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Abstract

Principal components analysis (PCA) is a standard tool for identifying good low-
dimensional approximations to data sets in high dimension. Many current data
sets of interest contain private or sensitive information about individuals. Algo-
rithms which operate on such data should be sensitive to the privacy risks in pub-
lishing their outputs. Differential privacy is a framework for developing tradeoffs
between privacy and the utility of these outputs. In this paper we investigate the
theory and empirical performance of differentially private approximations to PCA
and propose a new method which explicitly optimizes the utility of the output.
We demonstrate that on real data, there is a large performance gap between the
existing method and our method. We show that the sample complexity for the two
procedures differs in the scaling with the data dimension, and that our method is
nearly optimal in terms of this scaling.

1 Introduction

Dimensionality reduction is a fundamental tool for understanding complex data sets that arise in
contemporary machine learning and data mining applications. Even though a single data point
can be represented by hundreds or even thousands of features, the phenomena of interest are often
intrinsically low-dimensional. By reducing the “extrinsic” dimension of the data to its “intrinsic” di-
mension, analysts can discover important structural relationships between features, more efficiently
use the transformed data for learning tasks such as classification or regression, and greatly reduce
the space required to store the data. One of the oldest and most classical methods for dimensionality
reduction is principal components analysis (PCA), which computes a low-rank approximation to the
second moment matrix of a set of points in RZ. The rank k of the approximation is chosen to be the
ingrinsic dimension of the data. We view this procedure as specifying a k-dimensional subspace of
R®.

Much of today’s machine-learning is performed on the vast amounts of personal information col-
lected by private companies and government agencies about individuals, such as customers, users,
and subjects. These datasets contain sensitive information about individuals and typically involve
a large number of features. It is therefore important to design machine-learning algorithms which
discover important structural relationships in the data while taking into account its sensitive nature.
We study approximations to PCA which guarantee differential privacy, a cryptographically moti-
vated definition of privacy [9] that has gained significant attention over the past few years in the
machine-learning and data-mining communities [19, 21, 20, 10, 23]. Differential privacy measures
privacy risk by a parameter « that bounds the log-likelihood ratio of output of a (private) algorithm
under two databases differing in a single individual.

There are many general tools for providing differential privacy. The sensitivity method [9] computes
the desired algorithm (PCA) on the data and then adds noise proportional to the maximum change
than can be induced by changing a single point in the data set. The PCA algorithm is very sensitive



in this sense because the top eigenvector can change by 90° by changing one point in the data set.
Relaxations such as smoothed sensitivity [24] are difficult to compute in this setting as well. The
SULQ method of Blum et al. [2] adds noise to the second moment matrix and then runs PCA on
the noisy matrix. As our experiments show, the amount of noise required is often quite severe and
SULQ seems impractical for data sets of moderate size.

The general SULQ method does not take into account the quality of approximation to the non-
private PCA output. We address this by proposing a new method, PPCA, that is an instance of the
exponential mechanism of McSherry and Talwar [22]. For any k < d, this differentially private
method outputs a k-dimensional subspace; the output is biased towards subspaces which are close
to the output of PCA. In our case, the method corresponds to sampling from the matrix Bingham
distribution. We implement this method using a Markov Chain Monte Carlo (MCMC) procedure
due to Hoff [15] and show that it achieves significantly better empirical performance.

In order to understand the performance gap, we prove sample complexity bounds in case of k = 1 for
SULQ and PPCA, as well as a general lower bound on the sample complexity for any differentially
private algorithm. We show that (up to log factors) the sample complexity scales as Q(d3/ 2\/&)
for SULQ and as O(d) for PPCA. Furthermore, any differentially private algorithm requires Q(d)
samples, showing that PPCA is nearly optimal in terms of sample complexity as a function of data
dimension. These theoretical results suggest that our experiments exhibit the limit of how well a-
differentially private algorithms can perform, and our experiments show that this gap should persist
for general k.

There are several interesting open questions suggested by this work. One set of issues is compu-
tational. Differentially privacy is a mathematical definition, but algorithms must be implemented
using finite precision machines. Privacy and computation interact in many places, including pseu-
dorandomness, numerical stability, optimization, and in the MCMC procedure we use to implement
PPCA; investigating the impact of approximate sampling is an avenue for future work. A second set
of issues is theoretical — while the privacy guarantees of PPCA hold for all k, our theoretical anal-
ysis of sample complexity applies only to £k = 1 in which the distance and angles between vectors
are related. An interesting direction is to develop theoretical bounds for general k; challenges here
are providing the right notion of approximation of PCA, and extending the theory using packings of
Grassman or Stiefel manifolds.

2 Preliminaries

The data given to our algorithm is a set of n vectors D = {x1,29,...,x,} where each z; corre-
sponds to the private value of one individual, z; € R%, and ||z;|| < 1foralls. Let X = [z1,..., %]
be the matrix whose columns are the data vectors {z;}. Let A = %X XT denote the d x d second
moment matrix of the data. The matrix A is positive semidefinite, and has Frobenius norm at most
1.

The problem of dimensionality reduction is to find a “good” low-rank appr0x1mat10n to A. A popular

solution is to compute a rank-k matrix A which minimizes the norm || A — A||p, where k is much
lower than the data dimension d. The Schmidt approximation theorem [25] shows that the minimizer
is given by the singular value decomposition, also known as the PCA algorithm in some areas of
computer science.

Definition 1. Suppose A is a positive semidefinite matrix whose first k eigenvalues are distinct. Let
the eigenvalues of A be \1(A) > Ay(A) > -+ > A\y(A) > 0 and let A be a diagonal matrix with
Aii = Xi(A). The matrix A decomposes as

A=VAVT, (1)
where V' is an orthonormal matrix of eigenvectors. The top-k subspace of A is the matrix
Vie(A) = [vg vg -+ vg], (2)
where v; is the i-th column of V in (1).

Given the top-k subspace and the eigenvalue matrix A, we can form an approximation A®*) =
Vi(A)ArVi(A)T to A, where Ay, contains the k largest eigenvalues in A. In the special case k = 1



we have A = \;(A)vyvT, where v is the eigenvector corresponding to A1 (A). We refer to v as

the fop eigenvector of the data. For a d x k matrix V with orthonormal columns, the quality of V in
approximating A can be measured by

gr(V) =tr (VTAV) . 3)

The V which maximizes ¢(V) has columns equal to {v; : i € [k]}, corresponding to the top k
eigenvectors of A.

Our theoretical results apply to the special case k = 1. For these results, we measure the inner
product between the output vector 91 and the true top eigenvector v :

qa(01) = [{01,v1)] . 4)
This is related to (3). If we write 97 in the basis spanned by {v; }, then
d
qr (1) = Mga(i1)? + D Nifin, v:)?
i=2
Our proof techniques use the geometric properties of ga ().

Definition 2. A randomized algorithm A(-) is an (p, n)-close approximation to the top eigenvector
if for all data sets D of n points,

P (qa(A(D)) = p) > 1 —n, (5)
where the probability is taken over A(-).

We study approximations to A that preserve the privacy of the underlying data. The notion of
privacy that we use is differential privacy, which quantifies the privacy guaranteed by a randomized
algorithm P applied to a data set D.

Definition 3. An algorithm A(B) taking values in a set T provides a-differential privacy if

sup sup S 1B=D)

s oo u(S[B=D") "~
where the first supremum is over all measurable S C T, the second is over all data sets D and
D' differing in a single entry, and u(-|B) is the conditional distribution (measure) on T induced by
the output A(B) given a data set B. The ratio is interpreted to be 1 whenever the numerator and
denominator are both 0.

e, (6)

Definition 4. An algorithm A(B) taking values in a set T provides («, 6)-differential privacy if
P(A(D) € S) <e®P(A(D') € S) + 6, @)
Sor all all measurable S C T and all data sets D and D' differing in a single entry.

Here « and § are privacy parameters, where low « and § ensure more privacy. For more details about
these definitions, see [9, 26, 8]. The second privacy guarantee is weaker; the parameter 6 bounds the
probability of failure, and is typically chosen to be quite small.

In this paper we are interested in proving results on the sample complexity of differentially pri-
vate algorithms that approximate PCA. That is, for a given o and p, how large must the number of
individuals n in the data set be such that it is a-differentially private and also a (p, )-close approxi-
mation to PCA? It is well known that as the number of individuals n grows, it is easier to guarantee
the same level of privacy with relatively less noise or perturbation, and therefore the utility of the
approximation also improves. Our results characterize how privacy and utility scale with n and the
tradeoff between them for fixed n.

Related Work Differential privacy was proposed by Dwork et al. [9], and has spawned an exten-
sive literature of general methods and applications [1, 21, 27, 6, 24, 3, 22, 10] Differential privacy
has been shown to have strong semantic guarantees [9, 17] and is resistant to many attacks [12] that
succeed against some other definitions of privacy. There are several standard approaches for design-
ing differentially-private data-mining algorithms, including input perturbation [2], output perturba-
tion [9], the exponential mechanism [22], and objective perturbation [6]. To our knowledge, other



than SULQ method [2], which provides a general differentially-private input perturbation algo-
rithm, this is the first work on differentially-private PCA. Independently, [14] consider the problem
of differentially-private low-rank matrix reconstruction for applications to sparse matrices; provided
certain coherence conditions hold, they provide an algorithm for constructing a rank 2k approxi-
mation B to a matrix A such that ||[A — B||r is O(||A — Ag||) plus some additional terms which
depend on d, k and n; here Ay, is the best rank k& approximation to A. Because of their additional
assumptions, their bounds are generally incomparable to ours, and our bounds are superior for dense
matrices.

The data-mining community has also considered many different models for privacy-preserving com-
putation — see Fung et al. for a survey with more references [11]. Many of the models used have
been shown to be susceptible to composition attacks, when the adversary has some amount of prior
knowledge [12]. An alternative line of privacy-preserving data-mining work [28] is in the Secure
Multiparty Computation setting; one work [13] studies privacy-preserving singular value decompo-
sition in this model. Finally, dimension reduction through random projection has been considered
as a technique for sanitizing data prior to publication [18]; our work differs from this line of work
in that we offer differential privacy guarantees, and we only release the PCA subspace, not actual
data. Independently, Kapralov and Talwar [16] have proposed a dynamic programming algorithm
for differentially private low rank matrix approximation which involves sampling from a distribution
induced by the exponential mechanism. The running time of their algorithm is O(d®), where d is
the data dimension.

3 Algorithms and results

In this section we describe differentially private techniques for approximating (2). The first is a mod-
ified version of the SULQ method [2]. Our new algorithm for differentially-private PCA, PPCA,
is an instantiation of the exponential mechanism due to McSherry and Talwar [22]. Both proce-
dures provide differentially private approximations to the top-k subspace: SULQ provides (o, 6)-
differential privacy and PPCA provides a-differential privacy.

Input perturbation. The only differentially-private approximation to PCA prior to this work is
the SULQ method [2]. The SULQ method perturbs each entry of the empirical second moment ma-

trix A to ensure differential privacy and releases the top k eigenvectors of this perturbed matrix. In

. . . .. . . . 2 10g2
particular, SULQ recommends adding a matrix N of i.i.d. Gaussian noise of variance &1;’;@7(19/6)

and applies the PCA algorithm to A + N. This guarantees a weaker privacy definition known as
(a, 6)-differential privacy. One problem with this approach is that with probability 1 the matrix
A+ N is not symmetric, so the largest eigenvalue may not be real and the entries of the correspond-
ing eigenvector may be complex. Thus the SULQ algorithm is not a good candidate for practical
privacy-preserving dimensionality reduction.

However, a simple modification to the basic SULQ approach does guarantee («, ) differential
privacy. Instead of adding a asymmetric Gaussian matrix, the algorithm can add the a symmetric
matrix with i.i.d. Gaussian entries N. Thatis, for 1 < ¢ < j < d, the variable IV;; is an independent
Gaussian random variable with variance 32. Note that this matrix is symmetric but not necessarily
positive semidefinite, so some eigenvalues may be negative but the eigenvectors are all real. A
derivation for the noise variance is given in Theorem 1.

Algorithm 1: Algorithm MOD-SULQ (input pertubation)
inputs: d x n data matrix X, privacy parameter «, parameter ¢

outputs: d x k matrix Vi, = [01 09 - -- 0] with orthonormal columns
1 SetA=1XXT;

2 Set g = 4L, /2]og ( 6‘5\}%) + ﬁ Generate a d x d symmetric random matrix N whose

entries are i.i.d. drawn from \V (0, 8%). ;
3 Compute Vk = Vi (A + N) according to (2). ;




Exponential mechanism. Our new method, PPCA, randomly samples a k-dimensional subspace
from a distribution that ensures differential privacy and is biased towards high utility. The distribu-
tion from which our released subspace is sampled is known in the statistics literature as the matrix
Bingham distribution [7], which we denote by BMF(B). The algorithm is in terms of general
k < d but our theoretical results focus on the special case K = 1 where we wish to release a one-
dimensional approximation to the data covariance matrix. The matrix Bingham distribution takes
values on the set of all k-dimensional subspaces of R? and has a density equal to

fV) = !

m exp(tr(VTBV)), (8)
141 \ghy 5y

where V is a d x k matrix whose columns are orthonormal and | F; ($k, 3d, B) is a confluent
hypergeometric function [7, p.33].

Algorithm 2: Algorithm PPCA (exponential mechanism)

inputs: d x n data matrix X, privacy parameter o, dimension k

outputs: d x k matrix Vi = [01 Oy -+ ©y] with orthonormal columns
1 SetA=21xXT;

2 Sample Vj, = BMF (ngA) ;

By combining results on the exponential mechanism [22] along with properties of PCA algorithm,
we can show that this procedure is differentially private. In many cases, sampling from the distribu-
tion specified by the exponential mechanism distribution may be difficult computationally, especially
for continuous-valued outputs. We implement PPCA using a recently-proposed Gibbs sampler due
to Hoff [15]. Gibbs sampling is a popular Markov Chain Monte Carlo (MCMC) technique in which
samples are generated according to a Markov chain whose stationary distribution is the density in
(8). Assessing the “burn-in time” and other factors for this procedure is an interesting question in its
own right; further details are in Section E.3.

Other approaches. There are other general algorithmic strategies for guaranteeing differential
privacy. The sensitivity method [9] adds noise proportional to the maximum change that can be
induced by changing a single point in the data set. Consider a data set D with m + 1 copies of a unit
vector u and m copies of a unit vector u’ with v L u’ and let D’ have m copies of v and m+1 copies
of u'. Then v1 (D) = u but v (D) = v, s0 ||v1 (D) — v1(D')|| = V2. Thus the global sensitivity
does not scale with the number of data points, so as n increases the variance of the noise required
by the Laplace mechanism [9] will not decrease. An alternative to global sensitivity is smooth
sensitivity [24]; except for special cases, such as the sample median, smooth sensitivity is difficult
to compute for general functions. A third method for computing private, approximate solutions
to high-dimensional optimization problems is objective perturbation [6]; to apply this method, we
require the optimization problems to have certain properties (namely, strong convexity and bounded
norms of gradients), which do not apply to PCA.

Main results. Our theoretical results are sample complexity bounds for PPCA and MOD-SULQ
as well as a general lower bound on the sample complexity for any a-differentially private algorithm.
These results show that the PPCA is nearly optimal in terms the scaling of the sample complexity
with respect to the data dimension d, privacy parameter o, and eigengap A. We further show that
MOD-SULQ requires more samples as a function of d, despite having a slightly weaker privacy
guarantee. Proofs are deferred to the supplementary material.

Even though both algorithms can output the top-k PCA subspace for general k < d, we prove results
for the case £ = 1. Finding the scaling behavior of the sample complexity with & is an interesting
open problem that we leave for future work; challenges here are finding the right notion of approxi-
mation of the PCA, and extending the theory using packings of Grassman or Stiefel manifolds.

Theorem 1. For the (3 in Algorithm 1, the MOD-SULQ algorithm is (o, §) differentially private.
Theorem 2. Algorithm PPCA is a-differentially private.

The fact that these two algorithms are differentially private follows from some simple calculations.
Our first sample complexity result provides an upper bound on the number of samples required by



PPCA to guarantee a certain level of privacy and accuracy. The sample complexity of PPCA n
grows linearly with the dimension d, inversely with «, and inversely with the correlation gap (1 — p)
and eigenvalue gap A1 (4) — A2(A).

Theorem 3 (Sample complexity of PPCA). Ifn > a(lfp)?,\l,,\z) <log(;/”) + log
then PPCA is a (p, n)-close approximation to PCA.

40 )
(1—p?)(A1—A2) )’

Our second result shows a lower bound on the number of samples required by any a-differentially-
private algorithm to guarantee a certain level of accuracy for a large class of datasets, and uses proof
techniques in [4, 5].

Theorem 4 (Sample complexity lower bound). Fix d, a, A < % and let 1 — ¢ =

exp (72 . W) .Forany p > 1— %, no a-differentially private algorithm A can
approximate PCA with expected utility greater than p on all databases with n points in dimension d

having eigenvalue gap A, where n < max {Ada, % . Aajﬁ} .

Theorem 3 shows that if n scales like ﬁ log ﬁ then PPCA produces an approximation
d
aly/(1-p)
a-differentially private algorithm. In terms of scaling with d, o and A, the upper and lower bounds
match, and they also match up to square-root factors with respect to the correlation. By contrast, the
following lower bound on the number of samples required by MOD-SULQ to ensure a certain level

of accuracy shows that MOD-SULQ has a less favorable scaling with dimension.

that has correlation p with v;, whereas Theorem 4 shows that n must scale like for any

Theorem 5 (Sample complexity lower bound for MOD-SULQ). There are constants ¢ and ¢’ such

3/2 flon(d/3)
that if n < c%g(d/é) (1= (1= p)), then there is a dataset of size n in dimension d such that
the top PCA direction v and the output v of MOD-SULQ satisfy E[|(01,v1)]] < p.

Notice that the dependence on n grows as d>/ in SULQ as opposed to d in PPCA. Dimensionality
reduction via PCA is often used in applications where the data points occupy a low dimensional
space but are presented in high dimensions. These bounds suggest that PPCA is better suited to
such applications than MOD-SULQ. We next turn to validating this intuition on real data.

4 Experiments

We chose four datasets from four different domains — kddcup99, which includes features
of 494,021 network connections, census, a demographic data set on 199,523 individuals,
localization, a medical dataset with 164,860 instances of sensor readings on individuals en-
gaged in different activities, and insurance, a dataset on product usage and demographics of
9,822 individuals. After preprocessing, the dimensions of these datasets are 116, 513, 44 and 150
respectively. We chose k to be 4, 8, 10, and 11 such that the top-k PCA subspace had gr (V%) at least
80% of || A||r. More details are in Appendix E in the supplementary material.

We ran three algorithms on these data sets : standard (non-private) PCA, MOD-SULQ with o = 0.1
and § = 0.01, and PPCA with o = 0.1. As a sanity check, we also tried a uniformly generated
random projection — since this projection is data-independent we would expect it to have low utility.
Standard PCA is non-private; changing a single data point will change the output, and hence violate
differential privacy. We measured the utility gr(U), where U is the k-dimensional subspace output
by the algorithm; ||U|| is maximized when U is the top-k PCA subspace, and thus this reflects how
close the output subspace is to the true PCA subspace in terms of representing the data. Although
our theoretical results hold for ga (+), the “energy” ¢r(+) is more relevant in practice for larger k.

Figures 1(a), 1(b), 1(c), and 1(d) show gr(U) as a function of sample size for the k-dimensional
subspace output by PPCA, MOD-SULQ, non-private PCA, and random projections. Each value
in the figure is an average over 5 random permutations of the data, as well as 10 random starting
points of the Gibbs sampler per permutation (for PPCA), and 100 random runs per permutation (for
MOD-SULQ and random projections).
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Figure 1: Utility gr (U) for the four data sets
| Non-private PCA | PPCA | MOD-SULQ | Random projections
KDDCUP 98.97 + 0.05 98.95+0.05 | 98.18 £ 0.65 | 98.23 £0.49
LOCALIZATION | 100 £0 100+ 0 97.06 £ 2.17 | 96.28 = 2.34
Table 1: Classification accuracy in the k-dimensional subspaces for kddcup99(k = 4), and

localization(k = 10) in the k-dimensional subspaces reported by the different algorithms.

The plots show that PPCA always outperforms MOD-SULQ, and approaches the performance of
non-private PCA with increasing sample size. By contrast, for most of the problems and sample
sizes considered by our experiments, MOD-SULQ does not perform much better than random pro-
jections. The only exception is 1ocalization, which has much lower dimension (44). This
confirms that MOD-SULQ does not scale very well with the data dimension d. The performance of
both MOD-SULQ and PPCA improve as the sample size increases; the improvement is faster for
PPCA than for MOD-SULQ. However, to be fair, MOD-SULQ is simpler and hence runs faster
than PPCA. At the sample sizes in our experiments, the performance of non-private PCA does not
improve much with a further increase in samples. Our theoretical results suggest that the perfor-
mance of differentially private PCA cannot be significantly improved over these experiments.

Effect of privacy on classification. A common use of a dimension reduction algorithm is as a
precursor to classification or clustering; to evaluate the effectiveness of the different algorithms,
we projected the data onto the subspace output by the algorithms, and measured the classification
accuracy using the projected data. The classification results are summarized in Table 4. We chose
the normal vs. all classification task in kddcup99, and the falling vs. all classification task in
localization. ! We used alinear SVM for all classification experiments.

For the classification experiments, we used half of the data as a holdout set for computing a projec-
tion subspace. We projected the classification data onto the subspace computed based on the holdout
set; 10% of this data was used for training and parameter-tuning, and the rest for testing. We re-
peated the classification process 5 times for 5 different (random) projections for each algorithm, and
then ran the entire procedure over 5 random permutations of the data. Each value in the figure is
thus an average over 5 x 5 = 25 rounds of classification.

For the other two datasets, census and insurance, the classification accuracy of linear SVM after
(non-private) PCAs is as low as always predicting the majority label.
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Figure 2: Plot of gr (U) versus « for a synthetic data set with n = 5,000, d = 10, and k = 2.

The classification results show that our algorithm performs almost as well as non-private PCA for
classification in the top k PCA subspace, while the performance of MOD-SULQ and random projec-
tions are a little worse. The classification accuracy while using MOD-SULQ and random projections
also appears to have higher variance compared to our algorithm and non-private PCA; this can be
explained by the fact that these projections tend to be farther from the PCA subspace, in which the
data has higher classification accuracy.

Effect of the privacy requirement. To check the effect of the privacy requirement,
we generated a synthetic data set of n = 5,000 points drawn from a Gaussian dis-
tribution in d = 10 with mean 0 and whose covariance matrix had eigenvalues
{0.5,0.30,0.04,0.03,0.02,0.01,0.004, 0.003, 0.001,0.001}. In this case the space spanned by the
top two eigenvectors has most of the energy, so we chose & = 2 and plotted the utility gg(-) for non-
private PCA, MOD-SULQ with 6 = 0.05, and PPCA. We drew 100 samples from each privacy-
preserving algorithm and the plot of the average utility versus « is shown in Figure 2. As « increases,
the privacy requirement is relaxed and both MOD-SULQ and PPCA approach the utility of PCA
without privacy constraints. However, for moderate o the PPCA still captures most of the utility,
whereas the gap between MOD-SULQ and PPCA becomes quite large.

5 Conclusion

In this paper we investigated the theoretical and empirical performance of differentially private ap-
proximations to PCA. Empirically, we showed that MOD-SULQ and PPCA differ markedly in how
well they approximate the top-k subspace of the data. The reason for this, theoretically, is that the
sample complexity of MOD-SULQ scales with d3/2/Tog d whereas PPCA scales with d. Because
PPCA uses the exponential mechanism with gg(-) as the utility function, it is not surprising that
it performs well. However, MOD-SULQ often had a performance comparable to random projec-
tions, indicating that the real data sets we used were too small for it to be effective. We furthermore
showed that PPCA is nearly optimal, in that any differentially private approximation to PCA must
use €2(d) samples.

Our investigation brought up many interesting issues to consider for future work. The description of
differentially private algorithms assume an ideal model of computation : real systems require addi-
tional security assumptions that have to be verified. The difference between truly random noise and
pseudorandomness and the effects of finite precision can lead to a gap between the theoretical ideal
and practice. Numerical optimization methods used in objective perturbation [6] can only produce
approximate solutions, and have complex termination conditions unaccounted for in the theoretical
analysis. Our MCMC sampling has this flavor : we cannot sample exactly from the Bingham dis-
tribution because we must determine the Gibbs sampler’s convergence empirically. Accounting for
these effects is an interesting avenue for future work that can bring theory and practice together.

Finally, more germane to the work on PCA here is to prove sample complexity results for general k
rather than the case k£ = 1 here. For k = 1 the utility functions ¢gr(-) and ga () are related, but for
general k it is not immediately clear what metric best captures the idea of “approximating” PCA.
Developing a framework for such approximations is of interest more generally in machine learning.
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