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Abstract

This paper introduces a novel classification method for tional magnetic res-
onance imaging datasets with tens of classes. The methaskigne:d to make
predictions using information from as many brain locatiaagossible, instead of
resorting to feature selection, and does this by decomgdhim pattern of brain
activation into differently informative sub-regions. Wepide results over a com-
plex semantic processing dataset that show that the meshcahipetitive with
state-of-the-art feature selection and also suggest hewtthod may be used to
perform group or exploratory analyses of complex classira.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a techaigsed in psychological experiments
to measure the blood oxygenation level throughout the breliich is a proxy for neural activity;
this measurement is callédain activation. The data resulting from such an experiment is a 3D grid
of cells namedroxels covering the brain (on the order of tens of thousands, uguatleasured over
time as tasks are performed and thus yielding one time geeiegoxel (collected every 1-2 seconds
and yielding hundreds to thousands of points).

In a typical experiment, brain activation is measured dypartask of interest, e.g. reading words,
and during a related control condition, e.g. reading nossewords, with the goal of identifying
brain locations where the two differ. The most common anslgshnique for doing this — statisti-
cal parametric mapping [4] —tests each voxel individuajlydgressing its time series on a predicted
time series determined by the task contrast of interests fithis scored and thresholded at a given
statistical significance level to yield a brain image withsters of voxels that respond very differ-
ently to the two tasks (colloquially, these are the imagasshow parts of the brain that “light up”).
Note, however, that for both tasks there are many other psesetaking place in tandem with this
task-contrasting activation: visual processing to readvtiords, attentional processing due to task
demands, etc. The output of this process for a given expatiisa set of 3D coordinates of all the
voxel clusters that appear reliably across all the subjactsstudy. This result is easy to interpret,
since there is a lot of information about what processes beain area may be involved in. The
coordinates are comparable across studies, and thusmesdtiuciblity is also an expectation.

In recent years, there has been increasing awareness afttibdt there is information in the entire
pattern of brain activation and not just in saliently activeations. Classifiers have been the tool



of choice for capturing this information and used to makeljmtéons ranging from what stimulus a
subject is seeing, what kind of object they are thinking albwwhat decision they will make [12]
[14] [8]. The most common situation is to have an exampleasgond to the average brain image
during one or a few performances of the task of interest, anelg as the features, and we will
discuss various issues with this scenario in mind.

The goal of this work is generally not (just) classificatimtaracy per se, even in diagnostic appli-
cations, but understanding where the information usedassdl is present. If only two conditions
are being contrasted this is relatively straightforwarthé@mation is, at its simplest, a difference in
activation of a voxel in the two conditions. It's thus podsito look at the magnitudes of the weights
a classifier puts on voxels across the brain and thus locatettels with the largest weightsgiven
that there are typically two to three orders of magnitudeanaixels than examples, though, classi-
fiers are usually trained on a selection of voxels rather tharentire activation pattern. Often, this
means the best accuracy is obtained using few voxels, frbatadss the brain, and that different
voxels will be chosen in different cross-validation foltlsis presents a problem for interpretability
of the locations in question.

One approach to this problem is to try and regularize classifo that they include as many infor-
mative voxels as possible [2], thus identifying localizblusters of voxels that may overlap across
folds. A different approach is to cross-validate classsfmrer small sections of the grid covering the
brain, known asearchlights [10]. This can be used to produce a map of the cross-validated-
racy in the searchlight around each voxel, taking advantétiee pattern of activation across all the
voxels contained in it. Such a map can then be thresholdeshte lonly locations where accuracy
is significantly above chance. While these approaches harelsed successfully many times over
the last decade, they will become progressively less ugefigice of the increasing commonality
of datasets with tens to hundreds of stimuli, and a corredipgty high number of experimental
conditions. Knowing the location of a voxel does not suffénterpret what it is doing, as it could
be very different from stimulus to stimulus (rather thart jastive or not, as in the two condition
situation). It's also likely that no small brain regions heillow for a searchlight classifier capable of
distinguishing between all possible conditions at theiapegsolution of fMRI, and hence defining
a searchlight size or shape is a trade-off between includinxgls and making it harder to locate
information or train a classifier — as the number of featuneseases as the number of examples
remains constant — and excluding voxels and thus the nunfildéstonctions that can be made.

This paper introduces a method to address all of these isghiés still yielding an interpretable,
whole-brain classifier. The method starts by learning howdocompose the pattern of activation
across the brain into sub-patterns of activation, theraitie a whole-brain classifier in terms of the
presence and absence of certain subpatterns and finallyimesrthe classifier and pattern informa-
tion to generate brain maps indicating which voxels belangformative patterns and what kind of
information they contain. This method is partially basedtmnotion of pattern feature introduced
in an earlier paper by us [15], but has been developed muthefuso as to dispense with most
parameters and allow the creation of spatial maps usablgréoip or exploratory analyses, as will
be discussed later.

2 Data and Methods

2.1 Data

The grid covering the brain contains on the order of tens ofisands voxels, measured over time
as tasks are performed, every 1-2 seconds, yielding husdetiousands of 3D images per experi-
ment. During an experiment a given task is performed a cenainber of times — trials — and often
the images collected during one trial are collapsed or gestdaogether, giving us one 3D image
that can be clearly labeled with what happened in that teig, what stimulus was being seen or
what decision a subject made. Although the grid covers thieedmead, only a fraction of its voxels
contain cortex in a typical subject; hence we only consides¢ voxels as features.

Interpretation is more complicated if nonlinear classifiers are being Wedi[7], but this is far less
common



A searchlight is a small section of the 3D grid, in our case@a= 3 x 3 x 3 voxel cube. Analyses
using searchlights generally entail computing a statj40§ or cross-validating a classifier over the
dataset containing just those voxels [16], and do so forehechlight around each voxel in the brain,
covering it in its entirety. The intuition for this is thatdividual voxels are very noisy features, and
an effect observed across a group of voxels is more trugtyeort

In the experiment performed to obtain our datd§&8], subjects observed a word and a line drawing
of an item, displayed on a screen for 3 seconds and followe $3conds of a blank screen. The
items named/depicted belonged to one of 12 categories: adifody parts, buildings, building
parts, clothing, furniture, insects, kitchen, man-madgai, tools, vegetables and vehicles. The
experimental task was to think about the item and its pragzewhile it was displayed. There were
5 different exemplars of each of the 12 categories and 6 erpatal epochs. In each epoch all 60
exemplars were shown in random order without repetitiod, alhepochs had the same exemplars.
During an experiment the task repeated a total of 360 timmebas8D image of the fMRI-measured
brain activation acquired every second.

Each example for classification purposes is the averageerdagng a 4 second span while the
subject was thinking about the item shown a few secondseedaliperiod which contains the peak
of the signal during the trial; the dataset thus contains&&0nples, as many as there were trials.
The voxel size was x 3 x 5 mm, with the number of voxels being between 20000 and 21000
depending on which of the 9 subjects was considered. Therfsain each example are voxels, and
the example labels are the category of the item being showheitrial each example came from.
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Figure 1: Construction of data-driven searchlights.

2.2 Method

The goal of the experiment our dataset comes from is to utadetfow a certain semantic category
is represented throughout the brain (e.g. do “Insects” @&miials” share part of their representa-
tion because both kinds of things are alive?). Intuitivétgre is information in a given location if
at least two categories can be distinguished looking at teepective patterns of activation there;
otherwise, the pattern of activation is noise or commonltoakgories. Our method is based upon
this intuition, and comprises three stages:

The data were kindly shared with us by Tom Mitchell and Marcel Just, fEamegie Mellon University.



1. the construction of data-driven searchlights, parcélh® 3D grid wherethe same dis-
criminations between pairs of categories can be made (these are generally larger than the
3 x 3 x 3 basic searchlight)

2. the synthesis gpattern features from each data-driven searchlight, corresponding to the
presence or absence of a certain pattern of activationsitros

3. thetraining and use of a classifier based on pattern fesatund the generation of an anatom-
ical map of the impact of each voxel on classification

and these are described in detail in each of the followingjees:

2.2.1 Construction of data-driven searchlights

Create pairwise searchlight maps In order to identify informative locations we start by caihsi
ering whether a given pair of categories can be distingdisiheach of the thousands ®fx 3 x 3
searchlights covering the brain:

1. For each searchlight cross-validate a classifier usiagdxels belonging to it, obtaining
an accuracy value which will be assigned to the voxel at theeceof the searchlight,
as shown in part 1 of Figure 1. The classifier used in this caselinear Discriminant
Analysis (LDA, [7]), with a shrinkage estimator for the coiance matrix [18], as this was
shown to be effective at both modeling the joint activatidrvaxels in a searchlight and
classification [16].

2. Transform the resulting brain image with the accuracyaafhevoxel into g-value brain
image (of obtaining accuracy as high or higher under the mggbthesis that the classes
are not distinguishable, see [11]), as shown in part 1 offeidu

3. Threshold the»-value brain image using False Discovery Rate [p 0.01) to correct
multiple for multiple comparisons and get a binary brain gmavith candidate locations
where this pair of categories can be distinguished, as skowart 2 of Figure 1.

The outcome for each pair of categories is a binary signifieamage, where a voxel is 1 if the
categories can be distinguished in the searchlight sudiagnt or 0O if not; this is shown for all
pairs of categories in part 3 of Figure 1. This can also be &teper-searchlight, yielding a binary
vector encoding which category pairs can be distinguishéeldrdnich can be rearranged into a binary
matrix, as shown in part 4 of Figure 1.

Aggregate adjacent searchlights Examining each small searchlight makes sense if we consider
that, a priori, we don’t know where the information is or hoig b pattern of activation would have

to be considered (with some exceptions, notably areasdbpbnd to faces, houses or body parts, see
[9] for a review). That said, if the same categories are miigtishable in two adjacent searchlights

— which overlap — then it is reasonable to assume that alt thoeiels put together would still be
able to make the same distinctions. Doing this repeatettiwalus to finddata-driven searchlights,

not bound by shape or size assumptions. At the same time wiel el to constrain data-driven
searchlights to the boundaries of known, large, anatofgidatermined regions of interest (ROI),
both for computational efficiency and for interpretabilig will be described later.

At the start of the aggregation process, each searchlighy isself and has an associated binary
information vector with 66 entries corresponding to whicirg of classes can be distinguished in
its surrounding searchlight (part 3 of Figure 1). For eadradight we compute the similarity
of its information vector with those of all its neighbourshieh yields a 3D grid similarity graph.
We then take the portion of the graph corresponding to eadhirRtbe AAL brain atlas [19], and
use modularity [1] to divide it into a number of clusters ofamnt searchlights supporting similar
distinctions, as shown in panel 5 of Figure 1. After this is€ldor all ROls we obtain a partition of
the brain into a few hundred clusters, the data-driven séights. Figure 2 depicts the granularity
of a typical clustering across multiple brain slices of ofthe participants.

The similarity measure between two vectersandv; is obtained by computing the number of
1-entries present in both vectofs; ;.. AND(v;, v;), the number of 1-entries present in only one

of them,>" XOR(v;,v;) and then the measure

pairs
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Figure 2: Data-driven searchlights for participant P1ifbslices range from inferior to superior).

> XOR(Vi,v;)
Zpairs AND(Vi? Vj) - = D)

Zpai'rs AND(Vi, Vj)

The measure was chosen because it peaks at 1, if the two yestich exactly, and decreases —
possibly into negative values — if there are mismatchesillitelerate more mismatches if there are

more distinctions being made. It will also deem sparse vedinilar as long as there are vew few

mismatches. The number of entries present in only one idelivby 2 so that the differences do not
get twice the weight of the similarities.

similarity(v;, v;) =

The centroid for each cluster encodes the pairs of categtirét can be distinguished in that data-
driven searchlight. The centroid is obtained by combinimg hinary information vectors for each
of the searchlights in it using a soft-AND function, and geif a binary information vector. A given
entry is 1 — the respective pair of categories is distingabiddh— if it is 1 in at leas4% of the cluster
members (where is the false discovery rate used earlier to threshold tharpiimage for that pair
of categories).

2.2.2 Generation of pattern features from each data-driversearchlight

voxels clusters (across class pairs) clusters (across all examp\es) pattern features singular vectors
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Figure 3: Construction of pattern detectors and pattertufea from data-driven searchlights.

Construct two-way classifiers from each data-driven seardight Each data-driven searchlight
has a set of pairs of categories that can be distinguishédThis indicates that there are particular
patterns of activation across the voxels in it which are atiaristic of one or more categories, and
absent in others. We can leverage this to convert the patfestivation across the brain into a
series of sub-patterns, one from each data-driven seginthli

For each data-driven searchlight, and for each pairwisgoay distinction in its information vector,
we train a classifier using examples of the two categoriesjasidhe voxels in the searchlight (a
linear SVM with A = 1, [3]); these will bepattern detectors, outputting a probability estimate for
the prediction (which we transform to tifte 1, 1] range), shown in part 1 of Figure 3.



Use two-way classifiers to generate pattern featuresThe set of pattern-detectors learned from
each data-driven searchlight can be appliedrp example, not just the ones from the categories
that were used to learn them. The output of each pattercideis then viewed as representing the
degree to which the detector thinks that either of the padtéris sensitive to is present. For each
data-driven searchlight, we apply all of its detectoraltdhe examples in the training set, over the
voxels belonging to the searchlight, as illustrated in gawf Figure 3. The output of each detector
across all examples becomes a new, synthpeatiern feature. The number of these pattern features
varies per searchlight, as does the number of searchlightubject, but at the end we will typically
have between 10K and 20K of them.

Note that there may be multiple classifiers for a given clustieich produce very similar outputs
(e.g. ones that captured a pattern present in all animagziobitegories versus one present in all
inanimate object ones); these will be highly correlated ssttindant. We address this by using
Singular Value Decomposition (SVD, [7]) to reduce the disienality of the matrix of pattern
features to the same as the number of examples (180), kealpsiggular vectors; this is shown in
part 3 of Figure 3. The detectors and the SVD transformatiatrimlearned from the training set
are also applied to the test set.

2.2.3 Classification and impact maps for each class

singular vector classifier pattern feature classifier .
" " " " pattern feature impact values
for "tools"-vs-rest for "tools"-vs-rest
s —— [ ] — 1
invert SVD .
aggregate impact of pattern
m X @ features belonging to each cluster
e S H o~
" " el " H er-cluster impact values
tools" singular vectors tools" pattern features P P (3)
N N e .

- —> I I I I I I I I assign per-cluster impact value
invert SVD to the voxels that belong to it

voxelwise impact values

Figure 4: The process of going from the weights of a one-werest category classifier over a
low-dimensional pattern feature representation to thearhpf each voxel in that classification.

Given the low-dimensional pattern feature dataset, we teabne-versus-rest classifier (a linear
SVM with A = 1, [3]) for each category; these are then applied to each ebeeimfhe test set, with
the label prediction corresponding to the class with théaddg class probability.

The classifiers can also be used to determine the extent whvelaich data-driven searchlight was
responsible for correctly predicting each class. A oneswgirest category classifier consists of a
vector of 180 weights, which can be converted into an egeitatlassifier over pattern features by
inverting the SVD, as shown in part 1 of Figure 4. Tingpact of each pattern feature in correctly
predicting this category can be calculated by multiplyirgle weight by the values taken by the
corresponding pattern feature over examples in the categiod averaging across all examples; this
is shown in part 2 of Figure 4. These pattern-feature impaltes can then be aggregated by the
data-driven searchlight they came from, yielding a net icbpalue for that searchlight. This is the
value that is propagated to each voxel in the data-driverckkght (part 3 of Figure 4) in order to
generate an impact map.

3 Experiments and Discussion

3.1 Classification

Our goal in this experiment is to determine whether tramsiog the data from voxel features to
pattern features preserves information, and how competitie results are with a classifier com-
bined with voxel selection. In all experiments we use a $@if cross-validation loop, where the
halves contain examples from even and odd epochs, resglgcfi80 examples in each (15 per cat-



egory). If cross-validation inside a split-half trainingtss required, we use leave-one-epoch out
cross-validation,

Baseline We contrasted experimental results obtained with our nikthith a baseline of classi-
fication using voxel selection. The scoring criterion usedank each voxel was the accuracy of a
LDA classifier — same as described above — usingtle3 x 3 searchlight around each voxel to
do 12-category classification. The number of voxels to use setected by nested cross-validation
inside the training set The classifier used was a linear SVM£ 1, [3]), same as the whole brain
classifier in our method.

Results The results are shown in the first line of Table 1; across stdjeur method is better than
voxel selection, with the-value of a sign-test of this being 0.01. It is substantially better than a
classifier using all the voxels in the brain directly.

Whereas the accuracy is above chaneég) for all subjects, it is rather low for some. There
are at least two factors responsible for this. The first i$ soane classes give rise to very similar
patterns of activation (e.g. “buildings” and “building p&l}), and hence examples in these classes are
confusable (confusion matrices bear this out). The secactdifis that subjects vary in their ability

to stay focused on the task and avoid stray thoughts or remengoother parts of the experiment,
hence examples may not belong to the class correspondihg taliel or even any class at all. [13]
also points out that accuracy is correlated with a subjediity to stay still during the experiment.

Table 1: Classification accuracy for the 9 subjects usingmethod, as well as two baselines.
P1 P2 P3 P4 P5 P6 pP7 P8 P9
our method 054 034 033 042 015 019 0.22 0.21 0.16
baseline (voxel selection) 0.53 0.33 0.24 0.34 0.14 0.16 0.21 0.20 0.15
baseline (using all voxels) 0.31 0.21 0.19 0.27 0.13 0.09 0.14 0.13 0.15
#voxels selected (fold 1) | 1200 400 200 1600 800 800 800 400 2000
#voxels selected (fold 2) | 800 200 100 800 50 8000 100 1200 100

3.2 Impact maps
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Figure 5: Average example for categories “tool” and “builgli in participant P1 (slices ordered
from inferior to superior, red is activation above the imagean, blue below).

As described in Section 2.2.3, an impact map can be prodecedEh category, showing the extent
to which each data-driven searchlight helped classify taa¢gory correctly. In order to better
understand better how impact works, consider two categdtaols” and “buildings” where we
know where some of the information resides (for “tools” arduhe central sulcus, visible on the
right of slices to the right, for “buildings” around the phippocampal gyrus, visible on the lower
side of slices to the left). Figure 5 shows the average exarqlthe two categories; note how
similar the two examples are across the slices, indicatingrhost activation is shared between the
two categories.

The impact maps for the same participant in Figure 6 showrtheth of the common activation is
eliminated, and that the areas known to be informative asigasd high impact in their respective

3Possible choices were 50, 100, 200, 400, 800, 1200, 1600, 2000, 8000, 16000 or all voxels.
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Figure 6: Impact map for categories “tool” and “building”participant P1.
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Figure 7: Average impact map for categories “tool” and “8iniy” across the nine participants.

e

maps. Impact is positive, regardless of whether activati@ach voxel involved is above or below
the mean of the image; the activation of each voxel influetiteslassifier only in the context of
its neighbours in each data-driven searchlight. Note, #fet unlike a simple one-vs-rest classifier
or searchlight map, the notion of impact can accommodatsithation where the same location is
useful, with either different or the same pattern of aciomatfor two separate classes (rather than
have it be downweighted relative to others that might be umig that particular class).

Finally, consider that impact maps can be averaged acrdgscss, as shown in Figure 7, or un-
dergot-tests or a more complex second-level group analysis. A rexpéoratory analysis can be
performed by considering locations that are high impactefggry participant and, through their
data-driven searchlight, examine the corresponding efusintroids and get a complete picture of
which subsets of the classes can be distinguished therggisimthe bottom-up process in part 5 of
Figure 1, but now done top-down and given a cross-validdessification result and impact value).
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