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Abstract

Margin is one of the most important concepts in machine learning. Previous mar-
gin bounds, both for SVM and for boosting, are dimensionality independent. A
major advantage of this dimensionality independency is that it can explain the ex-
cellent performance of SVM whose feature spaces are often of high or infinite
dimension. In this paper we address the problem whether such dimensionality in-
dependency is intrinsic for the margin bounds. We prove a dimensionality depen-
dent PAC-Bayes margin bound. The bound is monotone increasing with respect
to the dimension when keeping all other factors fixed. We show that our bound
is strictly sharper than a previously well-known PAC-Bayes margin bound if the
feature space is of finite dimension; and the two bounds tend to be equivalent as
the dimension goes to infinity. In addition, we show that the VC bound for linear
classifiers can be recovered from our bound under mild conditions. We conduct
extensive experiments on benchmark datasets and find that the new bound is use-
ful for model selection and is usually significantly sharper than the dimensionality
independent PAC-Bayes margin bound as well as the VC bound for linear classi-
fiers.

1 Introduction

Linear classifiers, including SVM and boosting, play an important role in machine learning. A cen-
tral concept in the generalization analysis of linear classifiers is margin. There have been extensive
works on bounding the generalization errors of SVM and boosting in terms of margins (with various
definitions such o, 1, soft, hard, average, minimum, etc.)

In 1970’s Vapnik pointed out that large margin can imply good generalization. Using the fat-
shattering dimension, Shawe-Taylor et al. [1] proved a margin bound for linear classifiers. This
bound was improved and simplified in a series of works [2, 3, 4, 5] mainly based on the PAC-Bayes
theory [6] which was developed originally for stochastic classifiers. (See Section 2 for a brief review
of the PAC-Bayes theory and the PAC-Bayes margin bounds.) All these bounds state that if a linear
classifier in the feature space induces large margins for most of the training examples, then it has a
small generalization error bound independent of the dimensionality of the feature space.

The (I;) margin has also been extensively studied for boosting to explain its generalization ability.
Schapire et al. [7] proved a margin bound for the generalization error of voting classifiers. The bound
is independent of the number of base classifiers combined in the voting classifier!. This margin
bound was greatly improved in [8, 9] using (local) Rademacher complexities. There also exist
improved margin bounds for boosting from the viewpoint of PAC-Bayes theory [10], the diversity
of base classifiers [11], and different definition of margins [12, 13].

'The bound depends on the VC dimension of the base hypothesis class. Nevertheless, given the VC dimen-
sion of the base hypothesis space, the bound does not depend on the number of the base classifiers, which can
be seen as the dimension of the feature space.



The aforementioned margin bounds are all dimensionality independent. That is, the bounds are
solely characterized by the margins on the training data and do not depend on the dimension of
feature space. A major advantage of such dimensionality independent margin bounds is that they
can explain the generalization ability of SVM and boosting whose feature spaces have high or infinite
dimension, in which case the standard VC bound becomes trivial.

Although very successful in bounding the generalization error, a natural question is whether this
dimensionality independency is intrinsic for margin bounds. In this paper we explore this problem.
Building upon the PAC-Bayes theory, we prove a dimensionality dependent margin bound. This
bound is monotone increasing with respect to the dimension when keeping all other factors fixed.
Comparing with the PAC-Bayes margin bound of Langford [4], the new bound is strictly sharper
when the feature space is of finite dimension; and the two bounds tend to be equal as the dimension
goes to infinity.

We conduct extensive experiments on benchmark datasets. The experimental results show that the
new bound is significantly sharper than the dimensionality independent PAC-Bayes margin bound
as well as the VC bound for linear classifiers on relatively large datasets. The bound is also found
useful for model selection.

The rest of this paper is organized as follows. Section 2 contains a brief review of the PAC-Bayes
theory and the dimensionality independent PAC-Bayes margin bound. In Section 3 we give the
dimensionality dependent PAC-Bayes margin bound and further improvements. We provide the
experimental results in Section 4, and conclude in Section 5. Due to the space limit, all the proofs
are given in the supplementary material.

2 Background

Let X be the instance space or generally the feature space. In this paper we always assume X = R,
We consider binary classification problems and let ) = {—1, 1}. Examples are drawn independently
according to an underlying distribution D over X x Y. Let Pp(A(x,y)) denote the probability of
event A when an example (X, y) is chosen according to D. Let S denote a training set of n i.i.d.
examples. We denote by Ps(A(x,y)) the probability of event A when an example (x, y) is chosen
at random from S. Similarly we denote by Fp and Egs the corresponding expectations. If ¢ is
a classifier, then we denote by erp(c) = Pp(y # ¢(x)) the generalization error of ¢, and let
ers(c) = Ps(y # ¢(x)) be the empirical error.

An important type of classifiers studied in this paper is stochastic classifiers. Let C be a set of
classifiers, and let () be a probability distribution of classifiers on C. A stochastic classifier defined
by @ randomly selects ¢ € C according to (). When clear from the context, we often denote by
erp(Q) and ers(Q) the generalization and empirical error of the stochastic classifier () respectively.
That is,

erp(Q) = Eenglern(c)l;  ers(Q) = Ecvglers(c)]

A probability distribution () of classifiers also defines a deterministic classifier—the voting classifier,
which we denote by vg. Forx € X

vg(X) = sgn[E.qc(X)].

In this paper we always consider homogeneous linear classifiers?, or stochastic classifiers whose
distribution is over homogeneous linear classifiers. Let X = R<. For any w € R?, the linear
classifier ¢y is defined as ¢y () = sgn[< w,- >]. When we consider a probability distribution over
all homogeneous linear classifiers cy in R%, we can equivalently consider a distribution of w € R?.

The work in this paper is based on the PAC-Bayes theory. PAC-Bayes theory is a beautiful gener-
alization of the classical PAC theory to the setting of Bayes learning. It gives generalization error
bounds for stochastic classifiers. The PAC-Bayes theorem was first proposed by McAllester [6].
The following elegant version is due to Langford [4].

2This does not sacrifice any generality since linear classifiers can be easily transformed to homogeneous
linear classifiers by adding a new dimension.



Theorem 2.1. Let P, ) denote probability distributions of classifiers. For any P and any § € (0, 1),
with probability 1 — § over the random draw of n training examples

ntl
b (ers(@) || erp(@)) < TP LI m

holds simultaneously for all distributions Q). Here KL(Q||P) is the Kullback-Leibler divergence of
distributions Q) and P; kl(a||b) for a,b € [0, 1] is the Bernoulli KL divergence defined as kl(a||b) =

alog % + (1 — a)log 1=4.

The above PAC-Bayes theorem states that if a stochastic classifier, whose distribution @ is close (in
the sense of KL divergence) to the fixed prior P, has a small training error, then its generalization
error is small.

PAC-Bayes theory has been improved and generalized in a series of works [5, 14]. For important
recent results please referred to [14]. [15] generalizes the KL divergence in the PAC-Bayes theorem
to arbitrary convex functions. [15, 16, 17, 18, 19] utilize improved PAC-Bayes bounds to develop
learning algorithms and perform model selections.

Very interestingly, it is shown in [2] that one can derive a margin bound for linear classifiers (in-
cluding SVM) from the PAC-Bayes theorem quite easily. It is much simpler and slightly tighter than
previous margin bounds for SVM [1, 20]. The following simplified and refined version can be found
in [4].

Theorem 2.2 ([4]). Let X = R% Let Q(u,w) (1 > 0, w € RY, ||w|| = 1) denote the distribution of
homogeneous linear classifiers c,,, where w ~ N (uw, I). For any ¢ € (0,1), with probability 1 — §
over the random draw of n training examples

ﬁ + In n+1
2 9

Kl (ers(Q(u, w)) || erp(Q(u, w))) < 2 )

holds simultaneously for all i > 0 and all w € R¢ with |Ww|| = 1. In addition, the empirical error
of the stochastic classifier can be written as

ers(Q(u,w)) = Es®(uy(w;x,y)), A3)
<w.x>

where y(W;x,y) =y R is the margin of (x,y) with respect to the unit vector w; and

n

D(t)=1-d(t) = /too \/%6*72/%17 (4)

is the probability of the upper tail of Gaussian distribution.

According to Theorem 2.2, if there is a linear classifier w € R inducing large margins for most
training examples, i.e., v(W; X, y) is large for most (X, y) , then choosing a relatively small  would
yield a small ers (Q(u, w)) and in turn a small upper bound for the generalization error of the
stochastic classifier Q(u, w). Note that this bound does not depend on the dimensionality d. In fact
almost all previously known margin bounds are dimensionality independent®.

PAC-Bayes theory only provides bounds for stochastic classifiers. In practice however, users often
prefer deterministic classifiers. There is a close relation between the error of a stochastic classifier
defined by distribution () and the error of the deterministic voting classifier vg. The following
simple result is well-known.

Proposition 2.3. Let vg be the voting classifier defined by distribution (). That is, vg(-) =
sgn[Ec~qc(-)]. Then for any Q
erp(vg) < 2erp(Q). %)

Combining Theorem 2.2 and Proposition 2.3, one can upper bound the generalization error of the
voting classifier vg associated with Q(u, W) given in Theorem 2.2. In fact, it is easy to see that
vQ = ¢y, the voting classifier is exactly the linear classifier w. Thus

erp(cq) < 2erp(Q(u, W)). (6)

3There exist dimensionality dependent margin bounds [21]. However these bounds grow unboundedly as
the dimensionality tends to infinity.




From Theorem 2.2, Proposition 2.3 and (6), we have that with probability 1 —§ the following margin
bound holds for all classifiers cg with w € R?, ||| = 1 and all y > 0:

Lz
 erolew)) f +
2 - n '

kl (67“5(62(/% W) | )

One disadvantage of the bounds in (5), (6) and (7) is that they involve a multiplicative factor of 2.
In general, the factor 2 cannot be improved. However for linear classifiers with large margins there
can exist tighter bounds. The following is a slightly refined version of the bounds given in [2, 3].

Proposition 2.4 ([2, 3]). Let Q(p, W) and vg = c; be defined as above. Let erp o(Q(u, w)) =
Eynuw,nPp (y% < 0) be the error of the stochastic classifier with margin 6. Then for all
0>0 B

erp(cy) < erpo(Q(u, w)) + ©(6). (8

The bound states that if the stochastic classifier induces small errors with large margin 6, then the
linear (voting) classifier has only a slightly larger generalization error than the stochastic classifier.
However sometimes (8) can be larger than (5). The two bounds have a different regime in which
they dominate [2]. It is also worth pointing out that the margin y <|V‘V;ﬁ> considered in Proposition
2.4 is unnormalized with respect to w. See Section 3 for more discussions.

To apply Proposition 2.4, one needs to further bound erp o(Q(u, W)) by its empirical version
ers,o(Q(u, W) = Ewn(uw, 1) Ps (yw < 9) = ESE(My<ﬁV,;ﬁ> — 6). With slight modifi-

(Il
cations of Theorem 2.2, one can show that for any § > 0 with probability 1 — § the following bound
is valid for all ;4 and W uniformly:

2
%_HHLH

Kl (ers,p(Q(p, W) || erp,o(Q(n, W))) < . 9

n

The following Proposition combines the above results.

Proposition 2.5. For any 6 > 0 and any § > 0 with probability 1 — § the following bound is valid
Sfor all i and w uniformly:

kl (ers,o(Q(u,w)) || erp(ci) — @(0))) < 2——2—. (10)

Note that this last bound is not uniform for 8, see also [3].

Improving the multiplicative factor was also studied in [22, 17], in which the variance of the stochas-
tic classifier is also bounded by PAC-Bayes theorem, and Chebyshev inequality can be used.

3 Theoretical Results

In this section we give the theoretical results. The main result of this paper is Theorem 3.1, which
provides a dimensionality dependent PAC-Bayes margin bound.

Theorem 3.1. Let Q(p, W) (1 > 0, w € R%, |W|| = 1) denote the distribution of linear classifiers
cw(s) = sgn[< w,- >|, where w ~ N (uw, I). For any § € (0,1), with probability 1 — § over the
random draw of n training examples

%ln(l—i—%)—i-ln"TH

kl(ers(Q(p,w)) [| erp(Q(p, w))) < " (1D
holds simultaneously for all ji > 0 and all W € R? with |w|| = 1. Here ers(Q(u,w)) =
Es®(uy(w;x,y)) and y(w;x,y) = y% are the same as in Theorem 2.2.

Comparing Theorem 3.1 with Theorem 2.2, it is easy to see the following Proposition holds.

Proposition 3.2. The bound (11) is sharper than (2) for any d < oo, and the two bounds tend to be
equivalent as d — oo.



Theorem 3.1 is the first dimensionality dependent margin bound that remains nontrivial in infinite
dimension.

Theorem 3.1 and Theorem 2.2 are uniform bounds for ;. Thus one can choose appropriate p to op-
timize each bound respectively. Note that ers(Q(p, w)) in the LHS of the two bounds is monotone
decreasing with respect to p. Comparing to Theorem 2.2, Theorem 3.1 has the advantage that its
RHS scales only in O(In p) rather than O(y?), and therefore allows choosing a very large .

As described in (7) in Section 2, we can also obtain a margin bound for the deterministic linear
classifier ¢g by combining (11) with erp(cy) < 2 erp(Q(u, w)).

In addition, note that the VC dimension of homogeneous linear classifiers in R? is d. From Theorem
3.1 we can almost recover the VC bound [23]

2n 4
erp(c) Serg(c)Jr\/d (15 (r;i )) +1n 3 (12)

for homogenous linear classifiers in R? under mild conditions. Formally we have the following
Corollary.

1

Corollary 3.3. Theorem 3.1 implies the following result. Suppose n > 5. For any § > 2e~§n"3,
with probability 1 — § over the random draw of n training examples

BTD(CW)SeTS(cw)+\/ n( (d)i 51N == n +nnn 13

holds simultaneously for all homogeneous linear classifiers c,, with w € RY satisfying

1/2 73/2
Py <‘ <wx>| (Inn)t/2d >§le d—l—lnn. (14)

Viwllel | = 4n2 n

Condition (14) is easy to satisfy if d < n.

In a sense, the dimensionality dependent margin bound in Theorem 3.1 unifies the dimensionality
independent margin bound and the VC bound for linear classifiers.

Although it is not easy to theoretically quantify how much sharper (11) is than (2) and the VC bound
(12) (because the first two bounds hold uniformly for all w), in Section 4 we will demonstrate by
experiments that the new bound is usually significantly better than (2) and (12) on relatively large
datasets.

3.1 Improving the Multiplicative Factor

As we mentioned in Section 2, Proposition 2.3 involves a multiplicative factor of 2 when bounding
the error of the deterministic voting classifier by the error of the stochastic classifier. Note that in
general erp(cy) < 2erp(Q(p, W)) cannot be improved (consider the case that with probability one
the data has zero margin with respect to w). Here we study how to improve it for large margin
classifiers.

Recall that Proposition 2.4 gives erp(cy) < erp.a(Q(u, W)) + ®(6), which bounds the gener-
alization error of the linear classifier in terms of the error of the stochastic classifier with mar-
gin & > 0. As pointed out in [2], this bound is not always better than Proposition 2.3 (i.e.,
erp(ey) < 2erp(Q(p, W))). The two bounds each has a different dominant regime. Our first result
in this subsection is the following simple improvement over both Proposition 2.3 and Proposition
2.4.

Proposition 3.4. Using the notions in Proposition 2.4, we have that for all § > 0,

erp(cyp) < ﬁGTD’Q(Q(M,W)% (15)

where ®(0) is defined in Theorem 2.2.



It is easy to see that Proposition 2.3 is a special case of Proposition 3.4: just let § = 0 in (15) we
recover (6). Thus Proposition 3.4 is always sharper than Proposition 2.3. It is also easy to show that
(15) is sharper than (8) in Proposition 2.4 whenever the bounds are nontrivial. Formally we have the
following proposition.

Proposition 3.5. Suppose the RHS of (8) or the RHS of (15) is smaller than 1, i.e., at least one of
the two bounds is nontrivial. Then (15) is sharper than (8).

As mentioned in Section 2, the margins discussed so far in this subsection are unnormalized with

respect to w € R?. That is, we consider y% In the following we will focus on normalized

margins ym It will soon be clear that this brings additional benefits when combining with the
dimensionality dependent margin bound.

Let erR 4(Q(1, W)) = Eyn(uw,ry Po(yTai=r < 60) be the true error of the stochastic classifier

Wi
Q(u, w) with normalized margin 6 € [—1, 1]. Also let ergte (Q(u, W)) be its empirical version. We
have the following lemma.

Lemma 3.6. For any p > 0, any w € R? with ||w|| = 1 and any 6 > 0,

erp o (Q(p. W)

16
D(pb) (10

erp(cp) <

erg,s(Q)

O (ub)
much smaller than 2erp(Q) even with a not too large . Also note that setting § = 0 in (16), we
can recover (6).

If ergﬂ(Q) is only slightly larger than erp(Q) for a not-too-small § > 0, then can be

The true margin error erg,e (Q) can be bounded by its empirical version similar to Theorem 3.1: For
any # > 0 and any 6 > 0, with probability 1 — ¢

%ln(l—i-%)—i-ln"T'H
n

ki (er5 o (Qu, W))lerD o (Q(u, W) < (17)

holds simultaneously for all & > 0 and w € R? with ||w|| = 1.

Combining the previous two results we have a dimensionality dependent margin bound for the linear
classifier cg.

Proposition 3.7. Let Q(u, W) defined as before. For any 0 > 0 and any § > 0, with probability
1 — 6 over the random draw of n training examples

2
%ln(l—l—%)—l—ln"T+1

n

KL (e 5 (QUu, ) lerp(cq) ®(116)) < (18)

holds simultaneously for all > 0 and w € R? with |w|| = 1.

To see how Proposition 3.7 improves the multiplicative factor, let’s take a closer look at the bound

(18). Observe that as 1 getting large, er§ o(Q(u, W) = Ewn(uw,r) Po(yTara=r < 0) tends to the

(Iw]HIxIl
empirical error of the linear classifier W with margin 6, i.e., Ps (y% < 9) (recall that ||W||=1).

Also if puf > 3, ®(uf) ~ 1. Taking into the consideration that the RHS of (18) scales only in
O(In p), we can choose a relatively large o and (18) gives a dimensionality dependent margin bound
whose multiplicative factor can be very close to 1.

4 Experiments

In this section we conduct a series of experiments on benchmark datasets. The goal is to see to
what extent the Dimensionality Dependent margin bound (will be referred to as DD-margin bound)
is sharper than the Dimensionality Independent margin bound (will be referred to as DI-margin
bound) as well as the VC bound. More importantly, we want to see from the experiments how
useful the DD-margin bound is for model selection.



Table 1: Description of dataset

Dataset # Examples # Features Dataset # Examples # Features
Image 2310 20 Letter 20000 16
Magic04 19020 10 Mushroom 8124 22
Optdigits 5620 64 PageBlock 5473 10
Pendigits 10992 16 Waveform 3304 21
BreastCancer 683 9 Glass 214 9
Pima 768 8 wdbc 569 30

We use 12 datasets all from the UCI repository [24]. A description of the datasets is given in Table
1. For each dataset, we use 5-fold cross validation and average the results over 10 runs (for a total
50 runs). If the dataset is a multiclass problem, we group the data into two classes since we study
binary classification problems. In the data preprocessing stage each feature is normalized to [0, 1].

To compare the bounds and to do model selection, we use SVM with polynomial kernels K (x,x’) =

(a < x,x' > +b)" and let ¢ varies*. For each ¢, we train a classifier by libsvm [25]. We plot the
values of the three bounds—the DD-margin bound, the DI-margin bound, the VC bound (12) as
well as the test and training error (see Figure 1 - Figure 12). For the two margin bounds, since they
hold uniformly for 2 > 0, we select the optimal p to make the bounds as small as possible. For
simplicity, we combine Proposition 2.3 with Theorem 3.1 and Theorem 2.2 respectively to obtain
the final bound for the generalization error of the deterministic linear classifiers. In each figure, the
horizonal axis represents the degree ¢ of the polynomial kernel. All bounds in the figures (including
training and test error) are for deterministic (voting) classifier.

To analyze the experimental results, we group the 12 results into two categories as follows.

1. Figure 1 - Figure 8. This category consists of eight datasets, and each of them contains
at least 2000 examples (relatively large datasets). On all these datasets, the DD-margin
bounds are significantly sharper than the DI-margin bounds as well as the VC bounds. More
importantly, the DD-margin bounds work well for model selection. We can use this bound
to choose the degree of the polynomial kernel. On all the datasets except “Image”, the curve
of the DD-margin bound is highly correlated with the curve of the test error: When the test
error decreases (or increases), the DD-margin bound also decreases (or increases); And as
the test error remains unchanged as the degree ¢ grows, the DD-margin bound selects the
model with the lowest complexity.

2. Figure 9 - Figure 12. This category consists of four small datasets, each contains less than
1000 examples. On these small datasets, the VC bounds often become trivial (larger than
1). The DD-margin bounds are still always, but less significantly, sharper than the DI-
margin bounds. However, on these small datasets, it is difficult to tell if the bounds select
good models.

In sum, the experimental results demonstrate that the DD-margin bound is usually significantly
sharper than the DI-margin bound as well as the VC bound if the dataset is relatively large. Also the
DD-margin bound is useful for model selection. However, for small datasets, all three bounds seem
not useful for practical purpose.

5 Conclusion

In this paper we study the problem whether dimensionality independency is intrinsic for margin
bounds. We prove a dimensionality dependent PAC-Bayes margin bound. This bound is sharper
than a previously well-known dimensionality independent margin bound when the feature space is of
finite dimension; and they tend to be equivalent as the dimensionality grows to infinity. Experimental
results demonstrate that for relatively large datasets the new bound is often useful for model selection
and significantly sharper than previous margin bound as well as the VC bound.

*For simplicity we fix a and b as constants in all the experiments.
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Our work is based on the PAC-Bayes theory. One limitation is that it involves a multiplicative factor
of 2 when transforming stochastic classifiers to deterministic classifiers. Although we provide two
improved bounds (Proposition 3.4, 3.7) over previous results (Proposition 2.3, 2.4), the multiplica-
tive factor is still strictly larger than 1. A future work is to study whether there exist dimensionality
dependent margin bounds (not necessarily PAC-Bayes) without this multiplicative factor.
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