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Abstract

Penalized M-estimators are used in diverse areas of science and engineering to fit
high-dimensional models with some low-dimensional structure. Often, the penal-
ties are geometrically decomposable, i.e. can be expressed as a sum of support
functions over convex sets. We generalize the notion of irrepresentable to geomet-
rically decomposable penalties and develop a general framework for establishing
consistency and model selection consistency of M-estimators with such penalties.
We then use this framework to derive results for some special cases of interest in
bioinformatics and statistical learning.

1 Introduction

The principle of parsimony is used in many areas of science and engineering to promote “simple”
models over more complex ones. In machine learning, signal processing, and high-dimensional
statistics, this principle motivates the use of sparsity inducing penalties for model selection and
signal recovery from incomplete/noisy measurements. In this work, we consider M-estimators of
the form:

minimize
θ∈Rp

`(n)(θ) + λρ(θ), subject to θ ∈ S, (1.1)

where `(n) is a convex, twice continuously differentiable loss function, ρ is a penalty function, and
S ⊆ Rp is a subspace. Many commonly used penalties are geometrically decomposable, i.e. can
be expressed as a sum of support functions over convex sets. We describe this notion of decompos-
able in Section 2 and then develop a general framework for analyzing the consistency and model
selection consistency of M-estimators with geometrically decomposable penalties. When special-
ized to various statistical models, our framework yields some known and some new model selection
consistency results.

This paper is organized as follows: First, we review existing work on consistency and model selec-
tion consistency of penalized M-estimators. Then, in Section 2, we describe the notion of geomet-
rically decomposable and give some examples of geometrically decomposable penalties. In Section
3, we generalize the notion of irrepresentable to geometrically decomposable penalties and state our
main result (Theorem 3.4). We prove our main result in the Supplementary Material and develop a
converse result concerning the necessity of the irrepresentable condition in the Supplementary Ma-
terial. In Section 4, we use our main result to derive consistency and model selection consistency
results for the generalized lasso (total variation) and maximum likelihood estimation in exponential
families.
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1.1 Consistency of penalized M-estimators

The consistency of penalized M-estimators has been studied extensively. The three most well-
studied problems are (i) the lasso [2, 26], (ii) generalized linear models (GLM) with the lasso
penalty [10], and (iii) inverse covariance estimators with sparsity inducing penalties (equivalent
to sparse maximum likelihood estimation for a Gaussian graphical model) [21, 20]. There are also
consistency results for M-estimators with group and structured variants of the lasso penalty [1, 7].

Negahban et al. [17] proposes a unified framework for establishing consistency and convergence
rates for M-estimators with penalties ρ that are decomposable with respect to a pair of subspaces
M, M̄ :

ρ(x+ y) = ρ(x) + ρ(y), for all x ∈M, y ∈ M̄⊥.
Many commonly used penalties such as the lasso, group lasso, and nuclear norm are decomposable
in this sense. Negahban et al. prove a general result that establishes the consistency of M-estimators
with decomposable penalties. Using their framework, they derive consistency results for special
cases like sparse and group sparse regression. The current work is in a similar vein as Negahban et
al. [17], but we focus on establishing the more stringent result of model selection consistency rather
than consistency. See Section 3 for a comparison of the two notions of consistency.

The model selection consistency of penalized M-estimators has also been extensively studied. The
most commonly studied problems are (i) the lasso [30, 26], (ii) GLM’s with the lasso penalty [4, 19,
28], (iii) covariance estimation [15, 12, 20] and (more generally) structure learning [6, 14]. There are
also general results concerning M-estimators with sparsity inducing penalties [29, 16, 11, 22, 8, 18,
24]. Despite the extensive work on model selection consistency, to our knowledge, this is the first
work to establish a general framework for model selection consistency for penalized M-estimators.

2 Geometrically decomposable penalties

Let C ⊂ Rp be a closed convex set. Then the support function over C is
hC(x) = supy {yTx | y ∈ C}. (2.1)

Support functions are sublinear and should be thought of as semi-norms. If C is a norm ball, i.e.
C = {x | ‖x‖ ≤ 1}, then hC is the dual norm:

‖y‖∗ = supx {xT y | ‖x‖ ≤ 1}.
The support function is a supremum of linear functions, hence the subdifferential consists of the
linear functions that attain the supremum:

∂hC(x) = {y ∈ C | yTx = hC(x)}.
The support function (as a function of the convex set C) is also additive over Minkowski sums, i.e.
if C and D are convex sets, then

hC+D(x) = hC(x) + hD(x).

We use this property to express penalty functions as sums of support functions. E.g. if ρ is a norm
and the dual norm ball can be expressed as a (Minkowski) sum of convex sets C1, . . . , Ck, then ρ
can be expressed as a sum of support functions:

ρ(x) = hC1
(x) + · · ·+ hCk(x).

If a penalty ρ can be expressed as
ρ(θ) = hA(θ) + hI(θ) + hS⊥(θ), (2.2)

where A and I are closed convex sets and S is a subspace, then we say ρ is a geometrically de-
composable penalty. This form is general; if ρ can be expressed as a sum of support functions,
i.e.

ρ(θ) = hC1(θ) + · · ·+ hCk(θ),

then we can set A, I , and S⊥ to be sums of the sets C1, . . . , Ck to express ρ in geometrically
decomposable form (2.2). In many cases of interest, A + I is a norm ball and hA+I = hA + hI is
the dual norm. In our analysis, we assume

1Given the extensive work on consistency of penalized M-estimators, our review and referencing is neces-
sarily incomplete.
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1. A and I are bounded.

2. I contains a relative neighborhood of the origin, i.e. 0 ∈ relint(I).

We do not require A + I to contain a neighborhood of the origin. This generality allows for unpe-
nalized variables.

The notation A and I should be as read as “active” and “inactive”: span(A) should contain the true
parameter vector and span(I) should contain deviations from the truth that we want to penalize. E.g.
if we know the sparsity pattern of the unknown parameter vector, then A should span the subspace
of all vectors with the correct sparsity pattern.

The third term enforces a subspace constraint θ ∈ S because the support function of a subspace is
the (convex) indicator function of the orthogonal complement:

hS⊥(x) = 1S(x) =

{
0 x ∈ S
∞ otherwise.

Such subspace constraints arise in many problems, either naturally (e.g. the constrained lasso [9]) or
after reformulation (e.g. group lasso with overlapping groups). We give three examples of penalized
M-estimators with geometrically decomposable penalties, i.e.

minimize
θ∈Rp

`(n)(θ) + λρ(θ), (2.3)

where ρ is a geometrically decomposable penalty. We also compare our notion of geometrically
decomposable to two other notions of decomposable penalties by Negahban et al. [17] and Van De
Geer [25] in the Supplementary Material.

2.1 The lasso and group lasso penalties

Two geometrically decomposable penalties are the lasso and group lasso penalties. Let A and I
be complementary subsets of {1, . . . , p}. We can decompose the lasso penalty component-wise to
obtain

‖θ‖1 = hB∞,A(θ) + hB∞,I (θ),

where hB∞,A and hB∞,I are support functions of the sets

B∞,A =
{
θ ∈ Rp | ‖θ‖∞ ≤ 1 and θI = 0

}
B∞,I =

{
θ ∈ Rp | ‖θ‖∞ ≤ 1 and θA = 0

}
.

If the groups do not overlap, then we can also decompose the group lasso penalty group-wise (A
and I are now sets of groups) to obtain∑

g∈G
‖θg‖2 = hB(2,∞),A(θ) + hB(2,∞),I (θ).

hB(2,∞),A and hB(2,∞),I are support functions of the sets

B(2,∞),A =
{
θ ∈ Rp | max

g∈G
‖θg‖2 ≤ 1 and θg = 0, g ∈ A

}
B(2,∞),I =

{
θ ∈ Rp | max

g∈G
‖θg‖2 ≤ 1 and θg = 0, g ∈ I

}
.

If the groups overlap, then we can duplicate the parameters in overlapping groups and enforce equal-
ity constraints.

2.2 The generalized lasso penalty

Another geometrically decomposable penalty is the generalized lasso penalty [23]. Let D ∈ Rm×p

be a matrix and A and I be complementary subsets of {1, . . . ,m}. We can express the generalized
lasso penalty in decomposable form:

‖Dθ‖1 = hDTB∞,A(θ) + hDTB∞,I (θ). (2.4)
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hDTB∞,A and hDTB∞,I are support functions of the sets

DTB∞,A = {x ∈ Rp | x = DT
Ay, ‖y‖∞ ≤ 1} (2.5)

DTB∞,I = {x ∈ Rp | x = DT
I y, ‖y‖∞ ≤ 1}. (2.6)

We can also formulate any generalized lasso penalized M-estimator as a linearly constrained, lasso
penalized M-estimator. After a change of variables, a generalized lasso penalized M-estimator is
equivalent to

minimize
θ∈Rk,γ∈Rp

`(n)(D†θ + γ) + λ ‖θ‖1 , subject to γ ∈ N (D),

where N (D) is the nullspace of D. The lasso penalty can then be decomposed component-wise to
obtain

‖θ‖1 = hB∞,A(θ) + hB∞,I (θ).

We enforce the subspace constraint θ ∈ N (D) with the support function ofR(D)⊥. This yields the
convex optimization problem

minimize
θ∈Rk,γ∈Rp

`(n)(D†θ + γ) + λ(hB∞,A(θ) + hB∞,I (θ) + hN (D)⊥(γ)).

There are many interesting applications of the generalized lasso in signal processing and statistical
learning. We refer to Section 2 in [23] for some examples.

2.3 “Hybrid” penalties

A large class of geometrically decomposable penalties are so-called “hybrid” penalties: infimal
convolutions of penalties to promote solutions that are sums of simple components, e.g. θ = θ1 +θ2,
where θ1 and θ2 are simple. If the constituent simple penalties are geometrically decomposable, then
the resulting hybrid penalty is also geometrically decomposable.

For example, let ρ1 and ρ2 be geometrically decomposable penalties, i.e. there are sets A1, I1, S1

and A2, I2, S2 such that

ρ1(θ) = hA1
(θ) + hI1(θ) + hS⊥1 (θ)

ρ2(θ) = hA2
(θ) + hI2(θ) + hS⊥2 (θ)

The M-estimator with penalty ρ(θ) = infγ {ρ1(γ) + ρ2(θ − γ)} is equivalent to the solution to the
convex optimization problem

minimize
θ∈R2p

`(n)(θ1 + θ2) + λ(ρ1(θ1) + ρ2(θ2)). (2.7)

This is an M-estimator with a geometrically decomposable penalty:

minimize
θ∈R2p

`(n)(θ1 + θ2) + λ(hA(θ) + hI(θ) + hS⊥(θ)).

hA, hI and hS⊥ are support functions of the sets

A = {(θ1, θ2) | θ1 ∈ A1 ⊂ Rp, θ2 ∈ A2 ⊂ Rp}
I = {(θ1, θ2) | θ1 ∈ I1 ⊂ Rp, θ2 ∈ I2 ⊂ Rp}
S = {(θ1, θ2) | θ1 ∈ S1 ⊂ Rp, θ2 ∈ S2 ⊂ Rp}.

There are many interesting applications of the hybrid penalties in signal processing and statistical
learning. Two examples are the huber function, ρ(θ) = infθ=γ1+γ2 ‖γ1‖1+‖γ2‖22, and the multitask
group regularizer, ρ(Θ) = infΘ=B+S ‖B‖1,∞+ ‖S‖1. See [27] for recent work on model selection
consistency in hybrid penalties.

3 Main result

We assume the unknown parameter vector θ? is contained in the model subspace

M := span(I)⊥ ∩ S, (3.1)
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and we seek estimates of θ? that are “correct”. We consider two notions of correctness: (i) an
estimate θ̂ is consistent (in the `2 norm) if the estimation error in the `2 norm decays to zero in
probability as sample size grows: ∥∥∥θ̂ − θ?∥∥∥

2

p→ 0 as n→∞,

and (ii) θ̂ is model selection consistent if the estimator selects the correct model with probability
tending to one as sample size grows:

Pr(θ̂ ∈M)→ 1 as n→∞.

NOTATION: We use PC to denote the orthogonal projector onto span(C) and γC to denote the
gauge function of a convex set C containing the origin:

γC(x) = inf
x
{λ ∈ R+ | x ∈ λC}.

Further, we use κ(ρ) to denote the compatibility constant between a semi-norm ρ and the `2 norm
over the model subspace:

κ(ρ) := sup
x
{ρ(x) | ‖x‖2 ≤ 1, x ∈M}.

Finally, we choose a norm ‖·‖ε to make
∥∥∇`(n)(θ?)

∥∥
ε

small. This norm is usually the dual norm to
the penalty.

Before we state our main result, we state our assumptions on the problem. Our two main assump-
tions are stated in terms of the Fisher information matrix:

Q(n) = ∇2`(n)(θ?).

Assumption 3.1 (Restricted strong convexity). We assume the loss function `(n) is locally strongly
convex with constant m over the model subspace, i.e.

`(n)(θ1)− `(n)(θ2) ≥ ∇`(n)(θ2)T (θ1 − θ2) +
m

2
‖θ1 − θ2‖22 (3.2)

for some m > 0 and all θ1, θ2 ∈ Br(θ?) ∩M .

We require this assumption to make the maximum likelihood estimate unique over the model sub-
space. Otherwise, we cannot hope for consistency. This assumption requires the loss function to be
curved along certain directions in the model subspace and is very similar to Negahban et al.’s notion
of restricted strong convexity [17] and Buhlmann and van de Geer’s notion of compatibility [3].
Intuitively, this assumption means the “active” predictors are not overly dependent on each other.

We also require∇2`(n) to be locally Lipschitz continuous, i.e.

‖∇2`(n)(θ1)−∇2`(n)(θ2)‖2 ≤ L ‖θ1 − θ2‖2 .
for some L > 0 and all θ1, θ2 ∈ Br(θ

?) ∩M . This condition automatically holds for all twice-
continuously differentiable loss functions, hence we do not state this condition as an assumption.

To obtain model selection consistency results, we must first generalize the key notion of irrepre-
sentable to geometrically decomposable penalties.
Assumption 3.2 (Irrepresentability). There exist τ ∈ (0, 1) such that

sup
z
{V (PM⊥(Q(n)PM (PMQ

(n)PM )†PMz − z)) | z ∈ ∂hA(Br(θ
?) ∩M)}

< 1− τ,
where V is the infimal convolution of γI and 1S⊥

V (z) = inf
u
{γI(u) + 1S⊥(z − u)}.

If uI(z) and uS⊥(u) achieve V (z) (i.e. V (z) = γI(uI(z))), then V (u) < 1, means uI(z) ∈
relint(I). Hence the irrepresentable condition requires any z ∈ M⊥ to be decomposable into
uI + uS⊥ , where uI ∈ relint(I) and uS⊥ ∈ S⊥.
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Lemma 3.3. V is a bounded semi-norm over M⊥, i.e. V is finite and sublinear over M⊥.

Let ‖·‖ε be an error norm, usually chosen to make
∥∥∇`(n)(θ?)

∥∥
ε

small. V is a bounded semi-norm
over M⊥, hence there exists some τ̄ such that

V (PM⊥(Q(n)PM (PMQ
(n)PM )†PMx− x)) ≤ τ̄ ‖x‖ε (3.3)

τ̄ surely exists because (i) ‖·‖ε is a norm, so the set {x ∈ Rp | ‖x‖ε ≤ 1} is compact, and (ii) V is
finite over M⊥, so the left side of (3.3) is a continuous function of x. Intuitively, τ̄ quantifies how
large the irrepresentable term can be compared to the error norm.

The irrepresentable condition is a standard assumption for model selection consistency and has
been shown to be almost necessary for sign consistency of the lasso [30, 26]. Intuitively, the ir-
representable condition requires the active predictors to be not overly dependent on the inactive
predictors. In Supplementary Material, we show our (generalized) irrepresentable condition is also
necessary for model selection consistency with some geometrically decomposable penalties.
Theorem 3.4. Suppose Assumption 3.1 and 3.2 are satisfied. If we select λ such that

λ >
2τ̄

τ
‖∇`(n)(θ?)‖ε

and

λ < min


m2

L
τ

2τ̄κ(‖·‖ε)(2κ(hA)+ τ
τ̄ κ(‖·‖∗ε))

2

mr
2κ(hA)+ τ

τ̄ κ(‖·‖∗ε) ,

then the penalized M-estimator is unique, consistent (in the `2 norm), and model selection consistent,
i.e. the optimal solution to (2.3) satisfies

1.
∥∥∥θ̂ − θ?∥∥∥

2
≤ 2

m

(
κ(hA) + τ

2τ̄ κ(‖·‖∗ε)
)
λ,

2. θ̂ ∈M := span(I)⊥ ∩ S.
Remark 1. Theorem 3.4 makes a deterministic statement about the optimal solution to (2.3). To
use this result to derive consistency and model selection consistency results for a statistical model,
we must first verify Assumptions (3.1) and (3.2) are satisfied with high probability. Then, we must
choose an error norm ‖·‖ε and select λ such that

λ >
2τ̄

τ
‖∇`(n)(θ?)‖ε

and

λ < min


m2

L
τ

2τ̄κ(‖·‖ε)(2κ(hA)+ τ
τ̄ κ(‖·‖∗ε))

2

mr
2κ(hA)+ τ

τ̄ κ(‖·‖∗ε)

with high probability.

In Section 4, we use this theorem to derive consistency and model selection consistency results for
the generalized lasso and penalized likelihood estimation for exponential families.

4 Examples

We use Theorem 3.4 to establish the consistency and model selection consistency of the generalized
lasso and a group lasso penalized maximum likelihood estimator in the high-dimensional setting.
Our results are nonasymptotic, i.e. we obtain bounds in terms of sample size n and problem dimen-
sion p that hold with high probability.

4.1 The generalized lasso

Consider the linear model y = XT θ? + ε, where X ∈ Rn×p is the design matrix, and θ? ∈ Rp

are unknown regression parameters. We assume the columns of X are normalized so ‖xi‖2 ≤
√
n.

ε ∈ Rn is i.i.d., zero mean, sub-Gaussian noise with parameter σ2.
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We seek an estimate of θ? with the generalized lasso:

minimize
θ∈Rp

1

2n
‖y −Xθ‖22 + λ ‖Dθ‖1 , (4.1)

where D ∈ Rm×p. The generalized lasso penalty is geometrically decomposable:

‖Dθ‖1 = hDTB∞,A(θ) + hDTB∞,I (θ).

hDTB∞,A and hDTB∞,I are support functions of the sets

DTB∞,A = {x ∈ Rp | x = DT y, yI = 0, ‖y‖∞ ≤ 1}
DTB∞,I = {x ∈ Rp | x = DT y, yA = 0, ‖y‖∞ ≤ 1}.

The sample fisher information matrix is Q(n) = 1
nX

TX . Q(n) does not depend on θ, hence the
Lipschitz constant of Q(n) is zero. The restricted strong convexity constant is

m = λmin(Q(n)) = inf
x
{xTQ(n)x | ‖x‖2 = 1}.

The model subspace is the set

span(DTB∞,I)⊥ = R(DT
I )⊥ = N (DI),

where I is a subset of the row indices of D. The compatibility constants κ(`1), κ(hA) are

κ(`1) = sup
x
{‖x‖1 | ‖x‖2 ≤ 1, x ∈ N (DI)}

κ(hA) = sup
x

{
hDTB∞,A(x) | ‖x‖2 ≤ 1, x ∈M

}
≤ ‖DA‖2

√
|A|.

If we select λ > 2
√

2σ τ̄τ

√
log p
n , then there exists c such that Pr

(
λ ≥ 2τ̄

τ

∥∥∇`(n)(θ?)
∥∥
∞

)
≤ 1 −

2 exp
(
−cλ2n

)
. Thus the assumptions of Theorem 3.4 are satisfied with probability at least 1 −

2 exp(−cλ2n), and we deduce the generalized lasso is consistent and model selection consistent.

Corollary 4.1. Suppose y = Xθ? + ε, where X ∈ Rn×p is the design matrix, θ? are unknown
coefficients, and ε is i.i.d., zero mean, sub-Gaussian noise with parameter σ2. If we select λ >

2
√

2σ τ̄τ

√
log p
n then, with probability at least 1 − 2 exp

(
−cλ2n

)
, the solution to the generalized

lasso is unique, consistent, and model selection consistent, i.e. the optimal solution to (4.1) satisfies

1.
∥∥∥θ̂ − θ?∥∥∥

2
≤ 2

m

(
‖DA‖2

√
|A|+ τ

2τ̄ κ(`1)
)
λ,

2.
(
Dθ̂
)
i

= 0, for any i such that
(
Dθ?

)
i

= 0.

4.2 Learning exponential families with redundant representations

Suppose X is a random vector, and let φ be a vector of sufficient statistics. The exponential family
associated with these sufficient statistics is the set of distributions with the form

Pr(x; θ) = exp
(
θTφ(x)−A(θ)

)
,

Suppose we are given samples x(1), . . . , x(n) drawn i.i.d. from an exponential family with unknown
parameters θ? ∈ Rp. We seek a maximum likelihood estimate (MLE) of the unknown parameters:

minimize
θ∈Rp

`
(n)
ML (θ) + λ ‖θ‖2,1 , subject to θ ∈ S. (4.2)

where `(n)
ML is the (negative) log-likelihood function

`
(n)
ML (θ) = − 1

n

n∑
i=1

logPr(x(i); θ) = − 1

n

n∑
i=1

θTφ(x(i)) +A(θ)
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and ‖θ‖2,1 is the group lasso penalty

‖θ‖2,1 =
∑
g∈G
‖θg‖2 .

It is also straightforward to change the maximum likelihood estimator to the more computationally
tractable pseudolikelihood estimator [13, 6], the neighborhood selection procedure [15], and include
covariates [13]. For brevity, we only explain the details for the maximum likelihood estimator.

Many undirected graphical models can be naturally viewed as exponential families. Thus estimat-
ing the parameters of exponential families is equivalent to learning undirected graphical models, a
problem of interest in many application areas such as bioinformatics.

Below, we state a corollary that results from applying Theorem 3.4 to exponential families. Please
see the supplementary material for the proof and definitions of the quantities involved.

Corollary 4.2. Suppose we are given samples x(1), . . . , x(n) drawn i.i.d. from an exponential family
with unknown parameters θ?. If we select

λ >
2
√

2L1τ̄

τ

√
(maxg∈G |g|) log |G|

n

and the sample size n is larger than

max

{
32L1L

2
2τ̄

2

m4τ4

(
2 + τ

τ̄

)4
(maxg∈G |g|)|A|2 log |G|

16L1

m2r2 (2 + τ
τ̄ )2(maxg∈G |g|)|A| log |G|,

then, with probability at least 1 − 2
(

maxg∈G |g|
)

exp(−cλ2n), the penalized maximum likelihood
estimator is unique, consistent, and model selection consistent, i.e. the optimal solution to (4.2)
satisfies

1.
∥∥∥θ̂ − θ?∥∥∥

2
≤ 2

m

(
1 + τ

2τ̄

)√
|A|λ,

2. θ̂g = 0, g ∈ I and θ̂g 6= 0 if
∥∥θ?g∥∥2

> 1
m

(
1 + τ

2τ̄

)√
|A|λ.

5 Conclusion

We proposed the notion of geometrically decomposable and generalized the irrepresentable con-
dition to geometrically decomposable penalties. This notion of decomposability builds on those
by Negahban et al. [17] and Candés and Recht [5] and includes many common sparsity inducing
penalties. This notion of decomposability also allows us to enforce linear constraints.

We developed a general framework for establishing the model selection consistency of M-estimators
with geometrically decomposable penalties. Our main result gives deterministic conditions on the
problem that guarantee consistency and model selection consistency; in this sense, it extends the
work of [17] from estimation consistency to model selection consistency. We combine our main
result with probabilistic analysis to establish the consistency and model selection consistency of the
generalized lasso and group lasso penalized maximum likelihood estimators.
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