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Abstract

We estimate the rate of convergence and sample complexity of a recent robust es-
timator for a generalized version of the inverse covariance matrix. This estimator
is used in a convex algorithm for robust subspace recovery (i.e., robust PCA). Our
model assumes a sub-Gaussian underlying distribution and an i.i.d. sample from
it. Our main result shows with high probability that the norm of the difference
between the generalized inverse covariance of the underlying distribution and its
estimator from an i.i.d. sample of size N is of order O(N ~%-5%¢) for arbitrar-
ily small € > 0 (affecting the probabilistic estimate); this rate of convergence is
close to the one of direct covariance estimation, i.e., O(N *0'5). Our precise prob-
abilistic estimate implies for some natural settings that the sample complexity
of the generalized inverse covariance estimation when using the Frobenius norm
is O(D?*9) for arbitrarily small § > 0 (whereas the sample complexity of di-
rect covariance estimation with Frobenius norm is O(D?)). These results provide
similar rates of convergence and sample complexity for the corresponding robust
subspace recovery algorithm. To the best of our knowledge, this is the only work
analyzing the sample complexity of any robust PCA algorithm.

1 Introduction

A fundamental problem in probability and statistics is to determine with overwhelming probability
the rate of convergence of the empirical covariance (or inverse covariance) of an i.i.d. sample of
increasing size IV to the covariance (or inverse covariance) of the underlying random variable (see
e.g., [17, 3] and references therein). Clearly, this problem is also closely related to estimating
with high probability the sample complexity, that is, the number of samples required to obtain a
given error of approximation €. In the case of a compactly supported (or even more generally sub-
Gaussian) underlying distribution, it is a classical exercise to show that this rate of convergence is
O(N~95) (with a comparability constant depending on properties of i, in particular D, as well as
on the threshold probability, see e.g., [17, Proposition 2.1]). The precise estimate for this rate of
convergence implies that the sample complexity of covariance estimation is O(D) when using the
spectral norm and O(D?) when using the Frobenius norm. The rate of convergence and sample
complexity of PCA immediately follow from these estimates (see e.g., [15]).

While such estimates are theoretically fundamental, they can be completely useless in the presence
of outliers. That is, direct covariance or inverse covariance estimation and its resulting PCA are very
sensitive to outliers. Many robust versions of covariance estimation, PCA and dimension reduction
have been developed in the last three decades (see e.g., the standard textbooks [8, 10, 14]). In the last
few years new convex algorithms with provable guarantees have been suggested for robust subspace
recovery and its corresponding dimension reduction [5, 4, 19, 20, 11,7, 2, 1, 21, 9].

Most of these works minimize a mixture of an /1 -type norm (depending on the application) and the
nuclear norm. Their algorithmic complexity is not as competitive as PCA and their sample com-



plexity is hard to estimate due to the problem of extending the nuclear norm out-of-sample. On
the other hand, Zhang and Lerman [21] have proposed a novel M-estimator for robust PCA, which
is based on a convex relaxation of the sum of Euclidean distances to subspaces (which is origi-
nally minimized over the non-convex Grassmannian). This procedure suggests an estimator for a
generalized version of the inverse covariance matrix and uses it to robustly recover an underlying
low-dimensional subspace. This idea was extended in [9] to obtain an even more accurate method
for subspace recovery, though it does not estimate the generalized inverse covariance matrix (in par-
ticular, it has no analogous notion of singular values or their inverses). The algorithmic complexity
of the algorithms solving the convex formulations of [21] and [9] is comparable to that of full PCA.
Here we show that for the setting of sub-Gaussian distributions the sample complexity of the robust
PCA algorithm in [21] (or its generalized inverse covariance estimation) is close to that of PCA (or
to sample covariance estimation). Our analysis immediately extends to the robust PCA algorithm of

[9].

1.1 The Generalized Inverse Covariance and its Corresponding Robust PCA

Zhang and Lerman [21] formed the set
H:={Q e R*P.Q=Q",tr(Q) =1}, (1.1

as a convex relaxation for the orthoprojectors (from R” to R”), and defined the following energy
function on Hl (with respect to a data set X in RP):

Fr(Q) =) [lQx], (12)
xeX
where || - || denotes the Euclidean norm of a vector in R, Their generalized empirical inverse
covariance is .
Qx = argmin Fx(Q). (1.3)
QcH

They showed that when replacing the term ||Qx|| by ||Qx]|? in (1.2) and when Sp{X} = RP,
then the minimization (1.3) results in a scaled version of the empirical inverse covariance matrix.
It is thus clear why we can refer to Qrasa generalized empirical inverse covariance (or ¢1-type
version of it). We describe the absolute notion of generalized inverse covariance matrix, i.e., non-
empirical, in §1.2. Zhang and Lerman [21] did not emphasize the empirical generalized inverse
covariance, but the robust estimate of the underlying low-dimensional subspace by the span of the
bottom eigenvectors of this matrix. They rigorously proved that such a procedure robustly recovers
the underlying subspace under some conditions.

1.2 Main Result of this Paper

We focus on computing the sample complexity of the estimator Q x. This problem is practically
equivalent with estimating the rate of convergence of Q x of an i.i.d. sample X to the “generalized
inverse covariance” of the underlying distribution u. We may assume that p is a sub-Gaussian
probability measure on R” (see §2.1 and the extended version of this paper). However, in order
to easily express the dependence of our probabilistic estimates on properties of the measure p, we
assume for simplicity that j is compactly supported and denote by I2,, the minimal radius among all
balls containing the support of p, that is,

R, = min{r > 0 : supp(p) € B(0,r)},

where B(0,r) is the ball around the origin 0 with radius ». We further assume that for some
0 < v < 1, p satisfies the following condition, which we refer to as the “two-subspaces criterion”
(for ~y): For any pair of (D — 1)-dimensional subspaces of RP, L, and Ls:

We note that if p satisfies the two-subspaces criterion for any particular 0 < « < 1, then its support
cannot be a union of two hyperplanes of R”. The use of this assumption is clarified below in §3.2,
though it is possible that one may weaken it.



We first formulate the generalized inverse covariance of the underlying measure as follows:
A in F ; 1.5
Q = arg min F(Q) (1.5)

where

F(Q) = / Qx| dpu(x). (L6)

Let {x;}52, be a sequence of i.i.d. random variables sampled from p (i.e., each variable has distri-
bution p1). Let Xy := {x;}}¥, and denote

Qn :=Qu, and Fy := Fy,. (1.7

Our main result shows with high probability that Qand Q are uniquely defined (which we denote

by u.d. from now on) and that {Q N } NeN converges to Q in the following specified rate. It uses the
common notation: a V b := max(a, b). We explain its implications in §2.

Theorem 1.1. If u is a compactly supported distribution satisfying the two-subspaces criterion for
v > 0, then there exists a constant cg = (s, D, €) > 0 such that for any e > 0 and N > 2(D —1)
the following estimate holds:

P (Q & Qn are ud. and |Q — Qn||r < 2N§+6>
Qo

— N2 N \?
>1-— D? ' ) _ _ \N-2(D-1) .
1o (5 -2, ) a0,

D(D+1)
2

where

20[0 + 4((4040) V Q)RN

(1.9)

_ __2a0 _
(40&(])\/2

CO = Co(ao, D) =4- ((4040) \Y 2) . <1OD
Intuitively, o represents a lower bound on the directional second derivatives of F'. Therefore,
ag should affect sample complexity because the number of random samples taken to approximate a
minimum of F' should be affected by how sharply F' increases about its minimum. It is an interesting
and important open problem to find lower bounds on « for general .

2 Implication and Extensions of the Main Result

2.1 Generalization to Sub-Gaussian Measures

We can remove the assumption that the support of 1 is bounded (with radius 2,,) and assume instead
that . is sub-Gaussian. In this case, instead of Hoeffding’s inequality, we apply [18, Proposition
5.10] with a¢; = 1 for all 1 < ¢ < n. When formulating the corresponding inequality, one may
note that sup,,>, p~1/2(E,|x[P)'/P (where x represents a random variable sampled from /) can be
regarded as a substitute for 1, (see [21] for more details of a similar analysis).

2.2 Sample Complexity

The notion of sample complexity arises in the framework of Probably-Approximately-Correct
Learning of Valiant [16]. Generally speaking, the sample complexity in our setting is the mini-
mum number of samples N required, as a function of dimension D, to achieve a good estimation
of Q with high probability. We recall that in this paper we use the Frobenius norm for the estima-
tion error. The following calculation will show that under some assumptions on y it suffices to use
N = Q(D") samples for any n > 2 (we recall that f(x) = Q(g(z)) as © — oo if and only if
g(x) = O(f(z))). In our analysis we will have to assume that +y is a fixed constant, and o goes
as 1/v/D. These assumptions are placing additional restrictions on the measure j, which we expect
to be reasonable in practice as we later clarify. We further assume that R, = O(D~°5) and also
explain later why it makes sense for the setting of robust subspace recovery.



To bound the sample complexity we set Cy := 4 - ((4ag) V 2) and Cy = 10 - (2a9 + 4((dovo) V
2)R,)/(1—2a9/(4cp) V 2) sothat Cy < Cy - (Cy-D)P* (see (1.9)). Applying this bound and (1.8)
we obtain that if > 2 is fixed, 1/ < e < § and N > D", then
A A A A 2
P(Q&QN are u.d. and|Q—QN|F§aN_%+‘> 2.1
0
__N2e€
D-R2
>1— Cyexp (log(Ce - D'")D* — D)
— 2 exp (2n(D — 1)log(D) +log(1 — v)(D" — 2(D — 1))) .

21—01(02~D-N)D2exp< >—2N2(D_1)(1—7)N_2(D_1)

Since € > 1/n the first term in the RHS of (2.1) decays exponentially as a function of D (or,
equivalently, as a function of N > D"). Similarly, since 0 < v < 1 and > 1 the second term in
the RHS of (2.1) decays exponentially as a function of D. Furthermore, since € < % it follows that

the error term for the minimizer, i.e., N —3+e < D”(“%), decays polynomially in D. Thus, in order
to achieve low error estimation with high probability it is sufficient to take N = Q(D") samples for
any 1 > 2. The exact guarantees on error estimation and probability of error can be manipulated by
changing the constant hidden in the €) term.

We would like to point out the expected tradeoff between the sample complexity and the rate of
convergence. If € approaches 0, then the rate of convergence becomes optimal but the sample com-
plexity deteriorates. On the other hand, if € approaches 0.5, then the sample complexity becomes
optimal, but the rate of convergence deteriorates.

To motivate our assumption on R,,, v and ag, we recall the needle-haystack and syringe-haystack
models of [9] as a prototype for robust subspace recovery. These models assume a mixtures of outlier
and inliers components. The distribution of the outliers component is normal N (0, (04y2/D)Ip)
and the distribution of the inliers component is a mixture of N (0, (oj,2/d)P 1) (where L is a d-
subspace) and N (0, (oy,2/(CD))Ip), where C' >> 1 (the latter component has coefficient zero in
the needle-haystack model).

The underlying distribution of the syringe-haystack (or needle-haystack) model is not compactly
supported, but clearly sub-Gaussian (as discussed in §2.1) and its standard deviation is of order
O(D~°5). We also note that -y here is the coefficient of the outlier component in the needle-haystack
model, which we denote by 1. Indeed, the only non-zero measure that can be contained in a (D-1)-
dimensional subspace is the measure associated with N (0, (0,2 /d)P 1), and that has total weight

at most (1 — vp). It is also possible to verify explicitly that o is lower bounded by 1/ VD in this
case (though our argument is currently rather lengthy and will appear in the extended version of this

paper).
2.3 From Generalized Covariances to Subspace Recovery

We recall that the underlying d-dimensional subspace can be recovered from the bottom d eigen-
vectors of Q ~. Therefore, the rate of convergence of the subspace recovery (or its corresponding
sample complexity) follows directly from Theorem 1.1 and the Davis-Kahan Theorem [6]. To for-
mulate this, we assume here for simplicity that Q and Q ~ are u.d. (recall Theorems 3.1 and 3.2).

Theorem 2.1. If d < D, € > 0, ag = o, D, €) is the positive constant guaranteed by Theo-
rem 2.1, Q and Q ~ are u.d. and Ly, I:d7 N are the subspaces spanned by the bottom d eigenvectors
(i.e., with lowest d eigenvalues) of Q and Q n respectively, P; and P Ly @T€ the orthoprojectors

on these subspaces and vy _ g is the (D — d)th eigengap of Q, then

4 1. D2 —NZ2e
P ||Pﬁd - PLd,NHF S ﬁN 2 Z 1-— CON exp . (22)

Qo -V D~Ri

2.4 Nontrivial Robustness to Noise

We remark that (2.2) implies nontrivial robustness to noise for robust PCA. Indeed, assume for ex-
ample an underlying d-subspace L}; and a mixture distribution (representing noisy inliers/outliers



components) whose inliers component is symmetric around L}, with relatively high level of variance
in the orthogonal component of L, and its outliers component is spherically symmetric with suffi-

ciently small mixture coefficient. One can show that in this case Ly = L};. Combining this observa-
tion and (2.2), we can verify robustness to nontrivial noise when recovering L7, from i.i.d. samples
of such distributions.

2.5 Convergence Rate of the REAPER Estimator

The REAPER and S-REAPER Algorithms [9] are variants of the robust PCA algorithm of [21]. The
objective of the REAPER algorithm can be formulated as aiming to minimize the energy Fx(Q)
over the set

G:={QecRP*’.Q=Q",tr(Q)=D —-dand Q < I}, (2.3)
where < denotes the semi-definite order. The d-dimensional subspace can then be recovered by
the bottom d eigenvectors of Q (in [9] this minimization is formulated with P = I — Q, whose
top d eigenvectors are found). The rate of convergence of the minimizer of Fy(Q) over G to the
minimizer of F'(Q) over G is similar to that in Theorem 1.1. The proof of Theorem 1.1 must be
modified to deal with the boundary of the set G. If the minimizer Q lies on the interior of G then the
proof is the same. If Q is on the boundary of G we must only consider the directional derivatives
which point towards the interior of G, or tangent to the boundary. Other than that the proof is the
same.

2.6 Convergence Rate with Additional Sparsity Term

Rothman et al. [13] and Ravikumar et al. [12] have analyzed an estimator for sparse inverse covari-
ance. This estimator minimizes over all Q > 0 the energy

(Q, Ex)rF — logdet(Q) + An[|1Qll,, (2.4)

where X is the empirical covariance matrix based on sample of size N, (-, -)p is the Frobenius
inner product (i.e., sum of elementwise products) and ||Q||,, = ZiDjzl 1Qi ;-

Zhang and Zou [22] have suggested a similar minimization, which replaces the first two terms
in (2.4) (corresponding to Ay = 0) with

(Q?, Sn)r/2 — t2(Q). (2.5)

Indeed, the minimizers of (2.4) when Ay = 0 and of (2.5) are both equal to f]&l (assuming that the
Sp({x;}}¥.,) = RP so that the inverse empirical covariance exists).

Using the definition of EAJN, i.e., f]N = Zfil xixf/N, we note that

N 1 X
Q% Sn)r = ; Qx| (2.6)

Therefore, the minimizer of (2.5) over all Q > 0 is the same up to a multiplicative constant as
the minimizer of the RHS of (2.6) over all Q > 0 with tr(Q) = 1. Teng Zhang suggested to us
replacing the RHS of (2.6) with Flx and modifying the original problem of (2.4) (or more precisely
its variant in [22]) with the minimization over all Q € H of the energy

Fx(Q) + An[Qlle, - 2.7

The second term enforces sparseness and we expect the first term to enforce robustness.

By choosing Ay = O(IN %) we can obtain similar rates of convergence for the minimizer of (2.7)
as the one when A\ = 0 (see extended version of this paper), namely, rate of convergence of order
O(N—0-5%€) for any € > 0. The dependence on D is also the same. That is, the minimum sample
size when using the Frobenius norm is O(D") for any n > 2. Nevertheless, Ravikumar et al. [12]
show that under some assumptions (see e.g., Assumption 1 in [12]), the minimal sample size is
O(log(D)r?), where r is the maximum node degree for a graph, whose edges are the nonzero entries
of the inverse covariance. It will be interesting to generalize such estimates to the minimization
of (2.7).



3 Overview of the Proof of Theorem 1.1

3.1 Structure of the Proof

We first discuss in §3.2 conditions for uniqueness of Q and Q (with high probability). In §3.3 and
§3.4 we explain in short the two basic components of the proof of Theorem 1.1. The first of them is

that ||Q — Q|| can be controlled from above by differences of directional derivatives of F'. The
second component is that the rate of convergence of the derivatives of { Fjy }37_; to the derivative
of F' is easily obtained by Hoeffding’s inequality. In §3.5 we gain some intuition for the validity
of Theorem 1.1 in view of these two components and also explain why they are not sufficient to
conclude the proof. In §3.6 we describe the construction of “nets” of increasing precision; using
these nets we conclude the proof of Theorem 1.1 in §3.7. Throughout this section we only provide
the global ideas of the proof, whereas in the extended version of this paper we present the details.

3.2 Uniqueness of the Minimizers

The two-subspaces criterion for p guarantees that Q is u.d. and that Q is u.d. with overwhelming
probability for sufficiently large N as follows.

Theorem 3.1. If u satisfies the two-subspaces criterion for some v > 0, then F is strictly convex.
Theorem 3.2. If i satisfies the two-subspaces criterion for some v > 0 and N > 2(D — 1), then

N \2
P (Fy is not strictly convex) < 2 (D - 1) (1 —~)N—2P=1), 3.1

3.3 From Energy Minimizers to Directional Derivatives of Energies

We control the difference ||Q — Q|| » from above by differences of derivatives of energies at Q and

Q. Here Q is an arbitrary matrix in B,.(Q) for some > 0 (where B,.(Q) is the ball in H with

center Q and radius r w.r.t. the Frobenius norm), but we will later apply it with Q = Qx for some
N eN.

3.3.1 Preliminary Notation and Definitions

The “directions” of the derivatives, which we define below, are elements in the unit sphere of the
tangent space of H, i.e.,

D:={DeR?|D =D tx(D) =0, D =1}.

Throughout the paper, directions in D are often determined by particular points Q1, Q2 € H, where
Q1 # Q2. We denote the direction from Q; to Q2 by Dq, q,. that s,

Q2 — Qi

D = —_— 3.2
Q= Q, — Qi 32)

Directional derivatives with respect to an element of I may not exist and therefore we use directional
derivatives from the right. That is, for Q € H and D € D, the directional derivative (from the right)
of F'at Q in the direction D is

d
VLF(Q) = aF(Q +1tD)|,_os- (3.3)

3.3.2 Mathematical Statement

We use the above notation to formulate the desired bound on ||Q — Q|| . It involves the constant
a, which is also used in Theorem 1.1. The proof of this lemma clarifies the existence of «, though
it does not suggest an explicit approximation for it.

Lemma 3.3. For r > 0 there exists a constant oy = «go(r, i, D) > 0 such that for all Q €

B.(Q)\ {Q}:

V+
Da.q

F(Q) =V, F(Q) > a|Q-Qllr (3:4)



and consequently

Vb. F(Q) > a]Q— Qllr. (3.5)

QQ

3.4 N~1/2 Convergence of Directional Derivatives

We formulate the following convergence rate of the directional derivatives of F' from the right:
Theorem 3.4. For Q € Hand D € D,

_ N\ 2e
P (\VBF(Q> - VHFn(Q)| = NE—%) < 2exp (D].VRQ ) : (3.6)
"

It will be desirable to replace V5 F(Q) — V{ F (Q) in (3.6) with V{5 F(Q), though it is impossible
in general. We will later use the following observation to implicitly obtain a result in this direction.

Lemma 3.5. IfQ € H\ {Q}, then
VH. F(Q)>0. 3.7

3.5 An Incomplete Idea for Proving Theorem 1.1

At this point we can outline the basic intuition behind the proof of Theorem 1.1. We assume for
simplicity that Qp is u.d. Suppose, for the moment, that we could use (3.6) of Theorem 3.4 with

Q := Qu . This is actually not mathematically sound, as we will discuss shortly, but if we could do
it then we would have from (3.6) that

R . 1 7N26
P (|VBQ7QNF(QN) - VBQ,QN Fn(Qn)[ = N°© : ) < 2exp (DRQ) . (3.8)
n

We note that (3.7) as well as both the convexity of Fiy and the definition of Qn imply that

VBQQN F(Qy) >0 and VgQQN Fn(Qn) <0. (3.9)
Combining (3.8) and (3.9), we obtain that
A 1 —N?
+ > €—3 < -
P(Vhy o FQx) = NH) <2exp (D : R}i) . (3.10)

At last, combining (3.5), (3.10) and Theorem 3.2 we can formally prove Theorem 1.1.

However, as mentioned above, we cannot legally use Theorem 3.4 with Q = Q n~. This is because

Q. is a function of the samples (random variables) {x;}I¥.,, but for our proof to be valid, Q needs
to be fixed before the sampling begins.

Therefore, our new goal is to utilize the intuition described above, but modify the proof to make
it mathematically sound. This is accomplished by creating a series of “nets” (subsets of H) of
increasing precision. Each matrix in each of the nets is determined before the sampling begins, so
it can be used in Theorem 3.4. However, the construction of the nets guarantees that the Nth net
contains a matrix Q which is sufficiently close to Q n to be used as a substitute for Q ~ in the above
process.

3.6 The Missing Component: Adaptive Nets

We describe here a result on the existence of a sequence of nets as suggested in §3.5. They are
constructed in several stages, which cannot fit in here (see careful explanation in the extended version

of this paper). We recall that B2(Q) denotes a ball in H with center Q and radius 2 w.r.t. the
Frobenius norm.

Lemma 3.6. Given k > 2 and T > 0, there exists a sequence of sets { Sy, }°2 such that ¥n € N
S, C By(Q) and for any Q € By(Q) with |Q — Q||p > n~2, 3Q’ € S,, with

Q- Qlr <1Q-Qlr, (3.11)



7 (r+r7) > Q- Qlp =02k and (3.12)
IDg.qr ~Dagllr <t (3.13)

Furthermore,
D(D+1)

10Dn> 2

1Sn| < 2607 < (3.14)

The following lemma shows that we can use S to guarantee good approximation of Q by Q N as
long as the differences of partial derivatives are well-controlled for elements of Sy (it uses the fixed
constants x and 7 for Sy ; see Lemma 3.6).

Lemma 3.7. If for some € > 0, Fy is strictly convex and

+ I vax —1+te
Vba o F(Q) =V FN(Q) < N727° VQ e S, (3.15)
then QN is u.d. and

1+ 2a0(T+ L) + 4R, k7
Qg

1Q - Qulr < N—3+e, (3.16)

3.7 Completing the Proof of Theorem 1.1

Let us fix ko = (4a) V 2, 79 := (1 — 200 /k0) /(200 + 4R, ko) and N > 2(D — 1). We note that

1
14 2a9(m0 + —) + 4R, ko0 = 2. (3.17)
Ko

We rewrite (3.14) using x := k¢ and 7 := 7y and then bound its RHS from above as follows

D(D+1)
2 2 4R, ((4ao) V 2 :
S| < 2((dag) V)N (101) 20+ *(2(@00‘0) ) (3.18)
T (dag)Vv2
< Conp?,
=9

Combining (3.6) (applied to any Q € Sy) and (3.18) we obtain that

P (3Q € Sy with ‘VBQQF(Q) - VBQQFN(Q)’ > N*%“)
< CoNP" exp (~-N*/(D-R%)) . (3.19)

Furthermore, (3.1) and (3.19) imply that

+ _ vt —5+e A
P (’VDQ=QF(Q) VDQYQFN(Q)‘ < N~3+vQ e Sy and Qu is u.d.)

_N25 N 2
>1 - CyNP* — ) -2 1 — y)N—2(0-1), 3.20
> 0 eXp<D.R3> (D_l)( 7) (3.20)
Theorem 1.1 clearly concludes from Lemma 3.7 (applied with x := kg and 7 := 79), (3.20)
and (3.17).
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