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Abstract

Latent linear dynamical systems with generalised-linéseovation models arise
in a variety of applications, for instance when modelling tpiking activ-
ity of populations of neurons. Here, we show how spectrainieg methods
(usually called subspace identification in this context) lfoear systems with
linear-Gaussian observations can be extended to estimatparameters of a
generalised-linear dynamical system model despite aimea+land non-Gaussian
observation process. We use this approach to obtain essnofparameters for
a dynamical model of neural population data, where the oBsespike-counts
are Poisson-distributed with log-rates determined byatenit dynamical process,
possibly driven by external inputs. We show that the extdrstdspace identifica-
tion algorithm is consistent and accurately recovers theecbparameters on large
simulated data sets with a single calculation, avoidingctiely iterative compu-
tation of approximate expectation-maximisation (EM). Ewa smaller data sets,
it provides an effective initialisation for EM, avoidingdal optima and speeding
convergence. These benefits are shown to extend to real detaa

1 Introduction

Latent linear dynamical system (LDS) models, also known a#mién-filter models or linear-
Gaussian state-space models, provide an important frarkdaranodelling shared temporal struc-
ture in multivariate time series. If the observation pradsdinear with additive Gaussian noise, then
there are many established options for parameter leariifgrence of the dynamical state in such
a model can be performed exactly by Kalman smoothing [1] anthe expectation-maximisation
(EM) algorithm may be used to find a local maximum of the likethid [2]. An alternative is the
spectral approach known as subspace identification (S®If)e engineering literature [3, 4, 5].
This is a method-of-moments-based estimation processhwhke other spectral methods, pro-
vides estimators that are non-iterative, consistent andadauffer from the problems of multiple
optima that dog maximume-likelihood (ML) learning in prai However, they are not as statisti-
cally efficient as the true (global) ML estimator. Thus, a &émed approach often produces the best
results, with the SSID-based parameter estimates beinbtaseitialise the EM iterations.

Many real-world data sets, however, are not well descrilyea Imear-Gaussian output process. Of
particular interest to us here are multiple neural spik@ measured simultaneously by arrays of
electrodes [6, 7], which are best treated either as muiltite@point-processes or, after binning, as a
time series of vectors of small integers. In either case Weaterates must be positive, precluding
a linear mapping from the Gaussian latent process, and fise distribution cannot accurately be
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modelled as normal. Similar point-process or count data anesg in many other settings, such as
seismology or text modelling. More generally, we are ind&zd in the broad class generalised-
linear output models (defined by analogy to the generalised-liregaession model [8]), where the
expected value of an observation is given by a monotonictiomof the latent Gaussian process,
with an arbitrary (most frequently exponential-family¥ttibution of observations about this mean.

For such models exact inference, and therefore exact EMptipossible. Instead, approximate
ML learning relies on either Monte-Carlo or deterministfgpaoximations to the posterior. Such
methods may be computationally intensive, suffer from wayyglegrees of approximation error, and
are subject to the same concerns about multiple likelihquith as is the linear-Gaussian case
Thus, a consistent spectral method is likely to be of padicwalue for such models. In this paper
we show how the SSID approach may be extended to yield censisstimators for generalised-
linear-output LDS (gl-LDS) models. In experiments with siated and real neural data, we show
that these estimators may be better than those providedgrpxdmate EM when given sufficient
data. Even when data are few, the approach provides a velinitidlisation to approximate EM.

2 Theory

We briefly review the Ho-Kalman SSID algorithm [10] for lime@aussian LDS models, before
extending it to the gl-LDS case. Using this framework, we\seand then evaluate an algorithm to
fit models of Poisson-distributed count data with log-rafeserated by an LDS.

2.1 SSID for LDS models with linear-Gaussian observations

Let g-dimensional observations, t € {1,...,T} depend on @-dimensional latent state;, de-
scribed by a linear first-order auto-regressive process@atussian initial distribution and Gaussian
innovations:

x; ~ N(xo,Qo)
Xt+1 | Xy o~ N(Axtz Q) (1)
Zy = CXt + d
A4 |Zt ~ N(Zt,R).

Here,xy and Qg are the mean and covariance of the initial state @nid the covariance of the
innovations. The dynamics matrikmodels the temporal dependence of the proge3se variable

z; of dimensiory is defined as an affine function of the latent stateparametrised by the loading
matrix C' and the mean parametédr Givenz,, observations are independently distributed around
this value with covarianc&®. Furthermore leil := lim;_, ., Cov{x;] denote the covariance of the
stationary marginal distribution if the system is stable.(if the spectral radius of is < 1).

Provided the generative model is stationary (ix.,= 0 and@, = II), SSID algorithms yield
consistent estimates of the parametérs’, @, R, d without iteration. We adopt an approach to
SSID based on the Ho-Kalman method [10, 4]. This algorithkedas input the empirical estimate
of the so-called “future-past Hankel matri¥! which is defined as the cross-covariance between
time-lagged vectorg;" (the “future”) andy; (the “past”) of the observed data:

Yt Yt-1
H := Covy;",y; ] yi = : yi = j

Yitk—1 Yi—k
The parametek is called the Hankel size and has to be chosen sokthatp. The key to SSID is
that H (which is independent of as stationarity is assumed) has rank equal to the dimer#jona
p of the linear dynamical state. Indeed, it is straightfordvier show that the Hankel matrix can be
decomposed in terms of the model parameters, 11,

H=[CT (cA)" ... (cA=HTT . [AncT A?TicT ... AFTICT). )

The SSID algorithm first takes the singular value decomos{iSVD) of the empirical estimate
H of H to recover a two-part factorisation as in (2) given a usdindd latent dimensionality (a
suitablep may be estimated by inspection of the singular value spectful/). From this low-rank

2A recent paper [9] has argued that the log-likelihood of a ehosith Poisson count observations is
concave—however, the result therein showed only a negessadition for concavity of the expected joint
log-likelihood optimised in the M-step.



approximation ta the model parameter$, C' as well as the covariancésand R can be found by
linear regression and by solving an algebraic Riccati eqoadl is given simply by the empirical
mean of the data. However, this specific procedure works faml{inear systems with Gaussian
observations and innovations, and not for models whictufeaton-linear transformations or non-
Gaussian observation models. Indeed, we find that linead $%#thods can yield poor results
when applied directly to count-process data. Although S@kihniques have been developed for
observations that are Gaussian-distributed around a nhedtista nonlinear function of the latent
state [5], we are unaware of SSID methods that addressasbibservation models.

2.2 SSID for gl-LDS models by moment conversion

Consider now the gI-LDS in which the Gaussian observatioogss of model (1) is replaced by the
following more general observation model. We assumel . ; | z;; i.e. observation dimensions
are mdependentglvag Further, lety, ; | z, be arbitrarily distributed around a (known) monotonic
element-wise nonlinear mappind-) such thatE[y,|z;] = f(z.). Following the theory of gener-
alised linear modelling, we also assume that the variantteeasbservation distribution is a (known)
functionV'(-) of its mean?

Our extension to SSID for such models is based on the follgudea. The variables,, . ..,z are
jointly normal, so in principle we can apply standard SSIDogithms toz. Althoughz is unob-
served, we can use the fact that the observation model elictatomputable relationship between
the moments o and those of. This allows us to determine the future-past Hankel matfiz o
from the moments of, which can then be fed into standard SSID algorithms. Cengfte covari-
ance matrix Coly*] of the combine@k¢-dimensional future-past vectgr™ which is defined by
stackingy™ andy~ (here and henceforth we drop the subscris unnecessary given the assumed
stationarity of the process). Denote the mean and covariawatrix of the normal distribution ef*
(defined analogously tp*) by x andY. We then have,

Elyf] = E.[f(f)] = al(w. i) (3)
El(y)?] = E=[Byo [(4)]] = E[f (52 + V(F()] = Blui, Tia)- @)

The functionsx(-) andg(-) are given by Gaussian integrals with mggrand varianc&;; over the
functionsf(-) andf2(-)+V (f(-)), respectively. For off-diagonal second moments we haye {):

E[yziy]i] = EZ[Eylz[yzi] Ey\z[y]i]] = Ez[f(zzi)f(zji)] = 'Y(,Ui, iy gy Bijjs i ) (5)
Equations (3)-(5) are &kq + kq(2kq — 1) system of non-linear equations 4kq + kq(2kq — 1)
unknownspu, ¥ (with symmetricy = X 7). The equations above can be solved efficiently by
separately solving one 2-dimensional system (equatiofsf8r each pair of unknowng;, >,

Vi € {1,...,kq}. Once the:; andX;; are known, equation (5) reduces to a 1-dimensional norlinea
equation forx;; for each pair of indice$i < j). The upper-right block of the covariance matkix

then provides an estimate of the future-past Hankel mato£3", z~] which can be decomposed
as in standard Ho-Kalman SSID.

2.3 SSID for Poisson dynamical systems (PLDSID)

We now consider in greater detail a special case of the gl-ixid8el, which is of particular interest
in neuroscience applications. The observations in thisehace (when conditioned on the latent
state) Poisson-distributed with a mean that is exponentthe output of the dynamical system,

Yei| zei ~ Poisson[exp(z¢)]-

We call this model, which is a special case of a Log-Gaussiax Rrocess [11], a Poisson Lin-
ear Dynamical System (PLDS). PLDS and close variants haently been applied for modelling
multi-electrode recordings [12, 13, 14, 15]. In these agaions,y. ; models the spike-count of
neuron; in time-bint and its log-firing-rate (which we will refer to as the “input beuron;”) is
given by z; ;. Estimation of the model parametéds= (A, C, Q, x¢, Qo, d) often depends on ap-
proximate likelihood maximisation, using EM with an appiroate E-step [16, 9]. The exponential
nonlinearity ensures that the posterior distributidr: . r|yi1...r, ©) is a log-concave function of
x1...,r [17], making its mode easy to find and justifying unimodal @pgimations (such as that of
Laplace). However, the typical data likelihood is nonetlsslmultimodal and the approximations
may introduce bias in estimation [18].

30ur method readily generalises to models in which each déinan has different nonlinearitieg; andV;.
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Figure 1: Moment conversion uncovers low-rank structure in artificial data. A) Time-lagged
covariance matrix Cdy:+1,y:| and the singular value (SV) spectrum of the full Hankel nxatri
H = Covly*,y~] computed from the observed count data (artificial data seEH§ spectrum
decays graduallyB) Same as A) but after moment conversion. The transformed ¢lam&trix now
exhibits a clear cut-off in the spectrum, indicative of londerlying rank.C) Same as A) and B) but
computed from the (ground truth) log-ratesllustrating the true low-rank structure in the dafy.
Summed absolute difference of the eigenvalue spectra ajrtinend truth dynamics matri¥ and
the one identified by PLDSID. The difference decreases witheiasing data set size, indicating that
PLDSID estimates are consistefit) Same as C) but for the angle between the subspaces spanned
by the loading matrix of the ground truth and estimated m&dE) SV spectrum of the Hankel
matrix of multi-electrode data before (left) and after fitignoment conversion.

Under the PLDS model, the equations (3)-(5) can be solvet/ticaly (see also [19] and the
supplementary material for details),

1
wi = 2log(m;) — 5 log(Si; + mf —m;) (6)
Yii = log(Si +m?—m;) — log(m?) @)
Eij = IOg(SU + mimj) — log(mimj), (8)

wherem; and S;; denote the empirical estimates ]Efyii] and CO\ny,yj':], respectively. One

can see that the above equations do not have solutions if @apbthe terms in the logarithms
is non-positive, which may happen with finitely sampled matmer a misspecified model. We
therefore scale the matriX (by left and right multiplication with the same diagonal mgt such
that all Fano factors that are initially smaller than 1 aretse given threshold (in simulations we
usedl + 10~2). This procedure ensures that there exists a unique sol(io>) to the moment
conversion (6)-(8). It is still the case that the resultingtrix >> might not be positive semidefinite
[20], but this can be rectified by finding its eigendecompositthresholding the eigenvalues (EVs)
and then reconstructing.

For sufficiently large data sets generated from a “true” Plobxfglel, observed Fano factors will be
greater than one with high probability. In such cases, thenard conversion asymptotically yields
the unique correct moments andX. of the Gaussian log-rates Assuming stationarity, the Ho-
Kalman SSID yields consistent estimatesio”, ), d given the trugu andX.. Hence, the proposed
two-stage method yields consistent estimates of the paeasae C, ), d of a stationary PLDS. In
the remainder, we call this algorithm PLDSID.

It is often of interest to model the conditional distributiof the observableg given some external,
observed covariate or “inputi. In neuroscience, for instance might be a sensory stimulus influ-
encing retinal [14] or other sensory spiking activity. korately, provided that the external inputs
are Gaussian-distributed and perturb the dynamics lipeRlIDSID can be extended to identify the



parameters of this augmented model. uetdenote the--dimensional observed external input at
timet, and assume that, . .., ur are jointly normal and influence the latent state of the dyinam
process linearly and instantaneously (through-ar matrix B):

Xe41 | X, ue ~ N(Axy + Bue, Q),

The dynamical statg, is then observed through a generalised-linear processaseband we de-
fine future-past vectors for all relevant time series. I8 tidse, the N4SID algorithm [3] can perform
subspace identification based on the joint covarianaetoindz*. Although this covariance is not
observed directly in the gl-LDS case, our assumptions naakandz* jointly normal and so we can
use moment transformation again to estimate the requireatiamce from the observed covariance
of u™ andy*. For the Poisson model with exponential nonlinearity, trisisformation remains
closed-form, and in combination with N4SID yields congistestimates of the PLDS parameters
and the input-coupling matri®. 4 Further details are provided in the supplementary material

3 Results

We investigated the properties of the proposed PLDSID #lgarin numerical experiments, using
both artificial data and multi-electrode recordings of mactivity.

3.1 PLDSID infers the correct parameters given sufficientlylarge synthetic data sets

We used three artificial data sets to evaluate our algorig@ch consisting of 200 time-series (“tri-
als”), with each trial being of lengtfi' = 100 time steps. Time-series were generated by sampling
from a stationary ground truth PLDS with= 10 latent and; = 25 observed dimensions. Count
averages across time-bins and neurons ranged rdmto 0.2, corresponding td 5-20 Hz if the
time-step sizelt is taken to bel0 ms (the binning used for the multi-electrode recordings, see b
low). The dynamics matriced had eigenvalues corresponding to auto-correlation tinmstemts
ranging from< 1 time step (data set Ill), throughdt (data set I) t®0 dt¢ (data set 11). The loading
matricesC were generated from a matrix with orthonormal columns and lsubsequent scaling
with 12.5 (data set I) ob (data sets Il and Ill). This resulted in instantaneous datiens that were
comparable to (average absolute correlation coefficigmatstt I:c = 2-10~2) or smaller than (data
sets II, lll: ¢ = 3.5 - 10~3) those observed in the cortical multi-electrode recorslinged below
(¢ = 2.2-1072). Hence, all our artificial data sets either roughly matcitddsets |, Il) or substan-
tially underestimate (data set Ill) the correlation-stawe of typical cortical multi-cell recordings.
Additionally, we generated a data set for identifying PLDS8dwls with external input by driving
the ground truth PLDS of data set Il with a 3 dimensional Gauns8R (1) process,; the coupling
matrix B was generated such th&ii, had the same covariance as the innovati@né Hankel size

k = 10 was used for all experiments with artificial data.

We first illustrate the moment conversion defined by equat{6i+(8) on artificial data set I. Fig. 1A
shows the time-lagged cross-covariance [gav;, y:| as well as the singular value (SV) spectrum
of the full future-past Hankel matri = Covy™*, y~] (normalised such that the largest SV is 1),
both estimated from 200 trials, with a Hankel sizekof 10. The raw spectrum gradually decays
towards small values but does not show a clear low-ranktstreof the future-past Hankel matrix
H. In contrast, Fig. 1B shows the output of the moment tramsétion yielding an approximation
of the cross-covariance Cpy. 1, z:] of the underlying inputs. Further the SV spectrum of the full
transformed future-past Hankel matrix GaV, z~] is shown. The latter is dominated by only a few
SVs, whose number matches the dimension of the ground tysterap = 10, clearly indicating

a low-rank structure. On this synthetic data set, we alse laacess to the underlying inputs. One
can see that the transformed Hankel matrix Fig. 1B as wetka8\ spectrum are close to the ones
computed from the underlying inputs shown in Fig. 1C.

We also evaluated the accuracy of the parameters identified DSID as a function of the training
set size. Fig. 1D shows the difference between the speatratfie summed absolute differences
between sorted eigenvalues) of the identified and the groutiddynamics matrixd. The spectrum

of A is an important characteristic of the model, as it detersiihe time-constants of the underlying
dynamics. It can be seen that the difference between thérapbecreases with increasing data set
size (Fig. 1D), indicating that our method asymptoticatlgntifies the correct dynamics. Further-
more, Fig. 1E shows the subspace-angle between the truadoadtrix C' and the one estimated

4Again, simply applying SSID to the log of the observed couttiss not work as most counts dre
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Figure 2:PLDSID is a good initialiser for EM. Cosmoothing performance on the training set as a
function of the number of EM iterations for different iniigers on various data set8) Artificial
data set consisting of 200 trials and 25 observed dimenskeXsnitialised by PLDSID converges
faster and achieves higher training performance than Elblisied with FA, Gaussian SSID or
random parameter value®) Same as A) but for data with lower instantaneous correlatamd
longer auto-correlation. EM does not improve the perforoeaof PLDSID on this data setC)
Same as A) but for data with negligible temporal correlatiand low instantaneous correlations.
For this weakly structured data set, PLDSID-EM does not weel. D) 100 trials of multi-electrode
recordings witl86 observed dimensions (spike-sorted uniis) Same as D) but of data set siz@)
trials, and only using thé0 most active unit§) Same as D) but fog63 trials with all 86 units.

by PLDS. As for the dynamics spectrum, the identified loadivagrix approaches the true one for
increasing training set size.

Next, we investigated the usefulness of PLDSID as an iiggaffor EM. We compared it to 3 dif-
ferent methods, namely initialisation with random parare{with 20-50 restarts), factor analysis
(FA) and Gaussian SSID. The quality of these initialisers assessed by monitoring performance
of the identified parameters as a function of EM iteratiotsrahitialisation. Good initial parameter
values yield fast convergence of EM in few iterations to hjgrformance values, whereas poor
initialisations are characterised by slow convergencetandination of EM in poor local maxima
(or, potentially, shallow regions of the likelihood). Fasinvergence of EM is an important issue
when dealing with large data sets, as EM iterations becommpuatationally expensive (see below).
We monitor performance by evaluating the so-called coshingtperformance on the training data,
a measure for cross-prediction performance described/letse in detail [21, 15]. This measure
yielded more reliable and robust results than computindikieéhood, as the latter cannot be com-
puted exactly and approximations can be numerically uabidi We evaluated performance on the
training set, as we were interested in comparing fittindggrarance of the algorithms for the same
model, and not the generalisation error of the model itself.

Fig. 2A to C show the results of this comparison on three difii¢ artificial data sets. On data set
I (Fig. 2A), which was designed to have short auto-corretatime constants but pronounced in-
stantaneous correlations between the observed dimen8ibDBSID initialisation leads to superior
performance compared to competing methods. For the samberush EM iterations (which is
a good proxy of invested computation time, see below), iilted in better co-smoothing perfor-
mance. Furthermore, the PLDSID+EM parameters convergebtdtar local optimum than those
initialised by the other methods. Hence, on this data setjnitielisation yields both faster com-
putation time and better final results. The second artifitédé set featured smaller instantaneous
correlations between dimensions but longer auto-corogldime constants. As can be seen in Fig.
2B, the PLDSID initialisation here yields parameters whaca not further improved by EM itera-
tions whereas EM with other initialisations becomes stugaor local solutions.



By contrast, we found PLDSID not to yield useful parametdéu@a on data sets which do not have
temporal correlations (Fig. 2C), and only very small insi@eous correlations across neurons (av-
erage instantaneous absolute-correlatien 3.5 - 10~3). For this particular data set, PLDSID and
Gaussian SSID both yielded poor parameters compared tr facalysis. In general, we observed
that PLDSID compares favourably to the other initialisatmethods on any data sets we investi-
gated as long as it exhibits shared variability across dgiozis and time, and it was observed to
work particularly well when correlations were substantiglg. 3 shows results for identification
of a PLDS model driven by external inputs. The proposed PLD@&Ethod identifies better PLDS
parameters, including the coupling matfx than alternative methods. Notably, identifying the pa-
rameters with the PLDSID-variant that ignores externautinjand setting the initial valu®& = 0

for EM) clearly results in suboptimal parameters.

3.2 Expectation Maximisation initialised by PLDSID identifies better models on neural data

We move now to examine the value of PLDSID in providing inifi@rameter values for subse-
guent EM iterations on multi-electrode recordings of néacéivity. Such data sets are challenging
for statistical modelling as they are high-dimensional {o@ order of10? observed dimensions),
sparse (on the order af) Hz of spiking activity) and show shared variability acrosseiend di-
mensions. The experimental setup, acquisition and prepsitg of the data set are documented
in detail elsewhere [22]. Briefly, spiking activity was adga from a 96-channel silicon electrode
array (Blackrock, Salt Lake City, UT) implanted in motor aseof the cortex of a rhesus macaque
performing a delayed center-out reach task. For the asatysisented in this paper, we used data
from a single recording session consisting in totaB63 trials, each truncated to be of lengthk
with 86 distinct single and multi-units identified by spike sortifidhe data had an average firing rate
of 10.7 Hz and it was binned at0 ms which resulted ir0.9% of bins containing at least one spike.

First, we investigated the SV spectrum of the future-pastkgbmatrix computed either from the
count-observations of the data, or from the inferred uryiteglinputs (using Hankel size = 30
and all trials, see Fig. 1F). While we did not observe a madiffidrence between the two specitra,
both spectra indicate that the data can be well described) @ssmall number of singular values.
Based on these spectra, we used a dimensionalify-of 0 for subsequent simulations.

Next, we compared PLDSID to FA and Gaussian SSID initidtisest for EM on two different sub-
sets as well as the whole multi-electrode recording daté=gt 2D shows the performance of EM
with the different initialisations using a training set obdest size {00 trials, Hankel sizé = 10).
PLDSID provides the most appropriate initialisation for EAllowing it to converge rapidly to bet-
ter parameter values than are found starting from eitheFgher SSID estimates. This effect was
still more pronounced for a larger training setff trials, but including only the 40 most active
neurons from the original data (Fig. 2E, Hankel size- 30). We also applied all of the methods
to the complete data set consisting368 trials with all 86 observed neurons (Hankel size= 30).
The results plotted in Fig. 2F indicate that again PLDSIDvjted the most useful initialisation
for EM. Interestingly, on this data set EM with random irligations eventually identifies parame-
ters with performances comparable to PLDSID+EM. Howeardom initialisation leads to slow
convergence and thus requires substantial computatialeszsibed below. Gaussian SSID yielded
poor values for parameters on all data sets, leading EM toit@te in poor local optima after only
a few iterations. We note that, because of the use of the taplpproximation during inference (as
well as our non-likelihood performance measure) EM is n@rgateed to increase performance at
each iteration, and, in practice, sometimes terminatexdt edther few iterations.

3.3 PLDSID improves training time by orders of magnitude conpared to conventional EM

The computational time needed to identify PLDS parametégdinprove to be an important issue
in practice. For example, when using a PLDS model as part afgorithm for brain-machine inter-
facing [12], the parameters must be identified during an expmntal session. For multi-electrode
recording data of commonly-encountered size, and usingnoplementation of EM, inference of
parameters under these time-constraints would be infeadibus, an ideal parameter initialisation
method will not only improve the robustness of the identifiedameters, but also reduce the com-
putational time needed for EM convergence. Clearly, thepaer time needed will depend on the
implementation, hardware and the properties and size oddtee used. We used an EM-algorithm
with a global-Laplace approximation in the E-step [23, Hbid a conjugate-gradient-based optimi-



ol ® Figure 3: Identification of PLDS models with external

inputs. Same as Fig. 2 B) but for an artificial data set
which is generated by sampling from a PLDS with external
input. Using the variant of PLDSID which also identifies

performance
[4))

® PLDSID+EM with input the coupling matrixB yields yields the best parameters. In
—FAEM p contrast, using the PLDSID variant which does not estimate
2 AT B (B is initialised at0) yields parameters which are of the

30 60 same quality as alternative methods.
# EM iterations

sation method in the M-step implemented in Matlab. Altekreamethods based on variational ap-
proximations or MCMC-sampling have been reported to be mos#ly than Laplace-EM [13, 24].

For all of the data sets used above, one single EM iteratiomiimplementation was substantially
more costly than parameter initialisation by PLDSID (FiD: 2actor6.4, Fig. 2E: factor.0, Fig. 2F:
factor1.4). In addition, EM started with random initialisation stfielded worse performance than
with PLDSID initialisation even after 50 iterations (segie 2). Thus, even with a conservative
estimate, PLDSID initialisation reduces computationadtday at least a factor 030 compared
to random initialisation. Both PLDSID and EM have a time cartgional complexity which is
proportional to the sizeéVT' of the data set (wheré&/ is the number of trials and’ is the trial
length). However, in PLDSID, only the coét(NTpq?) of calculating the Hankel-matrix scales
with the data set size (assumikgs of orderp). This simple covariance calculation was much
cheaper in our experiments than the moment conversion with(2(pg?) or the SVD with cost
O(p*q¢®), both of which are independent of the data set $iZB. In contrast, each iteration of EM
requires at leasO(NT (p® + pq)) time. Therefore, the computational advantage of PLDSID is
expected to be especially great for large data sets. Thisastlae regime where the performance
benefit is most pronounced.

4 Discussion

We investigated parameter estimation for linear-Gausstate-space models witheneralised-
linear observations and presented a method for parameter idatitfian such models which builds
on the extensive subspace-identification literature fty faaussian state-space models. In numeri-
cal experiments we studied a special case of the proposedthig (PLDSID) for linear state-space
models with conditionally Poisson-distributed obsemwasi. We showed that PLDSID yields con-
sistent estimates of the model parameters without requitérative computation. Although this
method generally makes less efficient use of availableitrgidata than do maximum likelihood
methods, we found that it sometimes outperformed likelthbil-climbing by EM from random
initial conditions in practice (presumably due to optintisa difficulties). Even when this was not
the case, EM initialised with the results of PLDSID converge fewer iterations, and to a better
parameter estimate than when it was initialised randomlgymther methods—an effect seen with
multiple artificial and multi-electrode recording datassefs the practical computational difficul-
ties of parameter estimation (slow convergence and shallmima in parameter estimation with
EM) in this model are substantial, our algorithm faciligatbe use of linear state-space models with
non-Gaussian observations in practice.

While proven here in the Poisson case, the underlying moitnensformation algorithm is flexible
and can be applied to a wide range of gl-LDS models. Of pddidnterest for neural data might be
a dynamical system model which precisely reproduced thgimardistribution of integer observa-
tions for each observed dimension (by using a ‘DiscretisaddSian’ [20] as the observation model).
By contrast, the need for tractability in sampling or deti@istic approximations for inference often
limits the range of models in which EM is practical.
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