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Abstract

We study the problem of estimating, in the sense of optimal transport metrics, a
measure which is assumed supported on a manifold embedded in a Hilbert space.
By establishing a precise connection between optimal transport metrics, optimal
quantization, and learning theory, we derive new probabilistic bounds for the per-
formance of a classic algorithm in unsupervised learning (k-means), when used to
produce a probability measure derived from the data. In the course of the analysis,
we arrive at new lower bounds, as well as probabilistic upper bounds on the con-
vergence rate of empirical to population measures, which, unlike existing bounds,
are applicable to a wide class of measures.

1 Introduction and Motivation

In this paper we study the problem of learning from random samples a probability distribution
supported on a manifold, when the learning error is measured using transportation metrics.

The problem of learning a probability distribution is classic in statistics, and is typically analyzed
for distributions in X = Rd that have a density with respect to the Lebesgue measure, with total
variation, and L2 among the common distances used to measure closeness of two densities (see for
instance [10, 32] and references therein.) The setting in which the data distribution is supported on
a low dimensional manifold embedded in a high dimensional space has only been considered more
recently. In particular, kernel density estimators on manifolds have been described in [36], and their
pointwise consistency, as well as convergence rates, have been studied in [25, 23, 18]. A discussion
on several topics related to statistics on a Riemannian manifold can be found in [26].

Interestingly, the problem of approximating measures with respect to transportation distances has
deep connections with the fields of optimal quantization [14, 16], optimal transport [35] and, as
we point out in this work, with unsupervised learning (see Sec. 4.) In fact, as described in the
sequel, some of the most widely-used algorithms for unsupervised learning, such as k-means (but
also others such as PCA and k-flats), can be shown to be performing exactly the task of estimating
the data-generating measure in the sense of the 2-Wasserstein distance. This close relation between
learning theory, and optimal transport and quantization seems novel and of interest in its own right.
Indeed, in this work, techniques from the above three fields are used to derive the new probabilistic
bounds described below.

Our technical contribution can be summarized as follows:

(a) we prove uniform lower bounds for the distance between a measure and estimates based on
discrete sets (such as the empirical measure or measures derived from algorithms such as k-
means);

(b) we provide new probabilistic bounds for the rate of convergence of empirical to population
measures which, unlike existing probabilistic bounds, hold for a very large class of measures;
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(c) we provide probabilistic bounds for the rate of convergence of measures derived from k-means
to the data measure.

The structure of the paper is described at the end of Section 2, where we discuss the exact formula-
tion of the problem as well as related previous works.

2 Setup and Previous work

Consider the problem of learning a probability measure ρ supported on a space M, from an i.i.d.
sample Xn = (x1, . . . , xn) ∼ ρn of size n. We assumeM to be a compact, smooth d-dimensional
manifold of bounded curvature, with C1 metric and volume measure λM, embedded in the unit ball
of a separable Hilbert space X with inner product 〈·, ·〉, induced norm ‖ · ‖, and distance d (for
instance M = Bd2 (1) the unit ball in X = Rd.) Following [35, p. 94], let Pp(M) denote the
Wasserstein space of order 1 ≤ p <∞:

Pp(M) :=

{
ρ ∈ P (M) :

∫
M
‖x‖pdρ(x) <∞

}
of probability measures P (M) supported onM, with finite p-th moment. The p-Wasserstein dis-
tance

Wp(ρ, µ) = inf
X,Y

{
[E‖X − Y ‖p]1/p : Law(X) = ρ, Law(Y ) = µ

}
(1)

where the random variablesX and Y are distributed according to ρ and µ respectively, is the optimal
expected cost of transporting points generated from ρ to those generated from µ, and is guaranteed to
be finite in Pp(M) [35, p. 95]. The space Pp(M) with the Wp metric is itself a complete separable
metric space [35]. We consider here the problem of learning probability measures ρ ∈ P2(M),
where the performance is measured by the distance W2.

There are many possible choices of distances between probability measures [13]. Among them,
Wp metrizes weak convergence (see [35] theorem 6.9), that is, in Pp(M), a sequence (µi)i∈N of
measures converges weakly to µ iffWp(µi, µ)→ 0 and their p-th order moments converge to that of
µ. There are other distances, such as the Lévy-Prokhorov, or the weak-* distance, that also metrize
weak convergence. However, as pointed out by Villani in his excellent monograph [35, p. 98],

1. “Wasserstein distances are rather strong, [...]a definite advantage over the weak-* distance”.
2. “It is not so difficult to combine information on convergence in Wasserstein distance with

some smoothness bound, in order to get convergence in stronger distances.”

Wasserstein distances have been used to study the mixing and convergence of Markov chains [22], as
well as concentration of measure phenomena [20]. To this list we would add the important fact that
existing and widely-used algorithms for unsupervised learning can be easily extended (see Sec. 4)
to compute a measure ρ′ that minimizes the distance W2(ρ̂n, ρ

′) to the empirical measure

ρ̂n :=
1

n

n∑
i=1

δxi
,

a fact that will allow us to prove, in Sec. 5, bounds on the convergence of a measure induced by
k-means to the population measure ρ.

The most useful versions of Wasserstein distance are p = 1, 2, with p = 1 being the weaker of the
two (by Hölder’s inequality, p ≤ q ⇒ Wp ≤ Wq .) In particular, “results in W2 distance are usually
stronger, and more difficult to establish than results in W1 distance” [35, p. 95]. A discussion of
p =∞ would take us out of topic, since its behavior is markedly different.

2.1 Closeness of Empirical and Population Measures

By the strong law of large numbers, the empirical measure converges almost surely to the population
measure: ρ̂n → ρ in the sense of the weak topology [34]. Since weak convergence and convergence
inWp plus convergence of p-th moments are equivalent in Pp(M), this means that, in theWp sense,
the empirical measure ρ̂n converges to ρ, as n → ∞. A fundamental question is therefore how fast
the rate of convergence of ρ̂n → ρ is.
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2.1.1 Convergence in expectation

The rate of convergence of ρ̂n → ρ in expectation has been widely studied in the past, result-
ing in upper bounds of order EW2(ρ, ρ̂n) = O(n−1/(d+2)) [19, 8], and lower bounds of order
EW2(ρ, ρ̂n) = Ω(n−1/d) [29] (both assuming that the absolutely continuous part of ρ is ρA 6= 0,
with possibly better rates otherwise).

More recently, an upper bound of order EWp(ρ, ρ̂n) = O(n−1/d) has been proposed [2] by proving
a bound for the Optimal Bipartite Matching (OBM) problem [1], and relating this problem to the
expected distance EWp(ρ, ρ̂n). In particular, given two independent samples Xn, Yn, the OBM
problem is that of finding a permutation σ that minimizes the matching cost n−1

∑
‖xi−yσ(i)‖p [24,

30]. It is not hard to show that the optimal matching cost is Wp(ρ̂Xn
, ρ̂

Yn
)p, where ρ̂

Xn
, ρ̂

Yn
are

the empirical measures associated to Xn, Yn. By Jensen’s inequality, the triangle inequality, and
(a+ b)p ≤ 2p−1(ap + bp), it holds

EWp(ρ, ρ̂n)p ≤ EWp(ρ̂Xn
, ρ̂

Yn
)p ≤ 2p−1EWp(ρ, ρ̂n)p,

and therefore a bound of order O(n−p/d) for the OBM problem [2] implies a bound EWp(ρ, ρ̂n) =

O(n−1/d). The matching lower bound is only known for a special case: ρA constant over a bounded
set of non-null measure [2] (e.g. ρA uniform.) Similar results, with matching lower bounds are found
for W1 in [11].

2.1.2 Convergence in probability

Results for convergence in probability, one of the main results of this work, appear to be considerably
harder to obtain. One fruitful avenue of analysis has been the use of so-called transportation, or
Talagrand inequalities Tp, which can be used to prove concentration inequalities on Wp [20]. In
particular, we say that ρ satisfies a Tp(C) inequality with C > 0 iff Wp(ρ, µ)2 ≤ CH(µ|ρ),∀µ ∈
Pp(M), where H(·|·) is the relative entropy [20]. As shown in [6, 5], it is possible to obtain
probabilistic upper bounds on Wp(ρ, ρ̂n), with p = 1, 2, if ρ is known to satisfy a Tp inequality
of the same order, thereby reducing the problem of bounding Wp(ρ, ρ̂n) to that of obtaining a Tp
inequality. Note that, by Jensen’s inequality, and as expected from the behavior ofWp, the inequality
T2 is stronger than T1 [20].

While it has been shown that ρ satisfies a T1 inequality iff it has a finite square-exponential moment
(E[eα‖x‖

2

] finite for some α > 0) [4, 7], no such general conditions have been found for T2. As
an example, consider that, ifM is compact with diameter D then, by theorem 6.15 of [35], and the
celebrated Csiszár-Kullback-Pinsker inequality [27], for all ρ, µ ∈ Pp(M), it is

Wp(ρ, µ)2p ≤ (2D)2p‖ρ− µ‖2TV ≤ 22p−1D2pH(µ|ρ),

where ‖ · ‖TV is the total variation norm. Clearly, this implies a Tp=1 inequality, but for p ≥ 2 it
does not.

The T2 inequality has been shown by Talagrand to be satisfied by the Gaussian distribution [31], and
then slightly more generally by strictly log-concave measures (see [20, p. 123], and [3].) However, as
noted in [6], “contrary to the T1 case, there is no hope to obtain T2 inequalities from just integrability
or decay estimates.”

Structure of this paper. In this work we obtain bounds in probability (learning rates) for the
problem of learning a probability measure in the sense of W2. We begin by establishing (lower)
bounds for the convergence of empirical to population measures, which serve to set up the problem
and introduce the connection between quantization and measure learning (sec. 3.) We then describe
how existing unsupervised learning algorithms that compute a set (k-means, k-flats, PCA,. . . ) can
be easily extended to produce a measure (sec. 4.) Due to its simplicity and widespread use, we focus
here on k-means. Since the two measure estimates that we consider are the empirical measure, and
the measure induced by k-means, we next set out to prove upper bounds on their convergence to
the data-generating measure (sec. 5.) We arrive at these bounds by means of intermediate measures,
which are related to the problem of optimal quantization. The bounds apply in a very broad setting
(unlike existing bounds based on transportation inequalities, they are not restricted to log-concave
measures [20, 3].)
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3 Learning probability measures, optimal transport and quantization

We address the problem of learning a probability measure ρ when the only observations we have at
our disposal are n i.i.d. samples Xn = (x1, . . . , xn). We begin by establishing some notation and
useful intermediate results.

Given a closed set S ⊆ X , let {Vq : q ∈ S} be a Borel Voronoi partition of X composed of sets
Vq closest to each q ∈ S, that is, such that each Vq ⊆ {x ∈ X : ‖x − q‖ = minr∈S ‖x − r‖} is
measurable (see for instance [15].) Consider the projection function π

S
: X → S mapping each

x ∈ Vq to q. By virtue of {Vq}q∈S being a Borel Voronoi partition, the map π
S

is measurable [15],
and it is d (x, π

S
(x)) = minq∈S ‖x− q‖ for all x ∈ X .

For any ρ ∈ Pp(M), let π
S
ρ be the pushforward, or image measure of ρ under the mapping π

S
,

which is defined to be (π
S
ρ)(A) := ρ(π−1S (A)) for all Borel measurable sets A. From its definition,

it is clear that π
S
ρ is supported on S.

We now establish a connection between the expected distance to a set S, and the distance between ρ
and the set’s induced pushforward measure. Notice that, for discrete sets S, the expected Lp distance
to S is exactly the expected quantization error

Ep,ρ(S) := Ex∼ρd(x, S)p = Ex∼ρ‖x− πS
(x)‖p

incurred when encoding points x drawn from ρ by their closest point π
S
(x) in S [14]. This close

connection between optimal quantization and Wasserstein distance has been pointed out in the past
in the statistics [28], optimal quantization [14, p. 33], and approximation theory [16] literatures.

The following two lemmas are key tools in the reminder of the paper. The first highlights the close
link between quantization and optimal transport.

Lemma 3.1. For closed S ⊆ X , ρ ∈ Pp(M), 1 ≤ p <∞, it holds Ex∼ρd(x, S)p = Wp(ρ, πS
ρ)p.

Note that the key element in the above lemma is that the two measures in the expressionWp(ρ, πS
ρ)

must match. When there is a mismatch, the distance can only increase. That is, Wp(ρ, πS
µ) ≥

Wp(ρ, πS
ρ) for all µ ∈ Pp(M). In fact, the following lemma shows that, among all the measures

with support in S, π
S
ρ is closest to ρ.

Lemma 3.2. For closed S ⊆ X , and all µ ∈ Pp(M) with supp(µ) ⊆ S, 1 ≤ p < ∞, it holds
Wp(ρ, µ) ≥Wp(ρ, πS

ρ).

When combined, lemmas 3.1 and 3.2 indicate that the behavior of the measure learning problem is
limited by the performance of the optimal quantization problem. For instance, Wp(ρ, ρ̂n) can only
be, in the best-case, as low as the optimal quantization cost with codebook of size n. The following
section makes this claim precise.

3.1 Lower bounds

Consider the situation depicted in fig. 1, in which a sample X4 = {x1, x2, x3, x4} is drawn from
a distribution ρ which we assume here to be absolutely continuous on its support. As shown, the
projection map π

X4
sends points x to their closest point inX4. The resulting Voronoi decomposition

of supp(ρ) is drawn in shades of blue. By lemma 5.2 of [9], the pairwise intersections of Voronoi
regions have null ambient measure, and since ρ is absolutely continuous, the pushforward measure
can be written in this case as π

X4
ρ =

∑4
j=1 ρ(Vxj

)δxj
, where Vxj

is the Voronoi region of xj .
Note that, even for finite sets S, this particular decomposition is not always possible if the {Vq}q∈S
form a Borel Voronoi tiling, instead of a Borel Voronoi partition. If, for instance, ρ has an atom
falling on two Voronoi regions in a tiling, then both regions would count the atom as theirs, and
double-counting would imply

∑
q ρ(Vq) > 1. The technicalities required to correctly define a Borel

Voronoi partition are such that, in general, it is simpler to write πSρ, even though (if S is discrete)
this measure can clearly be written as a sum of deltas with appropriate masses.

By lemma 3.1, the distance Wp(ρ, πX4
ρ)p is the (expected) quantization cost of ρ when using X4

as codebook. Clearly, this cost can never be lower than the optimal quantization cost of size 4. This
reasoning leads to the following lower bound between empirical and population measures.
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Theorem 3.3. For ρ ∈ Pp(M) with absolutely continuous part ρA 6= 0, and 1 ≤ p < ∞, it holds
Wp(ρ, ρ̂n) = Ω(n−1/d) uniformly over ρ̂n, where the constants depend on d and ρA only.

Proof: Let Vn,p(ρ) := infS⊂M,|S|=n Ex∼ρd(x, S)p be the optimal quantization cost of ρ of order
p with n centers. Since ρA 6= 0, and since ρ has a finite (p + δ)-th order moment, for some δ > 0
(since it is supported on the unit ball), then it is Vn,p(ρ) = Θ(n−p/d), with constants depending on
d and ρA (see [14, p. 78] and [16].) Since supp(ρ̂n) = Xn, it follows that

Wp(ρ, ρ̂n)p ≥
lemma 3.2

Wp(ρ, πXn
ρ)p =

lemma 3.1
Ex∼ρd(x,Xn)p ≥ Vn,p(ρ) = Θ(n−p/d)

Note that the bound of theorem 3.3 holds for ρ̂n derived from any sample Xn, and is therefore
stronger than the existing lower bounds on the convergence rates of EWp(ρ, ρ̂n)→ 0. In particular,
it trivially induces the known lower bound Ω(n−1/d) on the rate of convergence in expectation.

4 Unsupervised learning algorithms for learning a probability measure

As described in [21], several of the most widely used unsupervised learning algorithms can be
interpreted to take as input a sample Xn and output a set Ŝk, where k is typically a free parameter
of the algorithm, such as the number of means in k-means1, the dimension of affine spaces in PCA,
etc. Performance is measured by the empirical quantity n−1

∑n
i=1 d(xi, Ŝk)2, which is minimized

among all sets in some class (e.g. sets of size k, affine spaces of dimension k,. . . ) This formulation is
general enough to encompass k-means and PCA, but also k-flats, non-negative matrix factorization,
and sparse coding (see [21] and references therein.)

Using the discussion of Sec. 3, we can establish a clear connection between unsupervised learning
and the problem of learning probability measures with respect toW2. Consider as a running example
the k-means problem, though the argument is general. Given an input Xn, the k-means problem is
to find a set |Ŝk| = k minimizing its average distance from points in Xn. By associating to Ŝk the
pushforward measure πŜk

ρ̂n, we find that

1

n

n∑
i=1

d(xi, Ŝk)2 = Ex∼ρ̂nd(x, Ŝk)2 =
lemma 3.1

W2(ρ̂n, πŜk
ρ̂n)2. (2)

Since k-means minimizes equation 2, it also finds the measure that is closest to ρ̂n, among those
with support of size k. This connection between k-means and W2 measure approximation was, to
the best of the authors’ knowledge, first suggested by Pollard [28] though, as mentioned earlier, the
argument carries over to many other unsupervised learning algorithms.

Unsupervised measure learning algorithms. We briefly clarify the steps involved in using an
existing unsupervised learning algorithm for probability measure learning. Let Uk be a parametrized
algorithm (e.g. k-means) that takes a sample Xn and outputs a set Uk(Xn). The measure learning
algorithm Ak :Mn → Pp(M) corresponding to Uk is defined as follows:

1. Ak takes a sample Xn and outputs the measure πŜk
ρ̂n, supported on Ŝk = Uk(Xn);

2. since ρ̂n is discrete, then so must πŜk
ρ̂n be, and thus Ak(Xn) = 1

n

∑n
i=1 δπŜk

(xi);

3. in practice, we can simply store an n-vector
[
πŜk

(x1), . . . , πŜk
(xn)

]
, from whichAk(Xn)

can be reconstructed by placing atoms of mass 1/n at each point.

In the case that Uk is the k-means algorithm, only k points and k masses need to be stored.

Note that any algorithm A′ that attempts to output a measure A′(Xn) close to ρ̂n can be cast in the
above framework. Indeed, if S′ is the support of A′(Xn) then, by lemma 3.2, πS′ ρ̂n is the measure
closest to ρ̂n with support in S′. This effectively reduces the problem of learning a measure to that of

1In a slight abuse of notation, we refer to the k-means algorithm here as an ideal algorithm that solves the
k-means problem, even though in practice an approximation algorithm may be used.
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finding a set, and is akin to how the fact that every optimal quantizer is a nearest-neighbor quantizer
(see [15], [12, p. 350], and [14, p. 37–38]) reduces the problem of finding an optimal quantizer to
that of finding an optimal quantizing set.

Clearly, the minimum of equation 2 over sets of size k (the output of k-means) is monotonically
non-increasing with k. In particular, since Ŝn = Xn and πŜn

ρ̂n = ρ̂n, it is Ex∼ρ̂nd(x, Ŝn)2 =

W2(ρ̂n, πŜn
ρ̂n)2 = 0. That is, we can always make the learned measure arbitrarily close to ρ̂n

by increasing k. However, as pointed out in Sec. 2, the problem of measure learning is concerned
with minimizing the 2-Wasserstein distance W2(ρ, πŜk

ρ̂n) to the data-generating measure. The
actual performance of k-means is thus not necessarily guaranteed to behave in the same way as the
empirical one, and the question of characterizing its behavior as a function of k and n naturally
arises.

Finally, we note that, while it is Ex∼ρ̂nd(x, Ŝk)2 = W2(ρ̂n, πŜk
ρ̂n)2 (the empirical performances

are the same in the optimal quantization, and measure learning problem formulations), the actual
performances satisfy

Ex∼ρd(x, Ŝk)2 =
lemma 3.1

W2(ρ, πŜk
ρ)2 ≤

lemma 3.2
W2(ρ, πŜk

ρ̂n)2, 1 ≤ k ≤ n.

Consequently, with the identification between sets S and measures π
S
ρ̂n, the measure learning

problem is, in general, harder than the set-approximation problem (for example, ifM = Rd and ρ
is absolutely continuous over a set of non-null volume, it is not hard to show that the inequality is
almost surely strict: Ex∼ρd(x, Ŝk)2 < W2(ρ, πŜk

ρ̂n)2 for 1 < k < n.)

In the remainder, we characterize the performance of k-means on the measure learning problem, for
varying k, n. Although other unsupervised learning algorithms could have been chosen as basis for
our analysis, k-means is one of the oldest and most widely used, and the one for which the deep
connection between optimal quantization and measure approximation is most clearly manifested.
Note that, by setting k = n, our analysis includes the problem of characterizing the behavior of
the distance W2(ρ, ρ̂n) between empirical and population measures which, as indicated in Sec. 2.1,
is a fundamental question in statistics (i.e. the speed of convergence of empirical to population
measures.)

5 Learning rates

In order to analyze the performance of k-means as a measure learning algorithm, and the conver-
gence of empirical to population measures, we propose the decomposition shown in fig. 2. The
diagram includes all the measures considered in the paper, and shows the two decompositions used
to prove upper bounds. The upper arrow (green), illustrates the decomposition used to bound the dis-
tance W2(ρ, ρ̂n). This decomposition uses the measures πSk

ρ and πSk
ρ̂n as intermediates to arrive

at ρ̂n, where Sk is a k-point optimal quantizer of ρ, that is, a set Sk minimizing Ex∼ρd(x, S)2 over
all sets of size |S| = k. The lower arrow (blue) corresponds to the decomposition of W2(ρ, πŜk

ρ̂n)
(the performance of k-means), whereas the labelled black arrows correspond to individual terms in
the bounds. We begin with the (slightly) simpler of the two results.

5.1 Convergence rates for the empirical to population measures

Let Sk be the optimal k-point quantizer of ρ of order two [14, p. 31]. By the triangle inequality and
the identity (a+ b+ c)2 ≤ 3(a2 + b2 + c2), it follows that

W2(ρ, ρ̂n)2 ≤ 3
[
W2(ρ, πSk

ρ)2 +W2(πSk
ρ, πSk

ρ̂n)2 +W2(πSk
ρ̂n, ρ̂n)2

]
. (3)

This is the decomposition depicted in the upper arrow of fig. 2.

By lemma 3.1, the first term in the sum of equation 3 is the optimal k-point quantization error of
ρ over a d-manifoldM which, using recent techniques from [16] (see also [17, p. 491]), is shown
in the proof of theorem 5.1 (part a) to be of order Θ(k−2/d). The remaining terms, b) and c), are
slightly more technical and are bounded in the proof of theorem 5.1.

Since equation 3 holds for all 1 ≤ k ≤ n, the best bound on W2(ρ, ρ̂n) can be obtained by optimiz-
ing the right-hand side over all possible values of k, resulting in the following probabilistic bound
for the rate of convergence of the empirical to population measures.
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x

supp ρ

π{x1,x2,x3,x4}

x1

x2

x3

x4

Figure 1: A sample {x1, x2, x3, x4} is
drawn from a distribution ρ with support in
supp ρ. The projection map π{x1,x2,x3,x4}
sends points x to their closest one in the sam-
ple. The induced Voronoi tiling is shown in
shades of blue.

ρ ρ̂nπSk ρ̂n πŜk
ρ̂nπSkρ

a) b) c) d)

W2(ρ, ρ̂n)

W2(ρ,πŜk
ρ̂n)

Figure 2: The measures considered in this paper
are linked by arrows for which upper bounds for
their distance are derived. Bounds for the quan-
tities of interest W2(ρ, ρ̂n)2, and W2(ρ, πŜk

ρ̂n)2,
are decomposed by following the top and bottom
colored arrows.

Theorem 5.1. Given ρ ∈ Pp(M) with absolutely continuous part ρA 6= 0, sufficiently large n, and
τ > 0, it holds

W2(ρ, ρ̂n) ≤ C ·m(ρA) · n−1/(2d+4) · τ, with probability 1− e−τ
2

.

where m(ρA) :=
∫
M ρA(x)d/(d+2)dλM(x), and C depends only on d.

5.2 Learning rates of k-means

The key element in the proof of theorem 5.1 is that the distance between population and empirical
measures can be bounded by choosing an intermediate optimal quantizing measure of an appropriate
size k. In the analysis, the best bounds are obtained for k smaller than n. If the output of k-means
is close to an optimal quantizer (for instance if sufficient data is available), then we would similarly
expect that the best bounds for k-means correspond to a choice of k < n.

The decomposition of the bottom (blue) arrow in figure 2 leads to the following bound in probability.
Theorem 5.2. Given ρ ∈ Pp(M) with absolutely continuous part ρA 6= 0, and τ > 0, then for all
sufficiently large n, and letting

k = C ·m(ρA) · nd/(2d+4),

it holds

W2(ρ, πŜk
ρ̂n) ≤ C ·m(ρA) · n−1/(2d+4) · τ, with probability 1− e−τ

2

.

where m(ρA) :=
∫
M ρA(x)d/(d+2)dλM(x), and C depends only on d.

Note that the upper bounds in theorem 5.1 and 5.2 are exactly the same. Although this may appear
surprising, it stems from the following fact. Since S = Ŝk is a minimizer of W2(πS ρ̂n, ρ̂n)2, the
bound d) of figure 2 satisfies:

W2(πŜk
ρ̂n, ρ̂n)2 ≤W2(πSk

ρ̂n, ρ̂n)2

and therefore (by the definition of c), the term d) is of the same order as c). It follows then that
adding term d) to the bound only affects the constants, but otherwise leaves it unchanged. Since
d) is the term that takes the output measure of k-means to the empirical measure, this implies that
the rate of convergence of k-means (for suitably chosen k) cannot be worse than that of ρ̂n → ρ.
Conversely, bounds for ρ̂n → ρ are obtained from best rates of convergence of optimal quantizers,
whose convergence to ρ cannot be slower than that of k-means (since the quantizers that k-means
produces are suboptimal.)
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Since the bounds obtained for the convergence of ρ̂n → ρ are the same as those for k-means with
k of order k = Θ(nd/(2d+4)), this suggests that estimates of ρ that are as accurate as those derived
from an n point-mass measure ρ̂n can be derived from k point-mass measures with k � n.

Finally, we note that the introduced bounds are currently limited by the statistical bound

sup
|S|=k

|W2(πS ρ̂n, ρ̂n)2 −W2(πSρ, ρ)2| =
lemma 3.1

sup
|S|=k

|Ex∼ρ̂nd(x, S)2 − Ex∼ρd(x, S)2| (4)

(see for instance [21]), for which non-matching lower bounds are known. This means that, if better
upper bounds can be obtained for equation 4, then both bounds in theorems 5.1 and 5.2 would
automatically improve (would become closer to the lower bound.)
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