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Abstract

Hierarchical Hidden Markov Models (HHMMs) are sophisticated stochastic mod-
els that enable us to capture a hierarchical context characterization of sequence
data. However, existing HHMM parameter estimation methods require large com-
putations of time complexity O(TN2D) at least for model inference, where D is
the depth of the hierarchy, N is the number of states in each level, and T is the
sequence length. In this paper, we propose a new inference method of HHMMs
for which the time complexity is O(TND+1). A key idea of our algorithm is ap-
plication of the forward-backward algorithm to state activation probabilities. The
notion of a state activation, which offers a simple formalization of the hierarchical
transition behavior of HHMMs, enables us to conduct model inference efficiently.
We present some experiments to demonstrate that our proposed method works
more efficiently to estimate HHMM parameters than do some existing methods
such as the flattening method and Gibbs sampling method.

1 Introduction

Latent structure analysis of sequence data is an important technique for many applications such
as speech recognition, bioinformatics, and natural language processing. Hidden Markov Models
(HMMs) play a key role in solving these problems. HMMs assume a single Markov chain of hidden
states as the latent structure of sequence data. Because of this simple assumption, HMMs tend to
capture only local context patterns of sequence data. Hierarchical Hidden Markov Models (HH-
MMs) are stochastic models which assume hierarchical Markov chains of hidden states as the latent
structure of sequence data [3]. HHMMs have a hierarchical state transition mechanism that yields
the capability of capturing global and local sequence patterns in various granularities. By their na-
ture, HHMMs are applicable to problems of many kinds including handwritten letter recognition [3],
information extraction from documents [11], musical pitch structure modeling [12], video structure
modeling [13], and human activity modeling [8, 6].

For conventional HMMs, we can conduct unsupervised learning efficiently using the forward-
backward algorithm, which is a kind of dynamic programming [9]. In situations where few or
no supervised data are available, the existence of the efficient unsupervised learning algorithm is
a salient advantage of using HMMs. The unsupervised learning of HHMMs is an important tech-
nique, as it is for HMMs. In this paper, we discuss unsupervised learning techniques for HHMMs.
We introduce a key notion, activation probability, to formalize the hierarchical transition mecha-
nism naturally. Using this notion, we propose a new exact inference algorithm which has less time
complexity than existing methods have.

The remainder of the paper is organized as follows. In section 2, we overview HHMMs. In section
3, we survey HHMM parameter estimation techniques proposed to date. In section 4, we introduce
our parameter estimation algorithm. Section 5 presents experiments to show the effectiveness of our
algorithm. We conclude our discussion in section 6.
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Figure 1: (left) Dynamic Bayesian network of the HHMM. (top-right) Tree representation of the
HHMM state space. (bottom-right) State identification by the absolute path of the tree.

2 Hierarchical Hidden Markov Models

Let O = {O1, ..., Ot, ..., OT } be a sequence of observations in which subscript t denotes the time
in the sequence. We designate time as an integer index of observation numbered from the beginning
of the sequence. HHMMs define Qd

t for 1 ≤ t ≤ T, 1 ≤ d ≤ D as a hidden state at time t and
level d, where d = 1 represents the top level and d = D represents the bottom level. HHMMs also
define binary variables F d

t , called termination indicators. If F d
t = 1, then it is indicated that the

Markov chain of level d terminates at time t. In HHMMs, a state transition at level d is permitted
only when the Markov chain of level d + 1 terminates, i.e. Qd

t = Qd
t−1 if F d+1

t−1 = 0. A terminated
Markov chain is initialized again at the next time. Figure 1 (left) presents a Dynamic Bayesian
Network (DBN) expression for an HHMM of hierarchical depth D = 3. The conditional probability
distribution of Q, F and O is defined as follows [7].

p(Qd
t = j|Qd

t−1 = i, F d+1
t−1 = b, F d

t−1 = f, Q1:d−1
t = k) =

 δ(i, j) (if b = 0)
Ad

k(i, j) (if b = 1, f = 0)
πd

k(j) (if b = 1, f = 1)

p(F d
t = 1|Qd

t = i, Q1:d−1
t = k, F d+1

t = b) =
{

0 (if b = 0)
Ad

k(i, end) (if b = 1)

p(Ot = v|Q1:D
t = k) = Bk(v)

We use a notation Q1:d−1
t as a combination of states {Q1

t , ..., Q
d−1
t }. Probabilities of the initializa-

tion and the state transition of Markov chains at level d depend on all higher states Q1:d−1. Ad
k(i, j)

is a model parameter of the transition probability at level d from state i to j when Q1:d−1
t = k.

Ad
k(i, end) denotes a termination probability that state i terminates the Markov chain at level d

when Q1:d−1
t = k. πd

k(j) is an initial state probability of state j at level d when Q1:d−1
t = k. Bk(v)

is an output probability of observation v when Q1:D
t = k.

A state space of HHMM is expressed as a tree structure [3]. Figure 1 (top-right) presents a tree
expression of state space of an HHMM for which the depth D = 3 and the number of states in each
level N = 3. The level of the tree corresponds to the level of HHMM states. Each node at level d
corresponds to a combination of states Q1:d. Each node has N children because there are N possible
states for each level. The rectangles in the figure denote local HMMs in which nodes can mutually
transit directly using the transition probability A. For the analysis described herein, we assume the
balanced N-ary tree to simplify discussions of computational complexity. However, arbitrary state
space trees do not change the substance of what follows.

The behavior of Markov chain at level d depends on the combination of all higher-up states Q1:d−1,
not only on the individual Qd. In the tree structure, the absolute path which corresponds to Q1:d

is meaningful, rather than the relative path which corresponds to Qd. We refer to Q1:d as Zd and
call it absolute path state. Figure 1 (bottom-right) presents an absolute path state identification. The
set of values taken by an absolute path state at level d, denoted by Ωd, contains Nd elements in the
balanced N-ary tree state space. We define a function to obtain the parent absolute path state of Zd

as parent(Zd). Similarly, we define a function to obtain the set of child absolute path states of Zd

as child(Zd), and a function to obtain the set of siblings of Zd as sib(Zd) = child(parent(Zd)).
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Table 1: Notation for HHMMs.
D Depth of hierarchy
N Number of states in each level
Ωd Set of values taken by absolute path state at level d

Zd
t ∈ Ωd Absolute path state at time t and level d

F d
t ∈ {0, 1} Termination indicator at time t and level d

Ot ∈ {1, ..., V } Observation at time t

Adij State transition probability from state Zd
t = i to state Zd

t+1 = j at level d

AdiEnd Termination probability of Markov chain at level d from state Zd
t = i

πdi Initial state probability of state Zd = i at level d

Biv Output probability of observation v with ZD = i

Table 1 presents the notation used for the HHMM description. We use the notation of the absolute
path state Zd rather than Qd throughout the paper. Therefore, we define compatible notations for
the model parameters. Whereas the conventional notation πd

k(j) denotes the initial state probability
of Qd = j when Q1:d−1 = k, we aggregate Qd and Q1:d−1 into Q1:d = Zd and define πdi as the
initial state probability of Zd = i. Similarly, we define Adij as the state transition probability from
Zd = i to j. Note that

∑
i′∈sib(i) πdi′ = 1 and

∑
j′∈{sib(i)∪End} Adij′ = 1.

3 Existing Parameter Estimation Methods for HHMMs

The first work for HHMMs [3] proposed the generalized Baum-Welch algorithm. This algorithm is
based on an inside-outside algorithm used for inference of probabilistic context free grammars. This
method takes O(T 3) time complexity, which is not practical for long sequence data.

A more efficient approach is the flattening method [7]. The hierarchical state sequence can be
reduced to a single sequence of the bottom level absolute path states {ZD

1 , ..., ZD
T }. If we regard

ZD as a flat HMM state, then we can conduct the inference by using the forward-backward algorithm
with O(TN2D) time complexity since |ΩD| = ND. Notice that the flat state ZD can transit to any
other flat state, and we cannot apply efficient algorithms for HMMs of sparse transition matrix. In
the flattening method, we must make a weak constraint on the HHMM parameters, say minimally
self-referential (MinSR) [12], which restricts the self-transition at higher levels i.e. Adii = 0 for 1 ≤
d ≤ D−1. The MinSR constraint enables us to identify the path connecting two flat states uniquely.
This property is necessary for estimating HHMM parameters by using the flattening method.

We also discuss a sampling approach as an alternative parameter estimation technique. The Gibbs
sampling is often used for parameter estimation of probabilistic models including latent variables
[4]. We can estimate HMM parameters using a Gibbs sampler, which sample each hidden states
iteratively. This method is applicable to inference of HHMMs in a straightforward manner on the flat
HMM. This straightforward approach, called the Direct Gibbs Sampler (DGS), takes the O(TND)
time complexity for a single iteration.

The convergence of a posterior distribution by the DGS method is said to be extremely slow for
HMMs [10] because the DGS ignores long time dependencies. Chib [2] introduced an alternative
method, called the Forward-Backward Gibbs Sampler (FBS), which calculates forward probabilities
in advance. FBS samples hidden states from the end of the sequence regarding the forward proba-
bilities. FBS method requires larger computations for a single iteration than DGS does, but it can
bring a posterior of hidden states to its stationary distribution with fewer iterations [10].

Heller [5] proposed Infinite Hierarchical Hidden Markov Models (IHHMMs) which can have an
infinitely large depth by weakening the dependency between the states at different levels. They pro-
posed the inference method for IHHMMs based on a blocked Gibbs sampler of which the sampling
unit is a state sequence from t = 1 to T at a single level. This inference takes only O(TD) time
for a single iteration. In HHMMs, the states in each level are strongly dependent, so resampling
a state at an intermediate level causes all lower states to alter into a state which has a completely
different behavior. Therefore, it is not practical to apply this Gibbs sampler to HHMMs in terms of
the convergence speed.
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4 Forward-Backward Activation Algorithm

In this section, we introduce a new parameter estimation algorithm for HHMMs, which theoretically
has O(TND+1) time complexity. The basic idea of our algorithm is a decomposition of the flat
transition probability distribution p(ZD

t+1|ZD
t ), which the flattening method calculates directly for

all pairs of the flat states. We can rewrite the flat transition probability distribution into a sum of two
cases that the Markov chain at level D terminates or not, as follows.

p(ZD
t+1|ZD

t ) = p(ZD
t+1|ZD

t , FD
t = 0)p(FD

t = 0|ZD
t ) +

p(ZD
t+1|ZD−1

t+1 , FD
t =1)p(ZD−1

t+1 |ZD−1
t , FD

t =1)p(FD
t =1|ZD

t )
The first term corresponds to the direct transition without the Markov chain termination. The ac-
tual computational complexity for calculating this term is O(ND+1) because the direct transition
is permitted only between the sibling states, i.e. ADij = 0 if j /∈ sib(i). The second term, cor-
responding to the case in which the Markov chain terminates at level D, contains two factors: The
upper level transition probability p(ZD−1

t+1 |ZD−1
t , FD

t = 1) and the state initialization probability
for the terminated Markov chain p(ZD

t+1|ZD−1
t+1 , FD

t = 1). We attempt to compute these probability
distributions efficiently in a dynamic programming manner.

The transition probability at level d has the form p(Zd
t+1|Zd

t , F d+1
t = 1). We define ending activa-

tion ed
t , as the condition of the transition probability from Zd

t , formally:

p(ed
t = i) =

 p(Zd
t = i, F d+1

t = 1) (if i 6= null and d < D)
p(Zd

t = i) (if i 6= null and d = D)
p(F d+1

t = 0) (if i = null)

The null value in ed
t indicates that the Markov chain at level d + 1 does not terminate at time t.

The state initialization probability for level d + 1 has the form p(Zd+1
t |Zd

t , F d+1
t−1 = 1). We define

beginning activation bd
t , as the condition of the state initialization probability from Zd

t , formally, as

p(bd
t = i) =

 p(Zd
t = i, F d+1

t−1 = 1) (if i 6= null and d < D and t > 1)
p(Zd

t = i) (if i 6= null and (d = D or t = 1))
p(F d+1

t−1 = 0) (if i = null)

The null value in bd
t indicates that the Markov chain at level d + 1 does not terminate at time t − 1.

Using these notations, we can represent the flat transition with propagations of activation probabil-
ities as shown in figure 2 (left) because p(ZD

t+1|ZD
t ) = p(bD

t+1|eD
t ). This representation naturally

describes the decomposition of the flat transition probability distribution discussed above, and it
enables us to apply the decomposition recursively for all levels. We can derive the conditional
probability distributions of ed

t and bd
t+1 as

p(ed
t = i|ed+1

t ) =
{ ∑

c∈child(i) p(ed+1
t = c)A(d+1)cEnd (if i 6=null)∑

c∈Ωd+1 p(ed+1
t =c)(1−A(d+1)cEnd)+p(ed+1

t =null) (if i=null)

p(bd
t+1 = i|ed

t , b
d−1
t+1 ) =

{
p(bd−1

t+1 =parent(i))πdi +
∑

j∈sib(i) p(ed
t =j)Adji (if i 6=null)

p(ed
t = null) (if i=null)

In the following subsections, we show the efficient inference algorithm and the parameter estimation
algorithm using the activation probabilities.

4.1 Inference using Forward and Backward Activation Probabilities

We can translate the DBN of HHMMs in figure 1 (left) equivalently into simpler DBN using acti-
vation probabilities. The translated DBN is portrayed in figure 2 (right). The inference algorithm
proposed herein is based on a forward-backward calculation over this DBN. We define forward
activation probability α and backward activation probability β as follows.

αed
t
(i) = p(ed

t = i, O1:t)

αbd
t
(i) = p(bd

t = i, O1:t−1)

βed
t
(i) = p(Ot+1:T , F 1

T = 1|ed
t = i)

βbd
t
(i) = p(Ot:T , F 1

T = 1|bd
t = i)
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Figure 2: (left) Propagation of activation probabilities for calculating the flat transition probability
from time t to t + 1. (right) Equivalent DBN of the HHMM using activation probabilities.

Algorithm 1 Calculate forward activation probabilities
1: for t = 1 to T do
2: if t = 1 then
3: αb11

(i ∈ Ω1) = π1i

4: for d = 2 to D do
5: αbd

1
(i ∈ Ωd) = αbd−1

1
(parent(i))πdi

6: end for
7: else
8: αb1t

(i ∈ Ω1) =
∑

j∈sib(i)αe1
t−1

(j)A1ji

9: for d = 2 to D do
10: αbd

t
(i ∈ Ωd) = αbd−1

t
(parent(i))πdi +

∑
j∈sib(i)αed

t−1
(j)Adji

11: end for
12: end if
13: αeD

t
(i ∈ ΩD) = αbD

t
(i)BiOt

14: for d = D − 1 to 1 do
15: αed

t
(i ∈ Ωd) =

∑
c∈child(i) αed+1

t
(c)A(d+1)cEnd

16: end for
17: end for

These probabilities are efficiently calculable in a dynamic programming manner. Algorithm 1
presents the pseudocodes to calculate whole α. αbd

t
are derived downward from αb1t

to αbD
t

by
summing up to the initialization probability from the parent and the transition probabilities from the
siblings (Line 8 to 11). αed

t
are propagated upward from αeD

t
to αe1

t
by summing up to the probabil-

ities of the child Markov chain termination (Line 13 to 16). This algorithm includes the calculation
of |Ωd| = Nd quantities involving the summation of |sib(i)| = N terms for d = 1 to D and for
t = 1 to T . Therefore, the time complexity of algorithm 1 is O(T

∑D
d=1 Nd+1) = O(TND+1).

Algorithm 2 propagates the backward activation probabilities similarly in backward order.

We can derive the conditional independence of O1:t and {Ot+1:T , F 1
T = 1} given ed

t 6= null or
bd
t+1 6= null, because both of ed

t 6= null and bd
t+1 6= null indicates that the Markov chains at level

d + 1, ..., D terminates at time t. On the basis of this conditional independence, the exact inference
of a posterior of activation probabilities can be obtained using α and β as presented below.

p(ed
t = i|O1:T , F 1

T = 1) ∝ p(ed
t = i, O1:t)p(Ot+1:T , F 1

T = 1|ed
t = i) = αed

t
(i)βed

t
(i)

p(bd
t = i|O1:T , F 1

T = 1) ∝ p(bd
t = i, O1:t−1)p(Ot:T , F 1

T = 1|bd
t = i) = αbd

t
(i)βbd

t
(i)

The inference of the flat state p(ZD
t |O1:T , F 1

T = 1) is identical to of the bottom level activation
probability p(eD

t |O1:T , F 1
T =1). We can calculate the likelihood of the whole observation as follows.

p(O1:T , F 1
T = 1) =

∑
i∈Ω1

p(e1
T = i, O1:T )p(F 1

T = 1|e1
T = i) =

∑
i∈Ω1

αe1
T
(i)βe1

T
(i)
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Algorithm 2 Calculate backward activation probabilities
1: for t = T to 1 do
2: if t = T then
3: βe1

T
(i ∈ Ω1) = A1iEnd

4: for d = 2 to D do
5: βed

T
(i ∈ Ωd) = βed−1

T
(parent(i))AdiEnd

6: end for
7: else
8: βe1

t
(i ∈ Ω1) =

∑
j∈sib(i) βb1

t+1
(j)A1ij

9: for d = 2 to D do
10: βed

t
(i ∈ Ωd) = βed−1

t
(parent(i))AdiEnd +

∑
j∈sib(i)βbd

t+1
(j)Adij

11: end for
12: end if
13: βbD

t
(i ∈ ΩD) = βeD

t
(i)BiOt

14: for d = D − 1 to 1 do
15: βbd

t
(i ∈ Ωd) =

∑
c∈child(i) βbd+1

t
(c)π(d+1)c

16: end for
17: end for

4.2 Updating Parameters

Using the forward and backward activation probabilities, we can estimate HHMM parameters effi-
ciently in the EM framework. In the EM algorithm, the function Q(θ, θ̄) is defined, where θ is a
parameter set before updating and θ̄ is a parameter set after updating, as described below.

Q(θ, θ̄) =
∑
Y

pθ(Y |X) log pθ̄(X, Y )

In that equation, X represents a set of observed variables, and Y is a set of latent variables. The dif-
ference of log likelihood between the models of θ and θ̄ is known to be greater than Q(θ, θ̄)−Q(θ, θ)
[1]. For this reason, we can increase the likelihood monotonically by selecting a new parameter θ̄ to
maximize the function Q. For HHMMs, the set of parameters is θ = {A, π, B}. The set of observed
variables is X = {O1:T , F 1

T = 1}. The set of latent variables is Y = {Z1:D
1:T , F 1:D

1:T−1}. Therefore,
the function Q can be represented as shown below.

Q(θ, θ̄) ∝
∑

Z1:D
1:T ,F 1:D

1:T−1

pθ(O1:T , F 1
T = 1, Z1:D

1:T , F 1:D
1:T−1) log pθ̄(O1:T , F 1

T = 1, Z1:D
1:T , F 1:D

1:T−1) (1)

The joint probability of observed variables and latent variables is given below.

pθ(O1:T , F 1
T = 1, Z1:D

1:T , F 1:D
1:T−1)

=
D∏

d=1

πdZd
1

T−1∏
t=1

D∏
d=1

(AF d
t

dZd
t End

A
F d+1

t (1−F d
t )

dZd
t Zd

t+1
π

F d
t

dZd
t+1

)
D∏

d=1

AdZd
T

End

T∏
t=1

BZD
t Ot

We substitute this equation for the joint probability in equation (1). We integrate out irrelevant
variables and organize around each parameter. Thereby, we obtain the following.

Q(θ, θ̄) ∝
D∑

d=1

∑
i∈Ωd

gπdi log π̄di +
D∑

d=1

∑
i∈Ωd

∑
j∈{sib(i)∪End}

gAdij log Ādij +
∑

i∈ΩD

V∑
v=1

gBiv log B̄iv

Therein, gπdi, gAdij , gBiv are shown by equation (2)(3)(4)(5). They are calculable using forward
and backward activation probabilities.

gπdi = αbd
1
(i)βbd

1
(i) +

T−1∑
t=1

αbd−1
t+1

(parent(i))πdiβbd
t+1

(i) (2)

gAdiEnd =
T−1∑
t=1

αed
t
(i)AdiEndβed−1

t
(parent(i)) + αed

T
(i)βed

T
(i) (3)
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Table 2: Log-likelihood achieved at each iteration.

Iteration 1 2 3 4 5 10 50 100
FBA w/o MinSR -773.47 -672.44 -668.50 -631.30 -610.63 -577.33 -457.66 -447.90
FBA with MinSR -773.89 -672.47 -670.40 -643.62 -614.98 -573.84 -453.09 -448.52

FFB -773.89 -672.47 -670.40 -643.62 -614.98 -573.84 -453.09 -448.52

gAdij =
T−1∑
t=1

αed
t
(i)Adijβbd

t+1
(j) (4)

gBiv =
∑

t:Ot=v

αeD
t

(i)βeD
t

(i) (5)

Using Lagrange multipliers, we can obtain parameters π̄, Ā, B̄, which maximize the function Q
under the constraint

∑
i′∈sib(i) π̄di′ = 1,

∑
j′∈{sib(i)∪End} Ādij′ = 1,

∑
v B̄iv = 1 as shown below.

π̄di =
gπdi∑

i′∈sib(i) gπdi′
, Ādij =

gAdij∑
j′∈{sib(i)∪End} gAdij′

, B̄iv =
gBiv∑
v gBiv

Consequently, we can calculate the update parameters using α and β. The time complexity for
computing a single EM iteration is O(TND+1), which is identical to the calculation of forward and
backward activation probabilities.

5 Experiments

Firstly, we experimentally confirm that the forward-backward activation algorithm yields exactly
identical parameter estimation to the flattening method does. Remind that we must make the MinSR
constraint on the HHMM parameter set in the flattening method (see section 3). We compare
three parameter estimation algorithms: our forward-backward activation algorithm for a MinSR
HHMM (FBA with MinSR), for a HHMM without MinSR (FBA w/o MinSR), and the flattening
method(FFB). The dataset to learn includes 5 sequences of 10 length, which are artificially gener-
ated by a MinSR HHMM of biased parameter set. We execute three algorithms and examine the
log-likelihood achieved at each iteration.

Table 2 presents the result. The FBA with MinSR and the FFB achieve the identical log-likelihood
through the training. This result provides experimental evidence that our algorithm estimates
HHMM parameters exactly identically to the flattening method does. Furthermore, the FBA enables
us to conduct the parameter estimation of HHMMs which has non-zero self-transition parameters.

To evaluate the computational costs empirically, we compare four methods of HHMM parameter
estimation. Two are based on the EM algorithm with inference by the forward-backward activation
algorithm (FBA), and by the flattening forward-backward method (FFB). Another two are based on
a sampling approach: direct Gibbs sampling for the flat HMMs (DGS) and forward-backward acti-
vation sampling (FBAS). FBAS is a straightforward application of the forward-backward sampling
scheme to the translated DBN presented in figure 2. In FBAS, we first calculate forward activation
probabilities. Then we sample state activation variables from e1

T to b1
1 in the backward order with

respect to forward activation probabilities. We evaluate four methods based on three aspects: execu-
tion time, convergence speed, and scalability of the state space size. We apply each method to four
different HHMMs of (D = 3,N = 3), (D = 3,N = 4), (D = 4,N = 3), and (D = 4,N = 4). We
examine the log-likelihood of the training dataset achieved at each iteration to ascertain the learn-
ing convergence. As a training dataset, we use 100 documents from the Reuters corpus as word
sequences. The dataset includes 36,262 words in all, with a 4,899 word vocabulary.

Figure 3 presents the log-likelihood of the training data. The horizontal axis shows the logarith-
mically scaled execution time. Table 2 presents the average execution time for a single iteration.
From these results, we can say primarily that FBA outperforms FFB in terms of execution time. The
improvement is remarkable, especially for the HHMMs of large state space size because FBA has
less time complexity for N and D than FFB has.
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Figure 3: Convergence of log-likelihood for the training data on the Reuters corpus. Log-likelihood
(vertical) is shown against the log-scaled execution time (horizontal) to display the execution time
necessary to converge the learning of each algorithm. (top-left) HHMM of D = 3, N = 3. (top-
right) D = 3, N = 4. (bottom-left) D = 4, N = 3. (bottom-right) HHMM of D = 4, N = 4.

Table 3: Average execution time for a single iteration (ms).

Method D = 3, N = 3 D = 3, N = 4 D = 4, N = 3 D = 4, N = 4
(ND = 27) (ND = 64) (ND = 81) (ND = 256)

FBA 186.65 391.73 476.92 1652.03
FFB 1729.90 9242.35 19257.80 220224.00

FBAS 82.45 142.20 183.39 581.58
DGS 24.19 37.50 45.43 265.98

The results show that the likelihood convergence using DGS is much slower than that of other
methods.The execution time of DGS is less than that of other methods for a single iteration, but
this cannot compensate for the low convergence speed. However, FBAS achieves a competitive
likelihood in comparison to FBA. Results show that FBAS might be appropriate for some situations
because FBAS finds a better solution than that FBA do in some results.

6 Conclusion

In this work, we proposed a new inference algorithm for HHMMs based on the activation probability.
Results show that the performance of our proposed algorithm surpasses that of existing methods.
The forward-backward activation algorithm described herein enables us to conduct unsupervised
parameter learning with a practical computational cost for HHMMs of larger state space size.
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