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Abstract

We study the problem of diverse feature selection in linear regression: selecting
a small subset of diverse features that can predict a given objective. Diversity is
useful for several reasons such as interpretability, robustness to noise, etc. We pro-
pose several spectral regularizers that capture a notion of diversity of features and
show that these are all submodular set functions. These regularizers, when added
to the objective function for linear regression, result in approximately submodu-
lar functions, which can then be maximized by efficient greedy and local search
algorithms, with provable guarantees. We compare our algorithms to traditional
greedy and `1-regularization schemes and show that we obtain a more diverse set
of features that result in the regression problem being stable under perturbations.

1 Introduction

Feature selection is a key component in many machine learning settings. The process involves
choosing a small subset of features in order to build a model to approximate the target concept
well. Feature selection offers several advantages in practice. This includes reducing the dimension
of the data and hence the space requirements, enhancing the interpretability of the learned model,
mitigating over-fitting, decreasing generalization error, etc.

In this paper we focus on feature selection for linear regression, which is the prediction model of
choice for many practitioners. The goal is to obtain a linear model using a subset of k features (where
k is user-specified), to minimize the prediction error or, equivalently, maximize the squared multiple
correlation [16]. In general, feature selection techniques can be categorized into two approaches.
In the first, features are greedily selected one by one up to the pre-specified budget k; the Forward
or Backward greedy methods[19] fall into this type. In the second, the feature selection process is
intimately coupled with the regression objective itself by adding a (usually convex) regularizer. For
example, the Lasso [20] uses the `1-norm of the coefficients as a regularizer to promote sparsity.

In this work we consider the feature selection problem of choosing the best set of features for pre-
dicting a specified target, coupled with the desire to choose as “diverse” features as possible; our
goal will be to construct a regularizer that can capture diversity. Diversity among the chosen features
is a useful property for many reasons. Firstly, it increases the interpretability of the chosen features,
since we are assured that they not redundant and are more representative of the feature space cov-
ered by the entire dataset (see e.g. [7]). Secondly, as we show, the right notion of diversity can also
make the feature selection task resistant to noise in the data. Thirdly, it is well known that correlated
features can slow down the convergence of algorithms such as the stochastic gradient (e.g., [2]); by
demanding diversity, one can potentially obviate this slowdown.

∗This work was done while the author was at Yahoo! Labs.
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Unfortunately, the traditional greedy and `1-relaxation approaches to feature-selection do not ex-
plictly address feature diversity1. In this paper, we address this problem of diverse feature selection
using an approach that falls between that of greedy methods and convex-regularization methods. In
particular, we construct regularizers that capture a notion of diversity — unlike regularizers such as
Lasso, our regularizers are set functions as opposed to functions of the regression coefficient vector.
Our objective function are thus a combination of the linear regression objective and the regular-
izer. We then design provable approximation algorithms for such objectives using a combination of
greedy and local search techniques. While there is no unique way to define feature diversity, we take
a spectral approach. By defining diversity to be a carefully chosen function of the spectrum of the
chosen features, we tap into notions of submodularity and consequently into the rich literature for
maximizing submodular functions [5, 9, 14].

Our contributions are as follows: (i) We formulate an optimization problem for diverse feature
selection and construct a family of submodular spectral regularizers that capture diversity notions.
(ii) We use a novel approach of combining the diversity regularizers with the optimization objective
to obtain (approximately) submodular maximization problems, and optimize them using greedy
and local search algorithms with provable guarantees. (iii) We validate the performance of our
algorithms using experiments on real and synthetic data sets.

2 Related work

Feature selection and the closely related problems of sparse approximation/recovery have been ex-
tensively studied using two broad classes of methods: greedy [5, 19, 21, 11, 24] and convex relax-
ation [20, 25, 3, 22, 8]. None of these methods, however, takes feature diversity into the account
during selection. The (greedy) methods in our paper are inspired by those of Das and Kempe [5],
who provide prediction error bounds using a notion of approximate submodularity. However, they
do not incorporate any notion of feature diversity; they also require monotonicity, which does not
hold for several regularizers we construct. A related convex relaxation based approach is that of
Grave et al. [12], who address the unstable behavior of Lasso in the presence of correlated features
and propose adding a trace norm regularizer to the error objective. The focus is to select groups
of correlated variables together instead of selecting only one variable from each group. Our goal is
different: select variables that are relatively uncorrelated with each other.

Previous work on diverse feature selection includes greedy heuristics for trading-off information-
theoretic feature relevance and feature redundancy criteria when selecting features [7, 23]. However
the heuristics presented do not carry any theoretical guarantees.

There has been some work on selecting a diverse set of features to maximize the mutual information
or the entropy of a set of variables [13, 17]. But, the problem definition in these works does not
specify a target prediction vector or variable; the goal instead is to select diverse features regardless
of whether the features are relevant for predicting a particular target variable. On the other hand, our
work requires us to simultaneously optimize for both feature selection and diversity objectives.

If we consider orthogonality as a loose proxy for diversity, methods such Principal Component
Analysis and Singular Value Decomposition [15] become relevant. However, these methods do not
return elements from the original set of features and instead output linear combinations of the feature
vectors; this might not be desirable for many applications.

3 Preliminaries

For any symmetric positive semidefinite n × n matrix A, we denote its eigenvalues by λmin(A) =
λ1(A) ≤ · · · ≤ λn(A) = λmax(A). We use det(A) = Πn

i=1λi(A) to denote the determinant of A.
Recall the vector and matrix two-norms: ‖x‖2 =

√∑
i |xi|2 and ‖A‖2 = λmax(A).

LetX = {X1, . . . , Xn} be the set of feature vectors (or random variables) where eachXi ∈ Rm and
let Z ∈ Rm be the target vector. By appropriate normalization, we can assume ‖Xi‖2 = 1 = ‖Z‖2.
We wish to predictZ using linear regression on a small subset ofX . The matrix of inner products (or

1discussed in the supplementary material at http://cs.usc.edu/∼abhimand/nips12supplementary.pdf

2



covariances) between the Xi and Xj is denoted by C, with entries Ci,j = Cov(Xi, Xj). Similarly,
we use b to denote the inner products between Z and the Xi’s, with bi = Cov(Z,Xi).

For a n-dimensional Gaussian random vector v with covariance matrix C, we use H(v) =
1
2 log((2πe)ndet(C)) to denote the differential entropy of v.

For a set S ⊆ X , if Z ′(S) is the optimal linear predictor of Z using the vectors in S, then the
squared multiple correlation [6, 16] is defined as R2

Z(S) = 1 − ‖(Z − Z ′(S))‖22. This is a widely
used goodness-of-fit measure; it captures the length of the projection of Z on the subspace spanned
by the vectors in S.

Definition 1 (Diverse feature selection) Given k > 0, find a set S ⊆ X satisfying

argmax
S:|S|≤k

g(S)
∆
= R2

Z(S) + νf(S), (1)

where ν > 0 is the regularization constant and f(S) is some “diversity-promoting” regularizer.

Note that diversity is not a uniquely-defined notion, however, we call a regularizer f to be diversity-
promoting if the following two conditions are satisfied: for a fixed k, f(S) is maximized when S is
an orthogonal set of vectors and is minimized when S has the lowest rank, where |S| ≤ k.

For convenience, we do not distinguish between the index set S and the variables {Xi | i ∈ S}. We
use CS to denote the submatrix of C with row and column set S, and bS to denote the vector with
only entries bi for i ∈ S. Given the subset S of vectors used for prediction, the optimal regression
coefficients αi are (αi)i∈S = C−1

S bS (e.g., [16]) and hence R2
Z(S) = bTSC

−1
S bS . 2

Many of our results are phrased in terms of eigenvalues of the inner product matrix C and its subma-
trices. Since such matrices are positive semidefinite, their eigenvalues are real, non-negative [16].

Submodularity ratio. Das and Kempe [5] introduced the notion of submodularity ratio for a general
set function to capture how close is the function to being submodular.

Definition 2 (Submodularity ratio) Let f be a non-negative set function. The
submodularity ratio of f with respect to a set U and a parameter k ≥ 1 is

γU,k(f) = min
L⊆U,S:|S|≤k,S∩L=∅

∑
x∈S f(L ∪ {x})− f(L)

f(L ∪ S)− f(L)
.

Thus, it captures how much f can increase by adding any subset S of size k to L, compared to the
combined benefits of adding its individual elements to L. In particular, [5] defines the submodularity
ratio for theR2 function and relates it to the smallest eigenvalue of the covariance matrix of the data.
They also show that, in practice, the submodularity ratio for R2 is often quite close to 1, and hence
a greedy algorithm is a good approximation to maximizing R2 subject to a cardinality constraint.

Theorem 3 (from [4]) Let f be a non-negative, monotone set function and let OPT be the maxi-
mum value of f value obtained by any set of size k. Then, the set S̃ selected by the Greedy Algorithm
has the following approximation guarantee: f(S̃) ≥ (1− e−γS̃,k(f)) ·OPT.

3.1 Robustness to perturbations

As mentioned earlier, in addition to providing better interpretability, another benefit of diverse fea-
ture selection is robustness to feature and label perturbations. Given a selected subset S, we now
obtain a connection between the robustness of the estimated regression coefficients and the spectrum
of CS , in the presence of noise. Suppose S, a subset of size k, is used to predict the target vector
Z ∈ Rn. Let A ∈ Rn×k be the vectors from X corresponding to S. Then CS = ATA and the
optimal regression coefficients are α = C−1

S ATZ.

Now suppose the target vector is perturbed with an i.i.d. Gaussian noise, i.e., Z ′ = Z + η, where
η ∼ N(0, σ2In) is a random vector corresponding to measurement errors. Let the corresponding

2We assume throughout that CS is non-singular. For some of our results, an extension to singular matrices
is possible using the Moore–Penrose generalized inverse.

3



regression coefficient vector be α′ = C−1
S ATZ ′. We show the following perturbation result relating

the differential entropy of the perturbation error in the regression coefficients to the spectrum of CS .

Lemma 4 H(α′ − α) = k log(2σ2πe)−
∑k
i=1 log(λi(CS)).

Proof. Let δ = α′ − α = C−1
S AT η. Since η ∼ N(0, σ2In×n), we have that δ ∼ N(0, C−1

S AT ·
σ2In×n · (C−1

S AT )T ). Or, δ ∼ N(0, σ2C−1
S ). Thus, H(δ) = log((2σ2πe)kdet(C−1

S )) =

k log(2σ2πe)−
∑k
i=1 log(λi(CS)).

Thus the perturbation error entropy is minimized by maximizing
∑k
i=1 log(λi(CS)), which moti-

vates the smoothed differential-entropy regularizer used in Section 5.1.

We can also show (supplementary material) that the two-norm of the perturbation error in the re-
gression coefficients is also related to the spectrum of CS : the expected noise in the regression
coefficients depends on the sum of the eigenvalues of C−1

S . This suggests the use of−
∑
i

1
λi(CS) as

a diversity-promoting regularizer in Definition 1. Unfortunately, this regularization function is not
submodular and is thus hard to use directly. However, as seen in Sections 5.2 and 5.3, there are other
related spectral functions that are indeed submodular and can thus be used as efficient regularizers.

4 Algorithms

In this section we present a greedy and local-search based (GLS) approximation algorithm for solv-
ing (1) when f(S) is a non-negative (but not necessarily monotone) submodular function (w.l.o.g.,
ν = 1). In order to give an approximation algorithm for argmaxS:|S|≤k g(S), we need to follow a
sequence of steps. First we show a technical result (Theorem 5) that says that though the approxi-
mation guarantees of [5] do not carry over to the non-monotone case, we can still prove a weaker
result that relates the solution obtained by a greedy algorithm with any feasible solution, as long
as g(S) is approximately submodular and non-negative (which holds if f(S) is a non-negative sub-
modular function). Next, we modify a local-search based algorithm for unconstrained submodular
maximization to give an approximation of argmaxS g(S) (Theorem 7). We put these together using
the framework of [9] to show (Theorem 9) a constant factor approximation for solving (1).

The greedy Forward Regression (FR) algorithm is the following.
1: S0 ← ∅ and U ← {X1, . . . , Xn}.
2: In each step i+ 1, select Xj ∈ U \ Si maximizing g(Si ∪ {Xj}). Set Si+1 ← Si ∪ {Xj} and
U ← U \ {Xj}.

3: Output Sk.

Theorem 5 For any set T such that |T | ≤ k, the set S selected by the greedy FR algorithm satisfies
g(S) = R2

Z(S) + f(S) ≥ (1− e−
γS,2k

2 )g(S ∪ T ).

The proof is very similar to that of [5, Theorem 3.2] and is omitted due to space constraints. Next,
we consider the problem of unconstrained maximization of the function g(S) = R2

Z(S)+f(S). For
this, we use a local search (LS) algorithm similar to [9].

1: S ← argmaxif(Xi) and U ← {X1, . . . , Xn}.
2: If there exists an element x ∈ U \S such that f(S∪{x}) ≥ (1+ ε

n2 )f(S), then set S ← S∪{x},
and go back to Step 2.

3: Output argmaxT∈{S,U\S,U} g(T ).

Notice that even though we are interested in maximizing g(S), our LS algorithm finds a local optima
using f , but then uses g to compute the maximum in the last step. To analyze the performance
guarantees of LS, we first use the following result of [9, Theorem 3.4].

Lemma 6 If f is non-negative and submodular, then for any set T ⊆ U and any ε > 0, the LS
algorithm takesO( 1

εn
3 log n) time and outputs solution S such that (2+ 2ε

n )f(S)+f(U\S) ≥ f(T ).

Using the above, we prove an approximation guarantee for unconstrained maximization of g(S).
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Theorem 7 The LS algorithm is a 1
4+ 4ε

n

approximation for solving argmaxS g(S).

Proof. Suppose the optimal solution is C∗ such that g(C∗) = OPT. Consider the set S obtained
by the LS algorithm when it terminates. We obtain g(C∗) = f(C∗)+R2(C∗) ≤ (2+2ε/n)f(S)+
f(U \ S) + R2(U) ≤ (2 + 2ε/n)g(S) + g(U \ S) + g(U), where the second step follows from
Lemma 6 and the monotonicity of R2 and the last step follows from the non-negativity of f and R2.
Thus, max(g(S), g(U \ S), g(U)) ≥ 1

4+ 4ε
n

g(C∗).

We now present the greedy and local search (GLS) algorithm for solving (1) for any submodular,
non-monotone, non-negative regularizer.

1: U ← {X1, . . . , Xn}.
2: S1 ← FR(U), S′1 ← LS(S1), S2 ← FR(U \ S1).
3: Output argmaxS∈{S1,S′1,S2} g(S).

Next, we prove a multiplicative approximation guarantee for the GLS algorithm.

Lemma 8 Given sets C, S1 ⊆ U , let C ′ = C \ S1 and S2 ⊆ U \ S1. Then g(S1 ∪ C) + g(S2 ∪
C ′) + g(S1 ∩ C) ≥ g(C).

Proof. Using the submodularity of f and the monotonicity ofR2
Z(S), we obtain g(S1∪C)+g(S2∪

C ′) = R2
Z(S1∪C)+R2

Z(S2∪C ′)+f(S1∪C)+f(S2∪C ′) ≥ R2
Z(C)+f(S1∪S2∪C)+f(C ′).

Now, f(C ′) + f(S1 ∩C) ≥ f(C) + f(∅) ≥ f(C), or f(C ′) ≥ f(C)− f(S1 ∩C). Hence, we have
g(S1 ∪ C) + g(S2 ∪ C ′) + f(S1 ∩ C) ≥ R2

Z(C) + f(C) = g(C).

Theorem 9 If f is non-negative and submodular and ε < n
4 , the set S̃ selected by the GLS algorithm

gives a 1−e−
γ
S̃,2k
2

2+(1−e−
γ
S̃,2k
2 )(4+4ε/n)

≥ 1−e−
γ
S̃,2k
2

7 approximation for solving argmaxS:|S|≤k g(S).

Proof. Let C∗ be the optimal solution with g(C∗) = OPT. Then g(S1) ≥ κg(S1 ∪ C∗), where
κ = (1 − e−

γS1,2k
2 ). If g(S1 ∩ C∗) ≥ εOPT, then using the LS algorithm on S1, we get (using

Theorem 7) a solution of value at least ε
αg(C∗), where α = 4 + 4ε

n . Else, g(S1) ≥ κg(S1 ∪
C∗) + κg(S1 ∩ C∗) − κεOPT. Also, g(S2) ≥ κg(S2 ∪ (C∗ \ S1)). Thus, g(S1) + g(S2) ≥
κg(S1∪C∗)+κg(S1∩C∗)−κεOPT+κg(S2∪ (C∗ \S1)) ≥ κg(C∗)−κεOPT ≥ κ(1−ε)OPT,

where the last inequality follows from Lemma 8. Thus, max(g(S1), g(S2)) ≥ κ(1−ε)OPT
2 . Hence,

the approximation factor is max( εα ,
κ(1−ε)

2 ). Setting ε = κα
κα+2 , we get a κ

κα+2 -approximation.

When f(S) is a monotone, non-negative, submodular function, the problem becomes much easier
due to the proposition below that follows directly from the definition of the submodularity ratio.

Proposition 10 For any submodular set function f(S), the function g(S) = R2
Z(S)+f(S) satisfies

γU,k(g) ≥ γU,k(R2) for any U and k.

Thus, since g(S) is monotone and approximately submodular, we can directly apply [4, Theorem 3]
to show that the greedy FR algorithm gives a (1− e−γS̃,k(f))-approximation.

5 Spectral regularizers for diversity

In this section we propose a number of diversity-promoting regularizers for the feature selection
problem. We then prove that our algorithms in the previous section can obtain provable guarantees
for each of the corresponding regularized feature selection problems.

Most of our analysis requires the notion of operator antitone function [1] and its connection with
submodularity that was recently obtained by Friedland and Gaubert [10].

Definition 11 (Operator antitone functions [1]) A real valued function h is operator antitone on
the interval Γ ∈ R if for all n ≥ 1 and for all n × n Hermitian matrices A and B, we have
A � B =⇒ h(B) � h(A), where A � B denotes that B−A is positive semidefinite; the function
h is called operator monotone if −h is operator antitone.
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Theorem 12 ([10]) Let f be a real continuous function defined on an interval Γ of R. If the deriva-
tive of f is operator antitone on the interior of Γ, then for every n × n Hermitian matrix C with
spectrum in Γ, the set function (from 2n −→ R) tr(f(S)) =

∑n
i=1 f(λi(CS)) is submodular.

We will frequently use the following lemma for proving monotonicity of set functions. The proof is
given in the supplementary material.

Lemma 13 If f is a monotone and non-negative function defined on R, then for every n × n Her-
mitian matrix C, the set function tr(f(S)) =

∑n
i=1 f(λi(CS)) is monotone.

5.1 Smoothed differential entropy regularizer

For any set S with the corresponding covariance matrix CS , we define the smoothed differential
entropy regularizer as fde(S) =

∑|S|
i=1 log2(δ+λi(CS))− 3k log2 δ, where δ > 0 is the smoothing

constant. This is a smoothed version of the log-determinant function fld(S) = log(det(CS)) =∑|S|
i=1 log(λi(CS)), that is also normalized by an additive term of 3k log2 δ in order to make the

regularizer non-negative 3.

As shown in Lemma 4, this regularizer also helps improve the robustness of the regression model to
noise since maximizing fld(S) minimizes the entropy of the perturbation error. For a multivariate
Gaussian distribution, fld(S) also equivalent (up to an additive |S| factor) to the differential entropy
of S. However, fld(S) is undefined if S is rank-deficient and might also take negative values; the
smoothed version fde(S) overcomes these issues. It is also easy to show that fde(S) is a diversity-
promoting regularizer. We now show that the GLS algorithm to solve (1) with f(S) = fde(S) gives
a constant-factor approximation algorithm.

Theorem 14 The set S̃ selected by the GLS algorithm gives a 1−e−
γ
S̃,2k
2

7 multiplicative approxima-
tion guarantee for (1) using the smoothed differential entropy regularizer fde(S).

Proof. We first prove that fde(S) is non-negative and submodular. Consider the real-valued func-
tion f̃(t) = log(δ + t) defined on the appropriate interval of R. We will show that the derivative of
f̃ is operator antitone. Let A,B be k × k Hermitian matrices, such that 0 ≺ A � B. Let I denote
the identity matrix. Then A + δI � B + δI . Taking inverses, (B + δI)−1 � (A + δI)−1. Thus,
by Definition 11, the function h(t) = 1

δ+t is operator antitone. Since h(t) is the derivative of f̃(t),
a straightforward application of Theorem 12 gives us that fde(S) is submodular. By Proposition 10,
we obtain that g(S) is approximately submodular, with submodularity ratio at least γS̃,k(R2) . Since
g(S) is also non-negative, we can now apply Theorem 9 to obtain the approximation guarantee.

Notice that since fde(S) is not monotone in general [13], we cannot use Theorem 3. However, in
the case when δ ≥ 1, a simple application of Lemma 13 shows that fde(S) becomes monotonically
increasing and we can then use Theorem 3 to obtain a tighter approximation bound.

5.2 Generalized rank regularizer

For any set S with covariance matrix CS , and constant α such that 0 ≤ α ≤ 1, we define the gen-
eralized rank regularizer as fgr(S) =

∑|S|
i=1 λi(CS)α. Notice that for α = 0, fgr(S) = rank(CS).

The rank function however, does not discriminate between a full-rank matrix and an orthogonal ma-
trix, and hence we define fgr(S) as a generalization of the rank function. It is easy to show that
fgr(S) is diversity-promoting. We prove that fgr(S) is also monotone and submodular, and hence
obtain approximation guarantees for the greedy FR algorithm for (1) with f(S) = fgr(S).

Theorem 15 The set S̃ selected by the greedy FR algorithm gives a (1− e−γS̃,k(R2)) multiplicative
approximation guarantee for (1) using the generalized rank regularizer fgr(S).

3we need this regularizer to be non-negative for sets of size up to 3k, because of the use of f(S1 ∪ S2 ∪C)
in the proof of Lemma 8
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Proof. Consider the real-valued function f̃(t) = tα defined on t ∈ R. It is well known [1] that
the derivative of f̃ is operator antitone. Thus, Theorem 12 gives us that fgr(S) is submodular.
Hence, by applying Lemma 10, we obtain that g(S) is an approximately submodular function, with
submodularity ratio at least γS̃,k(R2) . Also, by definition f̃(t) is non-negative and monotone.
Thus, using Lemma 13, we get that fgr(S) and consequently g(S) is a monotonically increasing set
function. Since g(S) is non-negative, monotone, and submodular, we can now apply Theorem 3 to
obtain a (1− e−γS̃,k(R2)) approximation ratio.

5.3 Spectral variance regularizer

For a set S with covariance matrix CS , we define the spectral variance regularizer as
−
∑|S|
i=1(λi(CS) − 1)2. This regularizes the variance of the eigenvalues of the matrix (recall that

for an orthogonal matrix, all the eigenvalues are equal to 1) and can be shown to be diversity-
promoting. For non-negativity, we add a constant 9k2 term4 to the regularizer and define fsv(S) =

9k2−
∑|S|
i=1(λi(CS)−1)2. As with fde(S), we can show (proof relegated to the supplementary ma-

terial) that fsv(S) is submodular, but it is not monotonically increasing in general. Hence, appealing
to Theorem 9, we obtain the following.

Theorem 16 The set S̃ selected by the GLS algorithm gives a 1−e−
γ
S̃,2k
2

7 multiplicative approxima-
tion guarantee for (1) using the spectral variance regularizer fsv(S).

6 Experiments and results

In this section we conduct experiments in different settings to validate the robustness of our spectral
regularizers. We compare our approach against two baselines: Lasso and greedy FR. We use two
different datasets for the experiments, the mnist data (http://yann.lecun.com/exdb/
mnist/) and a simulation data (for which, results are presented in the supplementary material).

The way we synthesize a regression problem out of the mnist dataset is as follows. Each image
is regarded as a feature vector (of size 784) consisting of the pixel intensities. The target vector for
the regression problem consists of the vector of labels. We only sample 1000 images out of the set,
and thus have a regression problem with X ∈ R1000×784 and Z ∈ R1000. We then preprocess the
columns of matrix X and the target vector Z to have unit `2-length.

We use two baselines: lasso and no-reg, the greedy FR with no regularizer. We also use four
different spectral regularizers: ld (Section 5.1, with δ = 1), ld-0.1 (Section 5.1, with δ = 0.1),
sv (Section 5.3), and gr (Section 5.2). We considered two different types of perturbations: perturb-
ing Z and X . In order to perturb Z, we first sample a random vector η ∈ R1000, ηi ∼ N(0, 1). We
then create Z ′ = Z + σ η

‖η‖ , where σ is varied in [0, 1]5. If S is the set of features selected, then the
unperturbed regression coefficients are defined as α = C−1

S XT
S Z, and the perturbed coefficients as

α′ = C−1
S XT

S Z
′. The error that we measure is ‖α− α′‖2. Similarly, in order to perturb X , we first

sample E ∈ R1000×784. Let E?i denote the ith column of E. Then, we create X ′, the perturbed
version of X columnwise as X ′?i = X?i+σ E?i

‖E?i‖ . Here again, the perturbed regression coefficients

are α′ = C ′S
−1
X ′S

T
y where C ′S = (X ′S)TX ′S and the error is measured as ‖α − α′‖2. For our

experiments, we apply each random perturbation 5 times and then take the average error. Note that
the differential entropy of α−α′ is directly given by Lemma 4; we will directly measure the quantity
on the RHS of the equation of Lemma 4.

Results. Figure 1 summarizes the result for the mnist data. For clarity of presentation, we have
only shown the results of greedy FR for monotone regularizers (ld and gr) and GLS for non-
monotone (ld-0.1, sv). We also show the results only for σ = 0.1; results for other values
of σ are similar. The way we decided on the regularization parameters λ is as follows. First we
run the lasso using a regularization path approach, and obtain a set of solutions for a range of

4as before, we need this regularizer to be non-negative for sets of size up to 3k due to the proof of Lemma 8
5Strictly speaking, normalizing η makes it non-Gaussian, but for a high dimensional vector ‖η‖ is highly

concentrated.
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Figure 1: All plots on mnist data. (a) Error when Z is perturbed (σ = 0.1). (b) Error when X is
perturbed (σ = 0.1). (c) Diversity comparison for ld. (d) Diversity comparison for ld-0.1. (e)
Diversity comparison for sv. (f) Diversity comparison for gr.

.

regularization parameter values and corresponding sparsity (k) values. For the other algorithms, we
use each of this set of sparsity values as the target number of features to be selected. We chose the
regularization constant (ν) to be the maximum subject to the condition that the R2 value for that
solution should be greater than that obtained by the lasso solution with corresponding sparsity.
This ensures we are not sacrificing diversity for solution quality.

Figure 1(a) shows the errors obtained when perturbing the Z vector. As is obvious from the fig-
ure, the coefficient vector obtained by lasso is very susceptible to perturbation, and the effect of
perturbation increases with the number of features used by lasso. This indicates that as lasso
starts incorporating more features, it does not ensure that the features are diverse enough so as to be
robust to perturbation. Greedy with no regularization seems more stable than lasso but still shows
an increasing trend. On the other hand, the errors obtained by perturbing is much less for any of the
regularizers, and is only very mildly increasing with k: it does not seem to matter which regularizer
we employ. Figure 1(b) shows the error obtained when perturbing the X matrix; the same story is
true here also. In both cases, using any of the regularizers we are able to pick a set of features that
are more robust to perturbation.

Figures 1(c)- 1(f) show that our features are also more diverse than the ones obtained by both lasso
and no-reg. Since there is no one definition of diversity, in each of the plots, we take one of the
definitions of diversity value corresponding to the four regularizers we use. In order to be able to
compare, the regularizer values for each k are normalized by the maximum value possible for that
k. For each of the plots we show the values of the diversity value for solutions at different levels of
sparsity. It is obvious that we get more diverse solutions than both lasso and no-reg. The lines
corresponding to lasso or no-reg show an increasing trend because of the normalization.

7 Conclusions

In this paper we proposed submodular spectral regularizers for diverse feature selection and obtained
efficient approximation algorithms using greedy and local search algorithms. These algorithms
obtain a more diverse and noise-insensitive set of features. It would be interesting to see whether we
can design convex relaxations for such approaches, and to compare our approach with related ones
e.g. CLASH [18] that presents a general framework for merging combinatorial constraints with the
L1-norm constraint for LASSO, or with Elastic-Net that provides stability to the features selected
when groups of correlated variables are present.
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