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Abstract

Nonnegative Matrix Factorization (NMF) is a promising relaxation technique for
clustering analysis. However, conventional NMF methods that directly approx-
imate the pairwise similarities using the least square error often yield mediocre
performance for data in curved manifolds because they can capture only the imme-
diate similarities between data samples. Here we propose a new NMF clustering
method which replaces the approximated matrix with its smoothed version using
random walk. Our method can thus accommodate farther relationships between
data samples. Furthermore, we introduce a novel regularization in the proposed
objective function in order to improve over spectral clustering. The new learning
objective is optimized by a multiplicative Majorization-Minimization algorithm
with a scalable implementation for learning the factorizing matrix. Extensive ex-
perimental results on real-world datasets show that our method has strong perfor-
mance in terms of cluster purity.

1 Introduction

Clustering analysis as a discrete optimization problem is usually NP-hard. Nonnegative Matrix Fac-
torization (NMF) as a relaxation technique for clustering has shown remarkable progress in the past
decade (see e.g. [9, 4, 2, 26]). In general, NMF finds a low-rank approximating matrix to the input
nonnegative data matrix, where the most popular approximation criterion or divergence in NMF is
the Least Square Error (LSE). It has been shown that certain NMF variants with this divergence
measure are equivalent to k-means, kernel k-means, or spectral graph cuts [7]. In addition, NMF
with LSE can be implemented efficiently by existing optimization methods (see e.g. [16]).

Although popularly used, previous NMF methods based on LSE often yield mediocre performance
for clustering, especially for data that lie in a curved manifold. In clustering analysis, the clus-
ter assignment is often inferred from pairwise similarities between data samples. Commonly the
similarities are calculated based on Euclidean distances. For data in a curved manifold, only local
Euclidean distances are reliable and similarities between non-neighboring samples are usually set
to zero, which yields a sparse input matrix to NMF. If the LSE is directly used in approximation
to such a similarity matrix, a lot of learning effort will be wasted due to the large majority of zero
entries. The same problem occurs for clustering nodes of a sparse network.

In this paper we propose a new NMF method for clustering such manifold data or sparse network
data. Previous NMF clustering methods based on LSE used an approximated matrix that takes only
similarities within immediate neighborhood into account. Here we consider multi-step similarities
between data samples using graph random walk, which has shown to be an effective smoothing
approach for finding global data structures such as clusters. In NMF the smoothing can reduce the
sparsity gap in the approximation and thus ease cluster analysis. We name the new method NMF
using graph Random walk (NMFR).

1



In implementation, we face two obstacles when the input matrix is replaced by its random walk
version: (1) the performance of unconstrained NMFR remains similar to classical spectral clustering
because smoothing that manipulates eigenvalues of Laplacian of the similarity graph does not change
the eigensubspace; (2) The similarities by random walk require inverting an n× n matrix for n data
samples. Explicit matrix inversion is infeasible for large datasets. To overcome the above obstacles,
we employ (1) a regularization technique that supplements the orthogonality constraint for better
clustering, and (2) a more scalable fixed-point algorithm to calculate the product of the inverted
matrix and the factorizing matrix.

We have conducted extensive experiments for evaluating the new method. The proposed algorithm
is compared with nine other state-of-the-art clustering approaches on a large variety of real-world
datasets. Experimental results show that with only simple initialization NMFR performs pretty
robust across 46 clustering tasks. The new method achieves the best clustering purity for 36 of the
selected datasets, and nearly the best for the rest. In particular, NMFR is remarkably superior to the
other methods for large-scale manifold data from various domains.

In the remaining, we briefly review some related work of clustering by NMF in Section 2. In Section
3 we point out a major drawback in previous NMF methods with least square error and present our
solution. Experimental settings and results are given in Section 4. Section 5 concludes the paper
and discusses potential future work.

2 Pairwise Clustering by NMF

Cluster analysis or clustering is the task of assigning a set of data samples into groups (called clus-
ters) so that the objects in the same cluster are more similar to each other than to those in other
clusters. Denote R+ = R ∪ {0}. The pairwise similarities between n data samples can be encoded
in an undirected graph with adjacency matrix S ∈ Rn×n

+ . Because clustered data tend to have
higher similarities within clusters and lower similarities between clusters, the similarity matrix in
visualization has nearly diagonal blockwise looking if we sort the rows and columns by clusters.
Such structure motivated approximative low-rank factorization of S by the cluster indicator matrix
U ∈ {0, 1}n×r for r clusters: S ≈ UUT , where Uik = 1 if the i-th sample is assigned to the k-th
cluster and 0 otherwise. Moreover, clusters of balanced sizes are desired in most clustering tasks.
This can be achieved by suitable normalization of the approximating matrix. A common way is to
normalize Uik by Mik = Uik/

√∑
j Ujk such that MTM = I and

∑
i(MMT )ij = 1 (see e.g.

[6, 7, 27]).

However, directly optimizing over U or M is difficult due to discrete solution space, which usually
leads to an NP-hard problem. Continuous relaxation is thus needed to ease the optimization. One
of the popular choices is nonnegativity and orthogonality constraint combination [11, 23]. That is,
we replace M with W where Wik ≥ 0 and WTW = I . In this way, each row of W has only
one non-zero entry because the non-zero parts of two nonnegative and orthogonal vectors do not
overlap. Some other Nonnegative Matrix Factorization (NMF) relaxations exist, for example, the
kernel Convex NMF [9] and its special case Projective NMF [23], as well as the relaxation by using
a left-stochastic matrix [2].

A commonly used divergence that measures the approximation error is the squared Euclidean dis-
tance or Frobenius norm [15, 13]. The NMF objective to be minimized thus becomes

‖S −WWT ‖2F =
∑
ij

[
Sij −

(
WWT

)
ij

]2
. (1)

The above least square error objective is widely used because we have better understanding of its
algebra and geometric properties. For example, Zhao et al. [13] showed that the multiplicative
optimization algorithm for the above Symmetric NMF (SNMF) problem is guaranteed to converge
to a local minimum if S is positive semi-definite. Furthermore, SNMF with orthogonality has tight
connection to classical objectives such as kernel k-means and normalized cuts [7, 23]. In this paper,
we choose this divergence also because it is the sole one in αβ-divergence family [5] that involves
only the product SW instead of S itself in the gradient. As we shall see in Section 3.2, this property
enables a scalable implementation of gradient-based optimization algorithm.
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Figure 1: Illustration of clustering the SEMEION handwritten digit dataset by NMF based on LSE:
(a) the symmetrized 5-NN graph, (b) the correct clusters to be found, (c) the ideally assumed data
that suits the least square error, (d) the smoothed input by using graph random walk. The matrix
entries are visualized as image pixels. Darker pixels represent higher similarities. For clarity we
show only the subset of digits “2” and “3”. In this paper we show that because (d) is “closer” to (c)
than (a), it is easier to find correct clusters using (d)≈(b) instead of (a)≈(b) by NMF with LSE .

3 NMF Using Graph Random Walk

There is a serious drawback in previous NMF clustering methods using least square errors. When
minimizing ‖S − Ŝ‖2F for given S, the approximating matrix Ŝ should be diagonal blockwise for
clustering analysis, as shown in Figure 1 (b). Correspondingly, the ideal input S for LSE should
look like Figure 1 (c) because the underlying distribution of LSE is Gaussian.

However, the similarity matrix of real-world data often occurs differently from the ideal case. In
many clustering tasks, the raw features of data are usually weak. That is, the given distance mea-
sure between data points, such as the Euclidean distance, is only valid in a small neighborhood.
The similarities calculated from such distances are thus sparse, where the similarities between non-
neighboring samples are usually set to zero. For example, symmetrizedK-nearest-neighbor (K-NN)
graph is a popularly used similarity input. Therefore, similarity matrices in real-world clustering
tasks often look like Figure 1 (a), where the non-zero entries are much sparser than the ideal case.

It is a mismatch to approximate a sparse similarity matrix by a dense diagonal blockwise matrix
using LSE. Because squared Euclidean distance is a symmetric metric, the learning objective can
be dominated by the approximation to the majority of zero entries, which is undesired for finding
correct cluster assignments. Although various matrix factorization schemes and factorizing matrix
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constraints have been proposed for NMF, little research effort has been made to overcome the above
mismatch.

In this work we present a different way to formalize NMF for clustering to reduce the sparsity gap
between input and output matrices. Instead of approximation to the sparse input S, which only en-
codes the immediate similarities between data samples, we propose to approximate a smoothed ver-
sion of S which takes farther relationships between data samples into account. Graph random walk
is a common way to implement multi-step similarities. Denote Q = D−1/2SD−1/2 the normalized
similarity matrix, where D is a diagonal matrix with Dii =

∑
j Sij . The similarities between data

nodes using j steps are given by (αQ)
j , where α ∈ (0, 1) is a decay parameter controlling the ran-

dom walk extent. Summing over all possible numbers of steps gives
∑∞

j=0 (αQ)
j

= (I − αQ)−1.
We thus propose to replace S in Eq. (1) with

A = c−1(I − αQ)−1, (2)

where c =
∑

ij

[
(I − αQ)−1

]
ij

is a normalizing factor. Here the parameter α controls the smooth-
ness: a larger α tends to produce smoother A while a smaller one makes A concentrate on its
diagonal. A smoothed approximated matrix A is shown in Figure 1 (d), from which we can see the
sparsity gap to the approximating matrix is reduced.

Just smoothing the input matrix by random walk is not enough, as we are presented with two dif-
ficulties. First, random walk only alters the spectrum of Q, while the eigensubspaces of A and Q
are the same. Smoothing therefore does not change the result of clustering algorithms that operate
on the eigenvectors (e.g. [20]). If we simply replace S by A in Eq. (1), the resulting W is often
the same as the leading eigenvectors of Q up to an r × r rotation. That is, smoothing by random
walk itself can bring little improvement unless we impose extra constraints or regularization. Sec-
ond, explicitly calculating A is infeasible because when S is large and sparse, A is also large but
dense. This requires a more careful design of a scalable optimization algorithm. Below we present
solutions to overcome these two difficulties in Sections 3.1 and 3.2, respectively.

3.1 Learning Objective

Minimizing ‖A − WWT ‖2F over W subject to WTW = I is equivalent to maximizing
Tr
(
WTAW

)
. To improve over spectral clustering, we propose to regularize the trace maximization

by an extra penalty term on W . The new optimization problem for pairwise clustering is:

minimize
W≥0

J (W ) = −Tr
(
WTAW

)
+ λ

∑
i

(∑
k

W 2
ik

)2

(3)

subject to WTW = I, (4)

where λ > 0 is the tradeoff parameter. We find that λ = 1
2r works well in this work.

The extra penalty term collaborates with the orthogonality constraint for pairwise clustering, which
is justified by two interpretations.

• It emphasizes off-diagonal correlation in the trace. Because
∑

i

(∑
kW

2
ik

)2
=∑

i

(
WWT

)2
ii

, the minimization tends to reduce the diagonal magnitude in the approxi-
mating matrix. This is desired because self-similarities usually give little information for
grouping data samples. Given the constraints W ≥ 0 and WTW = I , it is beneficial to
push the magnitudes in WWT off-diagonal for maximizing the correlation to similarities
between different data samples.

• It tends to equalize the norms ofW rows. To see this, let us write ai ≡
∑

kW
2
ik for brevity.

Because
∑

i ai = r is constant, minimizing
∑

i a
2
i actually maximizing

∑
ij:i 6=j aiaj . The

maximum is achieved when {ai}ni=1 are equal. Originally, the nonnegativity and orthogo-
nality constraint combination only guarantees that each row of W has one non-zero entry,
though norms of differentW rows can be diverse. The equalization by the proposed penalty
term thus well supplements the nonnegativity and orthogonality constraints and, as a whole,
provides closer relaxation to the normalized cluster indicator matrix M .
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Algorithm 1 Large-Scale Relaxed Majorization and Minimization Algorithm for W
Input: similarity matrix S, random walk extent α ∈ (0, 1), number of clusters r, nonnegative
initial guess of W .
repeat

Calculate c=IterativeTracer(Q,α, e).
Calculate G=IterativeSolver(Q,α, W ).
Update W by Eq. (5), using c−1G in place of AW .

until W converges
Discretized W to cluster indicator matrix U
Output: U .

function ITERATIVETRACER(Q, α, W )
F=IterativeSolver(Q,α, W )
return Tr(WTF )

end function

function ITERATIVESOLVER(Q, α, W )
Initialize F = W
repeat

Update F ← αQF + (1− α)W
until F converges
return F/(1− α)

end function

3.2 Optimization

The optimization algorithm is developed by following the procedure in [24, 26]. Introducing
Lagrangian multipliers {Λkl} for the orthogonality constraint, we have the augmented objective
L(W,Λ) = J (W ) + Tr

[
Λ
(
WTW − I

)]
. Using the Majorization-Minimization development pro-

cedure in [24, 26], we can obtain the preliminary multiplicative update rule. We then use the or-
thogonality constraint to solve the multipliers. Substituting the multipliers in the preliminary update
rule, we obtain an optimization algorithm which iterates the following multiplicative update rule:

W new
ik = Wik

[(
AW + 2λWWTVW

)
ik

(2λVW +WWTAW )ik

]1/4
(5)

where V is a diagonal matrix with Vii =
∑

lW
2
il.

Theorem 1. L(W new,Λ) ≤ L(W,Λ) for Λ =
1

2
WT

(
∂J
∂W

)
.

The proof is given the appendix. Note that J (W ) does not necessarily decrease after each iteration.
Instead, the monotonicity stated in the theorem justifies that the above algorithm jointly minimizes
the J (W ) and drives W towards the manifold defined by the orthogonality constraint. After W
converges, we discretize it and obtain the cluster indicator matrix U .

It is a crucial observation that the update rule Eq. (5) requires only the product of (I − αQ)−1

with a low-rank matrix instead of A itself. We can thus avoid expensive computation and storage
of large smoothed similarity matrix. There is an iterative and more scalable way to calculate F =
(I−αQ)−1W [29]. See the IterativeSolver function in Algorithm 1. In practice, the calculation for
F usually converges nicely within 100 iterations. The same technique can be applied to calculating
the normalizing factor c in Eq. (2), using e = [1, 1, . . . , 1] instead of W . The resulting algorithm for
optimization w.r.t. W is summarized in Algorithm 1. Matlab codes can be found in [1].

3.3 Initialization

Most state-of-the-art clustering methods involve non-convex optimization objectives and thus only
return local optima in general. This is also the case for our algorithm. To achieve a better local
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optimum, a clustering algorithm should start from one or more relatively considerate initial guesses.
Different strategies for choosing the starting point can be classified into the following levels, sorted
by their computational cost:

Level-0: (random-init) The starting relaxed indicator matrix is filled by randomly generated num-
bers.

Level-1: (simple-init) The starting matrix is the result of a cheap clustering method, e.g. Normal-
ized Cut or k-means, plus a small perturbation.

Level-2: (family-init) The initial guesses are results of the methods in a parameterized family. Typ-
ical examples include various regularization extents or Bayesian priors with different hy-
perparameters (see e.g. [25]).

Level-3: (meta-init) The initial guesses can come from methods of various principles. Each ini-
tialization method runs only once.

Level-4: (meta-co-init) Same as Level-3 except that clustering methods provide initialization for
each other. A method can serve initialization multiple times if it finds a better local min-
imum. The whole procedure stops when each of the involved methods fails to find better
local optimum (see e.g. [10]).

Some methods are not sensitive to initializations but tend to return less accurate clustering. On the
other hand, some other methods can find more accurate results but require comprehensive initializa-
tion. A preferable clustering method should achieve high accuracy with cheap initialization. As we
shall see, the proposed NMFR algorithm can attain satisfactory clustering accuracy with only simple
initialization (Level-1).

4 Experiments

We have compared our method against a variety of state-of-the-art clustering methods, including
Projective NMF [23], Nonnegative Spectral Cut (NSC) [8], (symmetric) Orthogonal NMF (ONMF)
[11], Left-Stochastic matrix Decomposition (LSD) [2], Data-Cluster-Data decomposition (DCD)
[25], as well as classical Normalized Cut (Ncut) [21]. We also selected two recent clustering meth-
ods beyond NMF: 1-Spectral (1Spec) [14] which uses balanced graph cut, and Interaction Compo-
nent Model (ICM) [22] which is the symmetric version of topic model [3].

We used default settings in the compared methods. For 1Spec, we used ratio Cheeger cut. For ICM,
the hyper-parameters for Dirichlet processes prior are updated by Minka’s learning method [19].
The other NMF-type methods that use multiplicative updates were run with 10,000 iterations to
guarantee convergence. For our method, we trainedW by using Algorithm 1 for each candidate α ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99} when n ≤ 8000. The best α and the corresponding
clustering result were then obtained by minimizing ‖A − bWWT ‖2F with a suitable positive scalar
b. Here we set b = 2λ using the heuristic that the penalty term in gradient can be interpreted as
removal of diagonal effect of approximating matrix. When λ = 1

2r , we obtain b = 1/r. The new
clustering method is not very sensitive to the choice of α for large-scale datasets. We simply used
α = 0.8 in experiments when n > 8000. All methods except Ncut, 1Spec, and ICM were initialized
by Normalized Cut. That is, their starting point was the Ncut cluster indicator matrix plus a small
constant 0.2 to all entries.

We have compared the above methods on clustering various datasets. The domains of the datasets
range from network, text, biology, image, etc. All datasets are publicly available on the Internet. The
data sources and statistics are given in the supplemental document. We constructed symmetrized
K-NN graphs from the multivariate data, where K = 5 for the 30 smallest datasets, text datasets,
PROTEIN and SEISMIC datasets, while K = 10 for the remaining datasets. Following [25], we
extract the scattering features [18] for images before calculating the K-NN graph. We used Tf-Idf
features for text data. The adjacency matrices of network data were symmetrized. The clustering
performance is evaluated by cluster purity = 1

n

∑r
k=1 max1≤l≤r n

l
k, where nlk is the number of

data samples in the cluster k that belong to ground-truth class l. A larger purity in general corre-
sponds to a better clustering result.

The resulting purities are shown in Table 1, where the rows are ordered by dataset size. We can
see that our method has much better performance than the other methods. NMFR wins 36 out of 46
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Table 1: Clustering purities for the compared methods on various datasets. Boldface numbers indi-
cate the best in each row.

Dataset Size Ncut PNMF NSC ONMF PLSI LSD 1Spec ICM DCD NMFR

STRIKE 24 0.96 1.00 0.96 1.00 0.96 1.00 1.00 0.58 0.96 0.96
KOREA 35 1.00 0.94 0.71 1.00 1.00 1.00 0.71 0.66 0.97 1.00
AMLALL 38 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.50 0.92 0.89
DUKE 44 0.52 0.52 0.52 0.52 0.70 0.70 0.52 0.52 0.52 0.70
HIGHSCHOOL 60 0.83 0.82 0.83 0.82 0.83 0.82 0.82 0.82 0.83 0.95
KHAN 83 0.57 0.60 0.55 0.60 0.55 0.52 0.58 0.49 0.55 0.51
POLBOOKS 105 0.78 0.78 0.81 0.77 0.78 0.78 0.83 0.78 0.79 0.79
FOOTBALL 115 0.93 0.93 0.93 0.93 0.93 0.93 0.90 0.93 0.93 0.93
IRIS 150 0.90 0.93 0.90 0.92 0.91 0.75 0.91 0.53 0.91 0.91
CANCER 198 0.53 0.54 0.53 0.53 0.54 0.53 0.51 0.53 0.54 0.52
SPECT 267 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
ROSETTA 300 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
ECOLI 327 0.79 0.78 0.79 0.78 0.80 0.68 0.83 0.78 0.80 0.79
IONOSPHERE 351 0.69 0.69 0.70 0.69 0.69 0.64 0.69 0.69 0.69 0.68
ORL 400 0.81 0.82 0.82 0.82 0.83 0.81 0.80 0.19 0.83 0.83
UMIST 575 0.68 0.64 0.68 0.66 0.69 0.68 0.74 0.15 0.69 0.72
WDBC 683 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
DIABETES 768 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
VOWEL 1.0K 0.36 0.35 0.36 0.30 0.36 0.34 0.20 0.15 0.36 0.37
MED 1.0K 0.53 0.54 0.54 0.54 0.54 0.55 0.50 0.33 0.55 0.56
PIE 1.2K 0.67 0.66 0.68 0.66 0.68 0.69 0.64 0.12 0.68 0.74
YALEB 1.3K 0.45 0.42 0.46 0.41 0.51 0.50 0.37 0.10 0.51 0.51
TERROR 1.3K 0.45 0.45 0.46 0.46 0.46 0.45 0.44 0.34 0.45 0.49
ALPHADIGS 1.4K 0.49 0.45 0.49 0.44 0.49 0.49 0.48 0.10 0.50 0.51
COIL-20 1.4K 0.79 0.71 0.79 0.65 0.79 0.75 0.77 0.11 0.79 0.81
YEAST 1.5K 0.53 0.53 0.54 0.52 0.53 0.52 0.54 0.34 0.52 0.55
SEMEION 1.6K 0.83 0.87 0.83 0.85 0.85 0.89 0.82 0.13 0.85 0.94
FAULTS 1.9K 0.40 0.39 0.40 0.39 0.40 0.40 0.38 0.38 0.41 0.39
SEG 2.3K 0.61 0.51 0.61 0.53 0.61 0.64 0.55 0.32 0.61 0.73
ADS 2.4K 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
CORA 2.7K 0.38 0.37 0.37 0.37 0.44 0.46 0.36 0.30 0.44 0.47
MIREX 3.1K 0.41 0.40 0.42 0.38 0.41 0.38 0.12 0.27 0.18 0.43
CITESEER 3.3K 0.24 0.31 0.23 0.31 0.36 0.36 0.22 0.41 0.35 0.44
WEBKB4 4.2K 0.40 0.39 0.40 0.39 0.49 0.51 0.39 0.48 0.51 0.63
7SECTORS 4.6K 0.25 0.27 0.25 0.25 0.29 0.26 0.25 0.28 0.28 0.34
SPAM 4.6K 0.61 0.61 0.61 0.61 0.65 0.68 0.61 0.61 0.67 0.69
CURETGREY 5.6K 0.26 0.22 0.26 0.21 0.26 0.21 0.22 0.11 0.27 0.28
OPTDIGITS 5.6K 0.92 0.90 0.92 0.90 0.93 0.92 0.87 0.90 0.92 0.98
GISETTE 7.0K 0.90 0.52 0.93 0.51 0.93 0.93 0.93 0.62 0.93 0.94
REUTERS 8.3K 0.77 0.74 0.76 0.72 0.76 0.75 0.63 0.71 0.76 0.77
RCV1 9.6K 0.33 0.35 0.32 0.31 0.37 0.48 0.31 0.38 0.36 0.54
PENDIGITS 11K 0.80 0.82 0.80 0.77 0.80 0.86 0.82 0.52 0.80 0.87
PROTEIN 18K 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.50
20NEWS 20K 0.25 0.33 0.21 0.31 0.31 0.32 0.07 0.23 0.31 0.63
MNIST 70K 0.77 0.87 0.79 0.73 0.79 0.76 0.88 0.95 0.82 0.97
SEISMIC 99K 0.52 0.50 0.51 0.50 0.52 0.54 0.51 0.50 0.52 0.59

selected clustering tasks. Our method is especially superior for large-scale data in a curved manifold,
for example, OPTDIGITS and MNIST. Note that cluster purity can be regarded as classification
accuracy if we have a few labeled data samples to remove ambiguity between clusters and classes.
In this sense, the resulting purities for such manifold data are even comparable to the state-of-the-
art supervised classification results. Compared with the DCD results which require Level-2 family
initialization (see [25]), NMFR only needs Level-1 simple initialization. In addition, NMFR also
brings remarkable improvement for datasets beyond digit or letter recognition, for example, the text
data RCV1, 20NEWS, protein data PROTEIN and sensor data SEISMIC. Furthermore, it is worth
to notice that our method has more robust performance over various datasets compared with other
approaches. Even for some small datasets where NMFR is not the winner, its cluster purities are
still close to the best.
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5 Conclusions

We have presented a new NMF method using random walk for clustering. Our work includes two
major contributions: (1) we have shown that NMF approximation using least square error should be
applied on smoothed similarities; the smoothing accompanied with a novel regularization can often
significantly outperform spectral clustering; (2) the smoothing is realized in an implicit and scalable
way. Extensive empirical study has shown that our method can often improve clustering accuracy
remarkably given simple initialization.

Some issues could be included in the future work. Here we only discuss a certain type of smoothing
by random walk, while the proposed method could be extended by using other types of smoothing,
e.g. diffusion kernels, where scalable optimization could also be developed by using a similar iter-
ative subroutine. Moreover, the smoothing brings improved clustering accuracy but at the cost of
increased running time. Algorithms that are more efficient in both time and space should be further
investigated. In addition, the approximated matrix could also be learnable. In current experiments,
we used constant K-NN graphs as input for fair comparison, which could be replaced by a more
comprehensive graph construction method (e.g. [28, 12, 17]).
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Appendix: proof of Theorem 1

The proof follows the Majorization-Minimization development procedure in [26]. We use W and
W̃ to distinguish the current estimate and the variable, respectively.

Given a real-valued matrix B, we can always decompose it into two nonnegative parts such that
B = B+ − B−, where B+

ij = (|Bij | + Bij)/2 and B−ij = (|Bij | − Bij)/2. In this way we

decompose Λ = Λ+ − Λ− and ∂J (W̃ )

∂W̃

∣∣∣
W̃=W

≡ ∇ = ∇+ − ∇−, where ∇+ = 4λVW and

∇− = 2AW .

(Majorization) Up to some additive constant,

J̃ (W̃ ,Λ)

≤− 2Tr
(
W̃TAW

)
+ λ

∑
ik

(∑
l

W 2
il

)
W̃ 4

W 2
ik

+
∑
ik

W̃ 2
ik

Wik

(
Λ+W

)
ik
− 2Tr

(
W̃T Λ−W

)

≤− 2Tr
(
W̃TAW

)
+ λ

∑
ik

(∑
l

W 2
il

)
W̃ 4

W 2
ik

+
∑
ik

Wik (Λ+W )ik
2

(
W̃ik

Wik

)4

− 2Tr
(
W̃T Λ−W

)
≡G(W̃ ,W ),

where the first inequality is by standard convex-concave procedure, and the second upper bound is

due to the inequality
za − 1

a
≤ zb − 1

b
for z > 0 and a < b.

(Minimization) Setting ∂G(W̃ ,Λ)/∂W̃ik = 0 gives

W new
ik = Wik

[(
∇− + 2WΛ+

)
ik(

∇+ + 2WΛ−
)
ik

]1/4
. (6)

Zeroing ∂L(W,Λ)/∂W gives 2WΛ = ∇+ −∇−. Using WTW = I , we obtain Λ = 1
2W

T (∇+ −
∇−), i.e. 2WΛ+ = WWT∇+ and 2WΛ− = WWT∇−. Inserting these into Eq. (6), we obtain
update rule in Eq. (5).
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