5),Σ = 0.1I) + 1
2N (µ = (−0.5,−0.5),Σ = 0.5I). We use the OCNM

and OCSVM versions of our estimator to approximate hierarchical MV-sets for qα = 9 quantiles:
α = 0.1, 0, 2, . . . , 0.9 (detailed setup parameters are discussed in Section 4). MV-sets estimated
with a KDE2d kernel-density estimation [2] were used for comparison. For each sample size, we
measured the error of each method according to the mean weighted symmetric difference between
the true MV-sets and their estimates, 1

qα

∑
α

∫
x∈C(α)∆Ĉ(α)

p(x)dx. Results, averaged over 50 sim-
ulations, are shows in Figure 2. The advantages of our approach can easily be seen: both versions
of our estimator preform notably better, especially for small sample sizes.

3 Generalized Kolmogorov-Smirnov Test

We now introduce a nonparametric, generalized Kolmogorov-Smirnov (GKS) statistical test for de-
termining whether F 6= F ′ in high-dimensional data. Assume F, F ′ are one-dimensional continuous
distributions and Fn, F ′m are empirical distributions estimated from n and m examples i.i.d. drawn
from F, F ′. Then, the two-sample Kolmogorov-Smirnov (KS) statistic is

KSn,m = sup
x∈R
|Fn(x)− F ′m(x)| (4)

and
√

nm
n+m KSn,m is asymptotically distributed, under the null hypothesis, as the distribution of

supx∈R |B(F (x))| for a standard Brownian bridge B when F = F ′. Under the null hypothesis,
assume F = F ′ and let F−1 be a quantile transform of F , i.e., the inverse of F . Then we can
replace the supremum over x ∈ R with the supremum over α ∈ [0, 1] as follows:

KSn,m = sup
α∈[0,1]

∣∣Fn(F−1(α))− F ′m(F−1(α))
∣∣. (5)

Note that in the one-dimensional setting, F−1(α) is the point x s.t. F (X ≤ x) ≤ α where X is a
random variable drawn from F . Equivalently, F−1(α) can be identified with the interval [−∞, x].
In a high-dimensional space these intervals can be replaced by hierarchical MV-sets C(α) [18],
and hence, Equation 5 can be calculated regardless of the input space dimensionality. We suggest
replacing KSn,m with

Tn,m = sup
α∈[0,1]

|Fn(C(α))− F ′m(C(α))|. (6)

For estimating C(α) we use our nonparametric method from Section 2. Ĉ(α) is learned with X
and marked as ĈX (α). In practice, when |X | is finite, the expected proportion of examples that lie

3Note that intersection is still needed (Algorithm 1, line 10) to ensure the hierarchical property on Ĉ(αi).
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within ĈX (αi) is not guaranteed to be exactly αi. Therefore, after learning the decision functions,
we estimate Fn(ĈX (αi)) by a k-folds cross-validation procedure. Our final test statistic is

T̂n,m = sup
1≤i≤q

∣∣∣F̂n(ĈX (αi))− Fm(ĈX (αi))
∣∣∣, (7)

where F̂n(ĈX (αi)) is the estimate of Fn(ĈX (αi)). The two-sample KS statistical test is used over
T̂n,m to calculate the resulting p-value.

The test defined above works only in one direction by predicting whether distributions of the samples
share the same “concentrations” as regions estimated according to X , and not according to X ′. We
may symmetrize it by running the non-symmetric test twice, once in each direction, and return twice
their minimum p-value (Bonferroni correction). Note that by doing so in the context of a change
detection task, we pay in runtime required for learning MV-sets for each X ′.

4 Empirical Evaluation

We first evaluated our test on concept-drift detection problems in data-stream classification tasks.
Concept drifts are associated with distributional changes in data streams that occur due to hidden
context [22] — changes of which the classifier is unaware. We used the 27 UCI datasets used
in [6], and 6 additional high-dimensionality UCI datasets: arrhythmia, madelon, semeion, internet
advertisement, hill-valley, and musk. The average number of features for all datasets is 123 4.

Following the experimental setup used by [11, 6], we generated, for each dataset, a sequence
〈x1, . . . , xn+m〉, where the first n examples are associated with the most frequent label, and the
following m examples with the second most frequent. Within each label the examples were shuffled
randomly. The first 100 examples 〈x1, . . . , x100〉, associated, in all datasets, with the most common
label, were used as the baseline dataset X . A sliding window of 50 consecutive examples over the
following sequence of examples was iteratively used to define the most recent data X ′ at hand. Sta-
tistical tests were evaluated with X and all possible X ′ windows. In total, for each dataset, the set
{〈X ,X ′i〉 |X ′i = {xi, . . . , xi+49} , 101 ≤ i ≤ n+m− 49} of pairs were used for evaluation. The
following figure illustrates this setup:

C1 C2 C2 C3 C3 C4

S

1x

2x 3x

F1

Fd

C3

C2

C2

C1
O

 1x 3x

 2x

jh

1jh 
j

topp

1j

topp 

j

svp
1j

svp 

O
j

jw



1

1

j

jw

 



Hypersphere 
with radius 1

1 100,...,x x

Time

101 150,...,x x 49,...,i ix x  49 ,...,m n m nx x  
. . . . . .

Training set Testing sets

. . . . . .

The pairs 〈X ,X ′i〉 , i ≤ n − 49, where all examples in X ′i have the same labels as in X , are
considered “unchanged.” The remaining pairs are considered “changed.” Performance is evaluated
using precision-recall values with respect to the change detection task.

We compare our one-directional (GKS1d) and two-directional (GKS2d) tests to the following 5 ref-
erence tests: kdq-tree test (KDQ) [4], Metavariable Wald-Wolfowitz test (WW) [10], Kernel change
detection (KCD) [5], Maximum mean discrepancy test (MMD) [12], and PAC-Bayesian margin test
(PBM) [6]. See section 5 for details. All tests, except of MMD, were implemented and parameters
were set with accordance to their suggested setting in their associate papers. The implementation of
MMD test provided by the authors 5 was used with default parameters (RBF kernels with automatic
kernel width detection) and Rademacher bounds. Similar results were also measured for asymp-
totic bounds. Note that we cannot compare our test to Polonik’s test since density estimations and
level-sets extractions are not practically feasible on high-dimensional data.

The LibSVM package [3] with a Gaussian kernel (γ = 2
#features ) was used for the OCSVMs. A

distance from a point to its kth-nearest neighbor was used as a sparsity measure for the OCNMs. k
is set to 10% of the sample size 6. α = 0.1, 0.2, . . . , 0.9 were used for all experiments.

4Nominal features were transformed into numeric ones using binary encoding; missing values were replaced
by their features’ average values.

5The code can be downloaded at http://people.kyb.tuebingen.mpg.de/arthur/mmd.htm.
6Preliminary experiments show similar results obtained with k equal to 10, 20, . . . , 50% of |X |.
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4.1 Results

For better visualization, results are shown in two separate figures: Figure 3 shows the precision-
recall plots averaged over the 33 experiments for the OCSVM version of our tests, and the 5 reference
tests. Figure 4 shows the precision-recall plots averaged over the 33 experiments for the OCSVM
and OCNM versions of our tests. In both versions, GKS1d and GKS2d provide the best precision-
recall compromise. For example, for the OCSVM version, at a recall of 0.86, GKS1d accurately
detects distributional changes with 0.90 precision andGKS2d with 0.88 precision, while the second
best competitor does so with 0.84 precision. In terms of their break even point (BEP) measures –
the points at which precision equals recall – GKS1d outperforms the other 5 reference tests with
a BEP of 0.89 while its second best competitor does so with BEP of 0.84. Mean precisions for
each dataset were compared using the Wilcoxon statistical test with α = 0.05. Here, too, GKS1d

performs significantly better than all others for both OCSVM and OCNM versions, except for the
MMD with a p-value of 0.08 for GKS1d(OCSVM) and 0.12 for GKS1d(OCNM).

Although the plots for our GKS1d (OCSVM) test (Figure 4) look better than GKS2d, no significant
difference was found. This result is consistent with previous studies which claim that variants of
solutions whose goal is to make the tests more symmetric have empirically shown no conclusive
superiority [4]. We also found that the GKS1d (OCSVM) version of our test has the least runtime
and scales well with dimensionality, while the GKS1d (OSNM) version suffers from increased time
complexity, especially in high dimensions, due to its expensive neighborhood measure. However,
note that this observation is true only when off-line computational processing onX is not considered.

As opposed to the KCD, and, PBM, tests, our GKS1d test need not be retrained on each X ′. Hence,
in the context where X is treated as a baseline dataset, GKS1d (OCSVM) is relatively cheap, and
estimated inO (nm) time (the total number of SVs used to calculate f ′C(α1), . . . , f

′
C(αq) isO (n)).

In comparison to other tests, it is still the least computationally demanding 7.

4.2 Topic Change Detection among Documents

We evaluated our test on an additional setup of high-dimensionality problems pertaining to the de-
tection of topic changes in streams of documents. We used the 20-Newsgroup document corpus 8.
1000 words were randomly picked to generate 1000 bag-of-words features. 12 categories were used
for the experiments 9. Topic changes were simulated between all pairs of categories (66 pairs in to-
tal), using the same methodology as in the previous UCI experiments. Due to the excessive runtime

7MMD and WW complexities are estimated in O
(
(n+m)2

)
time where n,m are the sample sizes. KDQ

uses bootstrapping for p-value estimations, and hence, is more expensive.
8The 20-Newsgroup corpus is at http://people.csail.mit.edu/jrennie/20Newsgroups/.
9The selection of these categories is based on the train/test split defined in http://www.cad.zju.

edu.cn/home/dengcai/Data/TextData.html.
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of some of the tests, especially with high-dimensional data, we evaluated only 4 of the 7 methods:
GKS1d (OCSVM), WW, MMD, and KDQ, whose expected runtime may be more reasonable.

Once again, our GKS1d test dominates the others with the best precision-recall compromise. With
regard to BEP values, GKS1d outperforms the other reference tests with a BEP of 0.67 (0.70 pre-
cision on average), while its second best competitor (MMD) does so with a BEP of 0.62 (0.64
precision on average). According to the Wilcoxon statistical test with α = 0.05, GKS1d performs
significantly better than the others in terms of their average precision measures.

5 Related Work

Our proposed test belongs to a family of nonparametric tests for detecting change in multivariate
data that compare distributions without the intermediate density estimation step. Our reference tests
were thus taken from this family of studies. The kdq-tree test (KDQ) [4] uses a spatial scheme (called
kdq-tree) to partition the data into small cells. Then, the Kullback-Leibler (KL) distance is used to
measure the difference between data counts for the two samples in each cell. A permutation (boot-
strapping) test [7] is used to calculate the significant difference (p-value). The metavariable Wald-
Wolfowitz test (WW) [10] measures the differences between two samples according to the minimum
spanning tree in the graph of distances between all pairs in both samples. Then, the Wald-Wolfowitz
test statistics are computed over the number of components left in the graph after removing edges
between examples of different samples. The kernel change detection (KCD) [5] measures the dis-
tance between two samples according to a “Fisher-like” distance between samples. This distance is
based on hypercircle characteristics of the resulting two OCSVMs, which were trained separately on
each sample. The maximum mean discrepancy test (MMD) [12] meausres discrepancy according to
a complete matrix of kernel-based dissimilarity measures between all examples, and test statistics
are then computed. (5) The PAC-Bayesian margin test (PBM) [6] measures the distance between
two samples according to the average margins of a linear SVM classifier between the samples, and
test statistics are computed.

As discussed in detail before, our test follows the general approach of Polonik but differs in three
important ways: (1) While Polonik uses a density estimator for specifying the MV-sets, we introduce
a simpler method that finds the MV-sets directly from the data. Our method is thus more practical
and accurate in high-dimensional or small-sample-sized settings. (2) Once the MV-sets are defined,
Polonik uses their hypothetical quantiles as the expected plots, and hence, runs the KS test in its one-
sample version (goodness-of-fit test). We take a more practically accurate approach for finite sample
size when approximations of MV-sets are not precise. Instead of using the hypothetical measures,
we estimate the expected plots of X empirically and use the two-sample KS test instead. (3) Unlike
Polonik’s work, ours was evaluated empirically and its superiority demonstrated over a wide range
of nonparametric tests. Moreover, since Polonik’s test relies on a density estimation and the ability
to extract its level-sets, it is not practically feasible in high-dimensional settings.

Other methods for estimating MV-sets exist in the literature [21, 1, 16, 13, 20, 23, 14]. Unfortu-
nately, for problems beyond two dimensions and non-convex sets, there is often a gap between their
theoretical and practical estimates [20]. We chose here OCSVM and OSNM because they perform
well on small, high-dimensional samples.

6 Discussion and Summary

This paper makes two contributions. First, it proposes a new method that uses OCSVMs or OCNMs
to represent high-dimensional distributions as a hierarchy of high-density regions. This method
is used for statistical tests, but can also be used as a general, black-box, method for efficient and
practical representations of high-dimensional distributions. Second, it presents a nonparametric,
generalized, KS test that uses our representation method to detect distributional changes in high-
dimensional data. Our test was found superior to competing tests in the sense of average precision
and BEP measures, especially in the context of change-detection tasks.

An interesting and still open question is how we should set the input α quantiles for our method.
The problem of determining the number of quantiles – and the gaps between consecutive ones – is
related to the problem of histogram design.
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