
Spectral learning of linear dynamics from
generalised-linear observations

with application to neural population data

Lars Buesing∗, Jakob H. Macke∗,† , Maneesh Sahani
Gatsby Computational Neuroscience Unit
University College London, London, UK

{lars, jakob, maneesh}@gatsby.ucl.ac.uk

Abstract

Latent linear dynamical systems with generalised-linear observation models arise
in a variety of applications, for instance when modelling the spiking activ-
ity of populations of neurons. Here, we show how spectral learning methods
(usually called subspace identification in this context) for linear systems with
linear-Gaussian observations can be extended to estimate the parameters of a
generalised-linear dynamical system model despite a non-linear and non-Gaussian
observation process. We use this approach to obtain estimates of parameters for
a dynamical model of neural population data, where the observed spike-counts
are Poisson-distributed with log-rates determined by the latent dynamical process,
possibly driven by external inputs. We show that the extended subspace identifica-
tion algorithm is consistent and accurately recovers the correct parameters on large
simulated data sets with a single calculation, avoiding thecostly iterative compu-
tation of approximate expectation-maximisation (EM). Even on smaller data sets,
it provides an effective initialisation for EM, avoiding local optima and speeding
convergence. These benefits are shown to extend to real neural data.

1 Introduction

Latent linear dynamical system (LDS) models, also known as Kalman-filter models or linear-
Gaussian state-space models, provide an important framework for modelling shared temporal struc-
ture in multivariate time series. If the observation process is linear with additive Gaussian noise, then
there are many established options for parameter learning.Inference of the dynamical state in such
a model can be performed exactly by Kalman smoothing [1] and so the expectation-maximisation
(EM) algorithm may be used to find a local maximum of the likelihood [2]. An alternative is the
spectral approach known as subspace identification (SSID) in the engineering literature [3, 4, 5].
This is a method-of-moments-based estimation process, which, like other spectral methods, pro-
vides estimators that are non-iterative, consistent and donot suffer from the problems of multiple
optima that dog maximum-likelihood (ML) learning in practice. However, they are not as statisti-
cally efficient as the true (global) ML estimator. Thus, a combined approach often produces the best
results, with the SSID-based parameter estimates being used to initialise the EM iterations.

Many real-world data sets, however, are not well described by a linear-Gaussian output process. Of
particular interest to us here are multiple neural spike-trains measured simultaneously by arrays of
electrodes [6, 7], which are best treated either as multivariate point-processes or, after binning, as a
time series of vectors of small integers. In either case the event rates must be positive, precluding
a linear mapping from the Gaussian latent process, and the noise distribution cannot accurately be
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modelled as normal. Similar point-process or count data mayarise in many other settings, such as
seismology or text modelling. More generally, we are interested in the broad class ofgeneralised-
linear output models (defined by analogy to the generalised-linearregression model [8]), where the
expected value of an observation is given by a monotonic function of the latent Gaussian process,
with an arbitrary (most frequently exponential-family) distribution of observations about this mean.

For such models exact inference, and therefore exact EM, is not possible. Instead, approximate
ML learning relies on either Monte-Carlo or deterministic approximations to the posterior. Such
methods may be computationally intensive, suffer from varying degrees of approximation error, and
are subject to the same concerns about multiple likelihood optima as is the linear-Gaussian case2

Thus, a consistent spectral method is likely to be of particular value for such models. In this paper
we show how the SSID approach may be extended to yield consistent estimators for generalised-
linear-output LDS (gl-LDS) models. In experiments with simulated and real neural data, we show
that these estimators may be better than those provided by approximate EM when given sufficient
data. Even when data are few, the approach provides a valuable initialisation to approximate EM.

2 Theory

We briefly review the Ho-Kalman SSID algorithm [10] for linear-Gaussian LDS models, before
extending it to the gl-LDS case. Using this framework, we derive and then evaluate an algorithm to
fit models of Poisson-distributed count data with log-ratesgenerated by an LDS.

2.1 SSID for LDS models with linear-Gaussian observations

Let q-dimensional observationsyt, t ∈ {1, . . . , T } depend on ap-dimensional latent statext, de-
scribed by a linear first-order auto-regressive process with Gaussian initial distribution and Gaussian
innovations:

x1 ∼ N (x0, Q0)
xt+1 | xt ∼ N (Axt, Q)

zt = Cxt + d
yt | zt ∼ N (zt, R).

(1)

Here,x0 andQ0 are the mean and covariance of the initial state andQ is the covariance of the
innovations. The dynamics matrixA models the temporal dependence of the processx. The variable
zt of dimensionq is defined as an affine function of the latent statext, parametrised by the loading
matrixC and the mean parameterd. Givenzt, observations are independently distributed around
this value with covarianceR. Furthermore letΠ := limt→∞ Cov[xt] denote the covariance of the
stationary marginal distribution if the system is stable (i.e. if the spectral radius ofA is< 1).

Provided the generative model is stationary (i.e.,x0 = 0 andQ0 = Π), SSID algorithms yield
consistent estimates of the parametersA,C,Q,R,d without iteration. We adopt an approach to
SSID based on the Ho-Kalman method [10, 4]. This algorithm takes as input the empirical estimate
of the so-called “future-past Hankel matrix”H which is defined as the cross-covariance between
time-lagged vectorsy+

t (the “future”) andy−
t (the “past”) of the observed data:

H := Cov[y+
t ,y

−
t ] y+

t :=




yt

...
yt+k−1


 y−

t :=




yt−1

...
yt−k


 .

The parameterk is called the Hankel size and has to be chosen so thatk ≥ p. The key to SSID is
thatH (which is independent oft as stationarity is assumed) has rank equal to the dimensionality
p of the linear dynamical state. Indeed, it is straightforward to show that the Hankel matrix can be
decomposed in terms of the model parametersA,C,Π,

H = [C⊤ (CA)⊤ . . . (CAk−1)⊤]⊤ · [AΠC⊤ A2ΠC⊤ . . . AkΠC⊤]. (2)

The SSID algorithm first takes the singular value decomposition (SVD) of the empirical estimate
Ĥ of H to recover a two-part factorisation as in (2) given a user-defined latent dimensionalityp (a
suitablep may be estimated by inspection of the singular value spectrum of Ĥ). From this low-rank

2A recent paper [9] has argued that the log-likelihood of a model with Poisson count observations is
concave—however, the result therein showed only a necessary condition for concavity of the expected joint
log-likelihood optimised in the M-step.
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approximation toĤ the model parametersA, C as well as the covariancesQ andR can be found by
linear regression and by solving an algebraic Riccati equation; d is given simply by the empirical
mean of the data. However, this specific procedure works onlyfor linear systems with Gaussian
observations and innovations, and not for models which feature non-linear transformations or non-
Gaussian observation models. Indeed, we find that linear SSID methods can yield poor results
when applied directly to count-process data. Although SSIDtechniques have been developed for
observations that are Gaussian-distributed around a mean that is a nonlinear function of the latent
state [5], we are unaware of SSID methods that address arbitrary observation models.

2.2 SSID for gl-LDS models by moment conversion

Consider now the gl-LDS in which the Gaussian observation process of model (1) is replaced by the
following more general observation model. We assumeyt,i ⊥ yt,j | zt; i.e. observation dimensions
are independent givenzt. Further, letyt,i | zt be arbitrarily distributed around a (known) monotonic
element-wise nonlinear mappingf(·) such thatE[yt|zt] = f(zt). Following the theory of gener-
alised linear modelling, we also assume that the variance ofthe observation distribution is a (known)
functionV (·) of its mean.3

Our extension to SSID for such models is based on the following idea. The variablesz1, . . . , zT are
jointly normal, so in principle we can apply standard SSID algorithms toz. Althoughz is unob-
served, we can use the fact that the observation model dictates a computable relationship between
the moments ofy and those ofz. This allows us to determine the future-past Hankel matrix of z
from the moments ofy, which can then be fed into standard SSID algorithms. Consider the covari-
ance matrix Cov[y±] of the combined2kq-dimensional future-past vectory± which is defined by
stackingy+ andy− (here and henceforth we drop the subscriptst as unnecessary given the assumed
stationarity of the process). Denote the mean and covariance matrix of the normal distribution ofz±

(defined analogously toy±) byµ andΣ. We then have,

E[y±i ] = Ez[f(z
±
i )] =: α(µi,Σii) (3)

E[(y±i )
2] = Ez[Ey|z[(y

±
i )2]] = Ez[f(z

±
i )2 + V (f(z±i ))] =: β(µi,Σii). (4)

The functionsα(·) andβ(·) are given by Gaussian integrals with meanµi and varianceΣii over the
functionsf(·) andf2(·)+V (f(·)), respectively. For off-diagonal second moments we have (i 6= j):

E[y±i y
±
j ] = Ez [Ey|z[y

±
i ] · Ey|z[y

±
j ]] = Ez [f(z

±
i )f(z

±
j )] =: γ(µi,Σii, µj ,Σjj ,Σij). (5)

Equations (3)-(5) are a4kq + kq(2kq − 1) system of non-linear equations in4kq + kq(2kq − 1)
unknownsµ, Σ (with symmetricΣ = Σ⊤). The equations above can be solved efficiently by
separately solving one 2-dimensional system (equations 3-4) for each pair of unknownsµi, Σii,
∀i ∈ {1, . . . , kq}. Once theµi andΣii are known, equation (5) reduces to a 1-dimensional nonlinear
equation forΣij for each pair of indices(i < j). The upper-right block of the covariance matrixΣ
then provides an estimate of the future-past Hankel matrix Cov[z+, z−] which can be decomposed
as in standard Ho-Kalman SSID.

2.3 SSID for Poisson dynamical systems (PLDSID)

We now consider in greater detail a special case of the gl-LDSmodel, which is of particular interest
in neuroscience applications. The observations in this model are (when conditioned on the latent
state) Poisson-distributed with a mean that is exponentialin the output of the dynamical system,

yt,i | zt,i ∼ Poisson[exp(zt,i)].

We call this model, which is a special case of a Log-Gaussian Cox Process [11], a Poisson Lin-
ear Dynamical System (PLDS). PLDS and close variants have recently been applied for modelling
multi-electrode recordings [12, 13, 14, 15]. In these applications,yt,i models the spike-count of
neuroni in time-bin t and its log-firing-rate (which we will refer to as the “input to neuroni”) is
given byzt,i. Estimation of the model parametersΘ = (A,C,Q,x0, Q0,d) often depends on ap-
proximate likelihood maximisation, using EM with an approximate E-step [16, 9]. The exponential
nonlinearity ensures that the posterior distributionp(x1...,T |y1...,T ,Θ) is a log-concave function of
x1...,T [17], making its mode easy to find and justifying unimodal approximations (such as that of
Laplace). However, the typical data likelihood is nonetheless multimodal and the approximations
may introduce bias in estimation [18].

3Our method readily generalises to models in which each dimensioni has different nonlinearitiesfi andVi.
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Figure 1: Moment conversion uncovers low-rank structure in artificial data. A) Time-lagged
covariance matrix Cov[yt+1,yt] and the singular value (SV) spectrum of the full Hankel matrix
H = Cov[y+,y−] computed from the observed count data (artificial data set I). The spectrum
decays gradually.B) Same as A) but after moment conversion. The transformed Hankel matrix now
exhibits a clear cut-off in the spectrum, indicative of low underlying rank.C) Same as A) and B) but
computed from the (ground truth) log-ratesz, illustrating the true low-rank structure in the data.D)
Summed absolute difference of the eigenvalue spectra of theground truth dynamics matrixA and
the one identified by PLDSID. The difference decreases with increasing data set size, indicating that
PLDSID estimates are consistent.E) Same as C) but for the angle between the subspaces spanned
by the loading matrix of the ground truth and estimated models. F) SV spectrum of the Hankel
matrix of multi-electrode data before (left) and after (right) moment conversion.

Under the PLDS model, the equations (3)-(5) can be solved analytically (see also [19] and the
supplementary material for details),

µi = 2 log(mi)−
1

2
log(Sii +m2

i −mi) (6)

Σii = log(Sii +m2
i −mi)− log(m2

i ) (7)
Σij = log(Sij +mimj)− log(mimj), (8)

wheremi andSij denote the empirical estimates ofE[y±i ] and Cov[y±i , y
±
j ], respectively. One

can see that the above equations do not have solutions if any one of the terms in the logarithms
is non-positive, which may happen with finitely sampled moments or a misspecified model. We
therefore scale the matrixS (by left and right multiplication with the same diagonal matrix) such
that all Fano factors that are initially smaller than 1 are set to a given threshold (in simulations we
used1 + 10−2). This procedure ensures that there exists a unique solution (µ,Σ) to the moment
conversion (6)-(8). It is still the case that the resulting matrix Σ might not be positive semidefinite
[20], but this can be rectified by finding its eigendecomposition, thresholding the eigenvalues (EVs)
and then reconstructingΣ.

For sufficiently large data sets generated from a “true” PLDSmodel, observed Fano factors will be
greater than one with high probability. In such cases, the moment conversion asymptotically yields
the unique correct momentsµ andΣ of the Gaussian log-ratesz. Assuming stationarity, the Ho-
Kalman SSID yields consistent estimates ofA,C,Q,d given the trueµ andΣ. Hence, the proposed
two-stage method yields consistent estimates of the parametersA,C,Q,d of a stationary PLDS. In
the remainder, we call this algorithm PLDSID.

It is often of interest to model the conditional distribution of the observablesy given some external,
observed covariate or “input”u. In neuroscience, for instance,u might be a sensory stimulus influ-
encing retinal [14] or other sensory spiking activity. Fortunately, provided that the external inputs
are Gaussian-distributed and perturb the dynamics linearly, PLDSID can be extended to identify the
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parameters of this augmented model. Letut denote ther-dimensional observed external input at
timet, and assume thatu1, . . . ,uT are jointly normal and influence the latent state of the dynamical
process linearly and instantaneously (through ap× r matrixB):

xt+1 | xt,ut ∼ N (Axt +But, Q),

The dynamical statext is then observed through a generalised-linear process as before, and we de-
fine future-past vectors for all relevant time series. In this case, the N4SID algorithm [3] can perform
subspace identification based on the joint covariance ofu± andz±. Although this covariance is not
observed directly in the gl-LDS case, our assumptions makeu± andz± jointly normal and so we can
use moment transformation again to estimate the required covariance from the observed covariance
of u± andy±. For the Poisson model with exponential nonlinearity, thistransformation remains
closed-form, and in combination with N4SID yields consistent estimates of the PLDS parameters
and the input-coupling matrixB. 4 Further details are provided in the supplementary material.

3 Results

We investigated the properties of the proposed PLDSID algorithm in numerical experiments, using
both artificial data and multi-electrode recordings of neural activity.

3.1 PLDSID infers the correct parameters given sufficientlylarge synthetic data sets

We used three artificial data sets to evaluate our algorithm,each consisting of 200 time-series (“tri-
als”), with each trial being of lengthT = 100 time steps. Time-series were generated by sampling
from a stationary ground truth PLDS withp = 10 latent andq = 25 observed dimensions. Count
averages across time-bins and neurons ranged from0.15 to 0.2, corresponding to15–20Hz if the
time-step sizedt is taken to be10ms (the binning used for the multi-electrode recordings, see be-
low). The dynamics matricesA had eigenvalues corresponding to auto-correlation time constants
ranging from< 1 time step (data set III), through3 dt (data set I) to20 dt (data set II). The loading
matricesC were generated from a matrix with orthonormal columns and bya subsequent scaling
with 12.5 (data set I) or5 (data sets II and III). This resulted in instantaneous correlations that were
comparable to (average absolute correlation coefficient data set I:c̄ = 2 ·10−2) or smaller than (data
sets II, III: c̄ = 3.5 · 10−3) those observed in the cortical multi-electrode recordings used below
(c̄ = 2.2 · 10−2). Hence, all our artificial data sets either roughly match (data sets I, II) or substan-
tially underestimate (data set III) the correlation-structure of typical cortical multi-cell recordings.
Additionally, we generated a data set for identifying PLDS models with external input by driving
the ground truth PLDS of data set II with a 3 dimensional Gaussian AR(1) processut; the coupling
matrixB was generated such thatBut had the same covariance as the innovationsQ. A Hankel size
k = 10 was used for all experiments with artificial data.

We first illustrate the moment conversion defined by equations (6)-(8) on artificial data set I. Fig. 1A
shows the time-lagged cross-covariance Cov[yt+1,yt] as well as the singular value (SV) spectrum
of the full future-past Hankel matrixH = Cov[y+,y−] (normalised such that the largest SV is 1),
both estimated from 200 trials, with a Hankel size ofk = 10. The raw spectrum gradually decays
towards small values but does not show a clear low-rank structure of the future-past Hankel matrix
H . In contrast, Fig. 1B shows the output of the moment transformation yielding an approximation
of the cross-covariance Cov[zt+1, zt] of the underlying inputs. Further the SV spectrum of the full,
transformed future-past Hankel matrix Cov[z+, z−] is shown. The latter is dominated by only a few
SVs, whose number matches the dimension of the ground truth systemp = 10, clearly indicating
a low-rank structure. On this synthetic data set, we also have access to the underlying inputs. One
can see that the transformed Hankel matrix Fig. 1B as well as its SV spectrum are close to the ones
computed from the underlying inputs shown in Fig. 1C.

We also evaluated the accuracy of the parameters identified by PLDSID as a function of the training
set size. Fig. 1D shows the difference between the spectra (i.e., the summed absolute differences
between sorted eigenvalues) of the identified and the groundtruth dynamics matrixA. The spectrum
of A is an important characteristic of the model, as it determines the time-constants of the underlying
dynamics. It can be seen that the difference between the spectra decreases with increasing data set
size (Fig. 1D), indicating that our method asymptotically identifies the correct dynamics. Further-
more, Fig. 1E shows the subspace-angle between the true loading matrixC and the one estimated

4Again, simply applying SSID to the log of the observed countsdoes not work as most counts are0.
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Figure 2:PLDSID is a good initialiser for EM. Cosmoothing performance on the training set as a
function of the number of EM iterations for different initialisers on various data sets.A) Artificial
data set consisting of 200 trials and 25 observed dimensions. EM initialised by PLDSID converges
faster and achieves higher training performance than EM initialised with FA, Gaussian SSID or
random parameter values.B) Same as A) but for data with lower instantaneous correlations and
longer auto-correlation. EM does not improve the performance of PLDSID on this data set.C)
Same as A) but for data with negligible temporal correlations and low instantaneous correlations.
For this weakly structured data set, PLDSID-EM does not workwell. D) 100 trials of multi-electrode
recordings with86 observed dimensions (spike-sorted units).E) Same as D) but of data set size500
trials, and only using the40 most active unitsF) Same as D) but for863 trials with all86 units.

by PLDS. As for the dynamics spectrum, the identified loadingmatrix approaches the true one for
increasing training set size.

Next, we investigated the usefulness of PLDSID as an initialiser for EM. We compared it to 3 dif-
ferent methods, namely initialisation with random parameters (with 20-50 restarts), factor analysis
(FA) and Gaussian SSID. The quality of these initialisers was assessed by monitoring performance
of the identified parameters as a function of EM iterations after initialisation. Good initial parameter
values yield fast convergence of EM in few iterations to highperformance values, whereas poor
initialisations are characterised by slow convergence andtermination of EM in poor local maxima
(or, potentially, shallow regions of the likelihood). Fastconvergence of EM is an important issue
when dealing with large data sets, as EM iterations become computationally expensive (see below).
We monitor performance by evaluating the so-called cosmoothing performance on the training data,
a measure for cross-prediction performance described elsewhere in detail [21, 15]. This measure
yielded more reliable and robust results than computing thelikelihood, as the latter cannot be com-
puted exactly and approximations can be numerically unreliable. We evaluated performance on the
training set, as we were interested in comparing fitting-performance of the algorithms for the same
model, and not the generalisation error of the model itself.

Fig. 2A to C show the results of this comparison on three different artificial data sets. On data set
I (Fig. 2A), which was designed to have short auto-correlation time constants but pronounced in-
stantaneous correlations between the observed dimensions, PLDSID initialisation leads to superior
performance compared to competing methods. For the same number of EM iterations (which is
a good proxy of invested computation time, see below), it resulted in better co-smoothing perfor-
mance. Furthermore, the PLDSID+EM parameters converge to abetter local optimum than those
initialised by the other methods. Hence, on this data set, our initialisation yields both faster com-
putation time and better final results. The second artificialdata set featured smaller instantaneous
correlations between dimensions but longer auto-correlation time constants. As can be seen in Fig.
2B, the PLDSID initialisation here yields parameters whichare not further improved by EM itera-
tions whereas EM with other initialisations becomes stuck in poor local solutions.
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By contrast, we found PLDSID not to yield useful parameter values on data sets which do not have
temporal correlations (Fig. 2C), and only very small instantaneous correlations across neurons (av-
erage instantaneous absolute-correlationc̄ = 3.5 · 10−3). For this particular data set, PLDSID and
Gaussian SSID both yielded poor parameters compared to factor analysis. In general, we observed
that PLDSID compares favourably to the other initialisation methods on any data sets we investi-
gated as long as it exhibits shared variability across dimensions and time, and it was observed to
work particularly well when correlations were substantial. Fig. 3 shows results for identification
of a PLDS model driven by external inputs. The proposed PLDSID method identifies better PLDS
parameters, including the coupling matrixB, than alternative methods. Notably, identifying the pa-
rameters with the PLDSID-variant that ignores external input (and setting the initial valueB = 0
for EM) clearly results in suboptimal parameters.

3.2 Expectation Maximisation initialised by PLDSID identifies better models on neural data

We move now to examine the value of PLDSID in providing initial parameter values for subse-
quent EM iterations on multi-electrode recordings of neural activity. Such data sets are challenging
for statistical modelling as they are high-dimensional (onthe order of102 observed dimensions),
sparse (on the order of10Hz of spiking activity) and show shared variability across time and di-
mensions. The experimental setup, acquisition and preprocessing of the data set are documented
in detail elsewhere [22]. Briefly, spiking activity was acquired from a 96-channel silicon electrode
array (Blackrock, Salt Lake City, UT) implanted in motor areas of the cortex of a rhesus macaque
performing a delayed center-out reach task. For the analysis presented in this paper, we used data
from a single recording session consisting in total of863 trials, each truncated to be of length1 s
with 86 distinct single and multi-units identified by spike sorting. The data had an average firing rate
of 10.7Hz and it was binned at10ms which resulted in9.9% of bins containing at least one spike.

First, we investigated the SV spectrum of the future-past Hankel matrix computed either from the
count-observations of the data, or from the inferred underlying inputs (using Hankel sizek = 30
and all trials, see Fig. 1F). While we did not observe a markeddifference between the two spectra,
both spectra indicate that the data can be well described using a small number of singular values.
Based on these spectra, we used a dimensionality ofq = 10 for subsequent simulations.

Next, we compared PLDSID to FA and Gaussian SSID initialisations for EM on two different sub-
sets as well as the whole multi-electrode recording data set. Fig. 2D shows the performance of EM
with the different initialisations using a training set of modest size (100 trials, Hankel sizek = 10).
PLDSID provides the most appropriate initialisation for EM, allowing it to converge rapidly to bet-
ter parameter values than are found starting from either theFA or SSID estimates. This effect was
still more pronounced for a larger training set of500 trials, but including only the 40 most active
neurons from the original data (Fig. 2E, Hankel sizek = 30). We also applied all of the methods
to the complete data set consisting of863 trials with all86 observed neurons (Hankel sizek = 30).
The results plotted in Fig. 2F indicate that again PLDSID provided the most useful initialisation
for EM. Interestingly, on this data set EM with random initialisations eventually identifies parame-
ters with performances comparable to PLDSID+EM. However, random initialisation leads to slow
convergence and thus requires substantial computation, asdescribed below. Gaussian SSID yielded
poor values for parameters on all data sets, leading EM to terminate in poor local optima after only
a few iterations. We note that, because of the use of the Laplace approximation during inference (as
well as our non-likelihood performance measure) EM is not guaranteed to increase performance at
each iteration, and, in practice, sometimes terminated after rather few iterations.

3.3 PLDSID improves training time by orders of magnitude compared to conventional EM

The computational time needed to identify PLDS parameters might prove to be an important issue
in practice. For example, when using a PLDS model as part of analgorithm for brain-machine inter-
facing [12], the parameters must be identified during an experimental session. For multi-electrode
recording data of commonly-encountered size, and using ourimplementation of EM, inference of
parameters under these time-constraints would be infeasible. Thus, an ideal parameter initialisation
method will not only improve the robustness of the identifiedparameters, but also reduce the com-
putational time needed for EM convergence. Clearly, the computer time needed will depend on the
implementation, hardware and the properties and size of thedata used. We used an EM-algorithm
with a global-Laplace approximation in the E-step [23, 15],and a conjugate-gradient-based optimi-
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Figure 3: Identification of PLDS models with external
inputs. Same as Fig. 2 B) but for an artificial data set
which is generated by sampling from a PLDS with external
input. Using the variant of PLDSID which also identifies
the coupling matrixB yields yields the best parameters. In
contrast, using the PLDSID variant which does not estimate
B (B is initialised at0) yields parameters which are of the
same quality as alternative methods.

sation method in the M-step implemented in Matlab. Alternative methods based on variational ap-
proximations or MCMC-sampling have been reported to be morecostly than Laplace-EM [13, 24].

For all of the data sets used above, one single EM iteration inour implementation was substantially
more costly than parameter initialisation by PLDSID (Fig. 2D: factor6.4, Fig. 2E: factor4.0, Fig. 2F:
factor1.4). In addition, EM started with random initialisation stillyielded worse performance than
with PLDSID initialisation even after 50 iterations (see Figure 2). Thus, even with a conservative
estimate, PLDSID initialisation reduces computational cost by at least a factor of50 compared
to random initialisation. Both PLDSID and EM have a time computational complexity which is
proportional to the sizeNT of the data set (whereN is the number of trials andT is the trial
length). However, in PLDSID, only the costO(NTpq2) of calculating the Hankel-matrix scales
with the data set size (assumingk is of orderp). This simple covariance calculation was much
cheaper in our experiments than the moment conversion with costO(pq2) or the SVD with cost
O(p3q3), both of which are independent of the data set sizeNT . In contrast, each iteration of EM
requires at leastO(NT (p3 + pq)) time. Therefore, the computational advantage of PLDSID is
expected to be especially great for large data sets. This is also the regime where the performance
benefit is most pronounced.

4 Discussion

We investigated parameter estimation for linear-Gaussianstate-space models withgeneralised-
linear observations and presented a method for parameter identification in such models which builds
on the extensive subspace-identification literature for fully Gaussian state-space models. In numeri-
cal experiments we studied a special case of the proposed algorithm (PLDSID) for linear state-space
models with conditionally Poisson-distributed observations. We showed that PLDSID yields con-
sistent estimates of the model parameters without requiring iterative computation. Although this
method generally makes less efficient use of available training data than do maximum likelihood
methods, we found that it sometimes outperformed likelihood hill-climbing by EM from random
initial conditions in practice (presumably due to optimisation difficulties). Even when this was not
the case, EM initialised with the results of PLDSID converged in fewer iterations, and to a better
parameter estimate than when it was initialised randomly, or by other methods—an effect seen with
multiple artificial and multi-electrode recording data sets. As the practical computational difficul-
ties of parameter estimation (slow convergence and shallowoptima in parameter estimation with
EM) in this model are substantial, our algorithm facilitates the use of linear state-space models with
non-Gaussian observations in practice.

While proven here in the Poisson case, the underlying moment-transformation algorithm is flexible
and can be applied to a wide range of gl-LDS models. Of particular interest for neural data might be
a dynamical system model which precisely reproduced the marginal distribution of integer observa-
tions for each observed dimension (by using a ‘Discretised Gaussian’ [20] as the observation model).
By contrast, the need for tractability in sampling or deterministic approximations for inference often
limits the range of models in which EM is practical.
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