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Abstract

We study a new class of structured Schatten norms for tensors that includes two
recently proposed norms (“overlapped” and “latent”) for convex-optimization-
based tensor decomposition. We analyze the performance of “latent” approach
for tensor decomposition, which was empirically found to perform better than the
“overlapped” approach in some settings. We show theoretically that this is indeed
the case. In particular, when the unknown true tensor is low-rank in a specific
unknown mode, this approach performs as well as knowing the mode with the
smallest rank. Along the way, we show a novel duality result for structured Schat-
ten norms, which is also interesting in the general context of structured sparsity.
We confirm through numerical simulations that our theory can precisely predict
the scaling behaviour of the mean squared error.

1 Introduction

Decomposition of tensors [10, 14] (or multi-way arrays) into low-rank components arises naturally
in many real world data analysis problems. For example, in neuroimaging, spatio-temporal patterns
of neural activities that are related to certain experimental conditions or subjects can be found by
computing the tensor decomposition of the data tensor, which can be of size channels × time-
points × subjects × conditions [18]. More generally, any multivariate spatio-temporal data (e.g.,
environmental monitoring) can be regarded as a tensor. If some of the observations are missing, low-
rank modeling enables the imputation of missing values. Tensor modelling may also be valuable for
collaborative filtering with temporal or contextual dimension.

Conventionally, tensor decomposition has been tackled through non-convex optimization problems,
using alternate least squares or higher-order orthogonal iteration [6]. Compared to its empirical
success, little has been theoretically understood about the performance of tensor decomposition
algorithms. De Lathauwer et al. [5] showed an approximation bound for a truncated higher-order
SVD (also known as the Tucker decomposition). Nevertheless the generalization performance of
these approaches has been widely open. Moreover, the model selection problem can be highly
challenging, especially for the Tucker model [5, 27], because we need to specify the rank rk for each
mode (here a mode refers to one dimensionality of a tensor); that is, we have K hyper-parameters
to choose for a K-way tensor, which is challenging even for K = 3.

Recently a convex-optimization-based approach for tensor decomposition has been proposed by
several authors [9, 15, 23, 25], and its performance has been analyzed in [26].
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Figure 1: Estimation of a low-rank 50×50×20 tensor of rank r × r × 3 from noisy measurements.
The noise standard deviation is σ = 0.1. The estimation errors of two convex optimization based
methods are plotted against the rank r of the first two modes. The solid lines show the error at the
fixed regularization constant λ, which is 0.89 for the overlapped approach and 3.79 for the latent
approach (see also Figure 2). The dashed lines show the minimum error over candidates of the
regularization constant λ from 0.1 to 100. In the inset, the errors of the two approaches are plotted
against the regularization constant λ for rank r = 40 (marked with gray dashed vertical line in
the outset). The two values (0.89 and 3.79) are marked with vertical dashed lines. Note that both
approaches need no knowledge of the true rank; the rank is automatically learned.

The basic idea behind their convex approach, which we call overlapped approach, is to unfold1 a
tensor into matrices along different modes and penalize the unfolded matrices to be simultaneously
low-rank based on the Schatten 1-norm, which is also known as the trace norm and nuclear norm [7,
22, 24]. This approach does not require the rank of the decomposition to be specified beforehand,
and due to the low-rank inducing property of the Schatten 1-norm, the rank of the decomposition is
automatically determined.

However, it has been noticed that the above overlapped approach has a limitation that it performs
poorly for a tensor that is only low-rank in a certain mode. The authors of [25] proposed an alter-
native approach, which we call latent approach, that decomposes a given tensor into a mixture of
tensors that each are low-rank in a specific mode. Figure 1 demonstrates that the latent approach
is preferable to the overlapped approach when the underlying tensor is almost full rank in all but
one mode. However, so far no theoretical analysis has been presented to support such an empirical
success.

In this paper, we rigorously study the performance of the latent approach and show that the mean
squared error of the latent approach scales no greater than the minimum mode-k rank of the underly-
ing true tensor, which clearly explains why the latent approach performs better than the overlapped
approach in Figure 1.

Along the way, we show a novel duality between the two types of norms employed in the above
two approaches, namely the overlapped Schatten norm and the latent Schatten norm. This result
is closely related and generalize the results in structured sparsity literature [2, 13, 17, 21]. In fact,
the (plain) overlapped group lasso constrains the weights to be simultaneously group sparse over
overlapping groups. The latent group lasso predicts with a mixture of group sparse weights [see
also 1, 3, 12]. These approaches clearly correspond to the two variations of tensor decomposition
algorithms we discussed above.

Finally we empirically compare the overlapped approach and latent approach and show that even
when the unknown tensor is simultaneously low-rank, which is a favorable situation for the over-
lapped approach, the latent approach performs better in many cases. Thus we provide both theoreti-
cal and empirical evidence that for noisy tensor decomposition, the latent approach is preferable to
the overlapped approach. Our result is complementary to the previous study [25, 26], which mainly
focused on the noise-less tensor completion setting.

1For a K-way tensor, there are K ways to unfold a tensor into a matrix. See Section 2.
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This paper is structured as follows. In Section 2, we provide basic definitions of the two variations of
structured Schatten norms, namely the overlapped/latent Schatten norms, and discuss their proper-
ties, especially the duality between them. Section 3 presents our main theoretical contributions; we
establish the consistency of the latent approach, and we analyze the denoising performance of the
latent approach. In Section 4, we empirically confirm the scaling predicted by our theory. Finally,
Section 5 concludes the paper. Most of the proofs are presented in the supplementary material.

2 Structured Schatten norms for tensors

In this section, we define the overlapped Schatten norm and the latent Schatten norm and discuss
their basic properties.

First we need some basic definitions.

Let W ∈ Rn1×···nK be a K-way tensor. We denote the total number of entries in W by N =∏K
k=1 nk. The dot product between two tensors W and X is defined as ⟨W,X⟩ = vec(W)⊤vec(X );

i.e., the dot product as vectors in RN . The Frobenius norm of a tensor is defined as
∣∣∣∣∣∣W∣∣∣∣∣∣

F
=√

⟨W,W⟩. Each dimensionality of a tensor is called a mode. The mode k unfolding W (k) ∈
Rnk×N/nk is a matrix that is obtained by concatenating the mode-k fibers along columns; here a
mode-k fiber is an nk dimensional vector obtained by fixing all the indices but the kth index of W .
The mode-k rank rk of W is the rank of the mode-k unfolding W (k). We say that a tensor W has
multilinear rank (r1, . . . , rK) if the mode-k rank is rk for k = 1, . . . ,K [14]. The mode k folding
is the inverse of the unfolding operation.

2.1 Overlapped Schatten norms

The low-rank inducing norm studied in [9, 15, 23, 25], which we call overlapped Schatten 1-norm,
can be written as follows: ∣∣∣∣∣∣W∣∣∣∣∣∣

S1/1
=
∑K

k=1
∥W (k)∥S1 . (1)

In this paper, we consider the following more general overlapped Sp/q-norm, which includes the
Schatten 1-norm as the special case (p, q) = (1, 1). The overlapped Sp/q-norm is written as follows:∣∣∣∣∣∣W∣∣∣∣∣∣

Sp/q
=
(∑K

k=1
∥W (k)∥qSp

)1/q
, (2)

where 1 ≤ p, q ≤ ∞; here

∥W ∥Sp =
(∑r

j=1
σp
j (W )

)1/p
is the Schatten p-norm for matrices, where σj(W ) is the jth largest singular value of W .

When used as a regularizer, the overlapped Schatten 1-norm penalizes all modes of W to be jointly
low-rank. It is related to the overlapped group regularization [see 13, 16] in a sense that the same
object W appears repeatedly in the norm.

The following inequality relates the overlapped Schatten 1-norm with the Frobenius norm, which
was a key step in the analysis of [26]:

∣∣∣∣∣∣W∣∣∣∣∣∣
S1/1

≤
K∑

k=1

√
rk
∣∣∣∣∣∣W∣∣∣∣∣∣

F
, (3)

where rk is the mode-k rank of W .

Now we are interested in the dual norm of the overlapped Sp/q-norm, because deriving the dual
norm is a key step in solving the minimization problem that involves the norm (2) [see 16], as
well as computing various complexity measures, such as, Rademacher complexity [8] and Gaussian
width [4]. It turns out that the dual norm of the overlapped Sp/q-norm is the latent Sp∗/q∗-norm as
shown in the following lemma (proof is presented in Appendix A).
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Lemma 1. The dual norm of the overlapped Sp/q-norm is the latent Sp∗/q∗-norm, where 1/p +
1/p∗ = 1 and 1/q + 1/q∗ = 1, which is defined as follows:∣∣∣∣∣∣X ∣∣∣∣∣∣

Sp∗/q∗
= inf

(X (1)+···+X (K))=X

(∑K

k=1
∥X(k)

(k)∥
q∗

Sp∗

)1/q∗

. (4)

Here the infimum is taken over the K-tuple of tensors X (1), . . . ,X (K) that sums to X .

In the supplementary material, we show a slightly more general version of the above lemma that
naturally generalizes the duality between overlapped/latent group sparsity norms [1, 12, 17, 21]; see
Section A. Note that when the groups have no overlap, the overlapped/latent group sparsity norms
become identical, and the duality is the ordinary duality between the group Sp/q-norms and the
group Sp∗/q∗-norms.

2.2 Latent Schatten norms

The latent approach for tensor decomposition [25] solves the following minimization problem

minimize
W(1),...,W(K)

L(W(1) + · · ·+W(K)) + λ
K∑

k=1

∥W (k)
(k)∥S1 , (5)

where L is a loss function, λ is a regularization constant, and W
(k)
(k) is the mode-k unfolding of

W(k). Intuitively speaking, the latent approach for tensor decomposition predicts with a mixture of
K tensors that each are regularized to be low-rank in a specific mode.

Now, since the loss term in the minimization problem (5) only depends on the sum of the tensors
W(1), . . . ,W(K), minimization problem (5) is equivalent to the following minimization problem

minimize
W

L(W) + λ
∣∣∣∣∣∣W∣∣∣∣∣∣

S1/1
.

In other words, we have identified the structured Schatten norm employed in the latent approach as
the latent S1/1-norm (or latent Schatten 1-norm for short), which can be written as follows:∣∣∣∣∣∣W∣∣∣∣∣∣

S1/1
= inf

(W(1)+···+W(K))=W

K∑
k=1

∥W (k)
(k)∥S1 . (6)

According to Lemma 1, the dual norm of the latent S1/1-norm is the overlapped S∞/∞-norm∣∣∣∣∣∣X ∣∣∣∣∣∣
S∞/∞ = max

k
∥X(k)∥S∞ , (7)

where ∥ · ∥S∞ is the spectral norm.

The following lemma is similar to inequality (3) and is a key in our analysis (proof is presented in
Appendix B).
Lemma 2. ∣∣∣∣∣∣W∣∣∣∣∣∣

S1/1
≤
(
min
k

√
rk

) ∣∣∣∣∣∣W∣∣∣∣∣∣
F
,

where rk is the mode-k rank of W .

Compared to inequality (3), the latent Schatten 1-norm is bounded by the minimal square root of the
ranks instead of the sum. This is the fundamental reason why the latent approach performs betters
than the overlapped approach as in Figure 1.

3 Main theoretical results

In this section, combining the duality we presented in the previous section with the techniques
from Agarwal et al. [1], we study the generalization performance of the latent approach for tensor
decomposition in the context of recovering an unknown tensor W∗ from noisy measurements. This
is the setting of the experiment in Figure 1. We first prove a generic consistency statement that does
not take the low-rank-ness of the truth into account. Next we show that a tighter bound that takes the
low-rank-ness into account can be obtained with some incoherence assumption. Finally, we discuss
the difference between overlapped approach and latent approach and provide an explanation for the
empirically observed superior performance of the latent approach in Figure 1.
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3.1 Consistency

Let W∗ be the underlying true tensor and the noisy version Y is obtained as follows:

Y = W∗ + E ,

where E ∈ Rn1×···×nK is the noise tensor.

A consistency statement can be obtained as follows (proof is presented in Appendix C):
Theorem 1. Assume that the regularization constant λ satisfies λ ≥

∣∣∣∣∣∣E∣∣∣∣∣∣
S∞/∞ (overlapped S∞/∞

norm of the noise), then the estimator defined by Ŵ = argminW

(
1
2

∣∣∣∣∣∣Y −W
∣∣∣∣∣∣2
F
+ λ

∣∣∣∣∣∣W∣∣∣∣∣∣
S1/1

)
,

satisfies the inequality ∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣
F
≤ 2λ

√
min
k

nk. (8)

In particular when the noise goes to zero E → 0, the right hand side of inequality (8) shrinks to zero.

3.2 Deterministic bound

The consistency statement in the previous section only deals with the sum Ŵ =
∑K

k=1 Ŵ(k) and
the statement does not take into account the low-rank-ness of the truth. In this section, we establish
a tighter statement that bounds the errors of individual terms Ŵ(k).

To this end, we need some additional assumptions. First, we assume that the unknown tensor W∗ is
a mixture of K tensors that each are low-rank in a certain mode and we have a noisy observation Y
as follows:

Y = W∗ + E =
∑K

k=1
W∗(k) + E , (9)

where r̄k = rank(W
(k)
(k)) is the mode-k rank of the kth component W∗(k); note that this does not

equal the mode-k rank rk of W∗ in general.

Second, we assume that the spectral norm of the mode-k unfolding of the lth component is bounded
by a constant α for all k ̸= l as follows:

∥W ∗(l)
(k) ∥S∞ ≤ α (∀l ̸= k, k, l = 1, . . . ,K). (10)

Note that such an additional incoherence assumption has also been used in [1, 3, 11].

We employ the following optimization problem to recover the unknown tensor W∗:

Ŵ = argmin
W

(
1

2

∣∣∣∣∣∣Y −W
∣∣∣∣∣∣2
F
+ λ

∣∣∣∣∣∣W∣∣∣∣∣∣
S1/1

s.t. W =
K∑

k=1

W(k), ∥W (l)
(k)∥S∞ ≤ α, ∀l ̸= k

)
,

(11)

where λ > 0 is a regularization constant. Notice that we have introduced additional spectral norm
constraints to control the correlation between the components; see also [1].

Our deterministic performance bound can be stated as follows (proof is presented in Appendix D):

Theorem 2. Let Ŵ(k) be an optimal decomposition of Ŵ induced by the latent Schatten 1-norm (6).
Assume that the regularization constant λ satisfies λ ≥ 2

∣∣∣∣∣∣E∣∣∣∣∣∣
S∞/∞ + α(K − 1). Then there is

a universal constant c such that, any solution Ŵ of the minimization problem (11) satisfies the
following deterministic bound:∑K

k=1

∣∣∣∣∣∣Ŵ(k) −W∗(k)∣∣∣∣∣∣2
F
≤ cλ2

∑K

k=1
rk. (12)

Moreover, the overall error can be bounded in terms of the multilinear rank of W∗ as follows:∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣2
F
≤ cλ2 min

k
rk. (13)
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Note that in order to get inequality (13), we exploit the arbitrariness of the decomposition W∗ =∑K
k=1 W∗(k) to replace the sum over the ranks with the minimal mode-k rank. This is possible

because a singleton decomposition, i.e., W∗(k) = W∗ and W∗(k′) = 0 for k′ ̸= k, is allowed for
any k.

Comparing two inequalities (8) and (13), we see that there are two regimes. When the noise is small,
(8) is tighter. On the other hand, when the noise is larger and/or mink rk ≪ mink nk, (13) is tighter.

3.3 Gaussian noise

When the elements of the noise tensor E are Gaussian, we obtain the following theorem.
Theorem 3. Assume that the elements of the noise tensor E are independent zero-mean Gaussian
random variables with variance σ2. In addition, assume without loss of generality that the dimen-
sionalities of W∗ are sorted in the descending order, i.e., n1 ≥ · · · ≥ nK . Then there is a universal
constant c such that, with probability at least 1 − δ, any solution of the minimization problem (11)
with regularization constant λ = 2σ(

√
N/nK +

√
n1 +

√
2 log(K/δ)) + α(K − 1) satisfies

1

N

K∑
k=1

∣∣∣∣∣∣Ŵ(k) −W∗(k)∣∣∣∣∣∣2
F
≤ cFσ2

∑K
k=1 r̄k
nK

, (14)

where F =
((

1 +
√

n1nK

N

)
+
(√

2 log(K/δ) + α(K−1)
2σ

)√
nK

N

)2
is a factor that mildly depends

on the dimensionalities and the constant α in (10).

Note that the theoretically optimal choice of regularization constant λ is independent of the ranks of
the truth W∗ or its factors in (9), which are unknown in practice.

Again we can obtain a bound corresponding to the minimum rank singleton decomposition as in
inequality (13) as follows:

1

N

∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣2
F
≤ cFσ2mink rk

nK
, (15)

where F is the same factor as in Theorem 3.

3.4 Comparison with the overlapped approach

Inequality (15) explains the superior performance of the latent approach for tensor decomposition in
Figure 1. The inequality obtained in [26] for the overlapped approach that uses overlapped Schatten
1-norm (1) can be stated as follows:

1

N

∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣2
F
≤ c′σ2

(
1

K

K∑
k=1

√
1
nk

)2(
1

K

K∑
k=1

√
rk

)2

. (16)

Comparing inequalities (15) and (16), we notice that the complexity of the overlapped approach
depends on the average (square root) of the mode-k ranks r1, . . . , rK , whereas that of the latent
approach only grows linearly against the minimum mode-k rank. Interestingly, the latent approach
performs as if it knows the mode with the minimum rank, although such information is not given.

Recently, Mu et al. [19] proved a lower bound of the number of measurements for solving linear
inverse problem via the overlapped approach. Although the setting is different, the lower bound
depends on the minimum mode-k rank, which agrees with the complexity of the latent approach.

4 Numerical results

In this section, we numerically confirm the theoretically obtained scaling behavior.

The goal of this experiment is to recover the true low rank tensor W∗ from a noisy observation Y .
We randomly generated the true low rank tensors W∗ of size 50 × 50 × 20 or 80 × 80 × 40 with
various mode-k ranks (r1, r2, r3). A low-rank tensor is generated by first randomly drawing the
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Figure 2: Performance of the overlapped approach and latent approach for tensor decomposition are
shown against their theoretically predicted complexity measures (see Eqs. (17) and (18)). The right
panel shows the improvement of the latent approach from the overlapped approach against the ratio
of their complexity measures.

r1 × r2 × r3 core tensor from the standard normal distribution and multiplying an orthogonal factor
matrix drawn uniformly to its each mode. The observation tensor Y is obtained by adding Gaussian
noise with standard deviation σ = 0.1. There is no missing entries in this experiment.

For each observation Y , we computed tensor decompositions using the overlapped approach and the
latent approach (11). For the optimization, we used the algorithms2 based on alternating direction
method of multipliers described in Tomioka et al. [25]. We computed the solutions for 20 candidate
regularization constants ranging from 0.1 to 100 and report the results for three representative values
for each method.

We measured the quality of the solutions obtained by the two approaches by the mean squared error
(MSE)

∣∣∣∣∣∣Ŵ − W∗
∣∣∣∣∣∣2
F
/N . In order to make our theoretical predictions more concrete, we define

the quantities in the right hand side of the bounds (16) and (14) as Tucker rank (TR) complexity and
Latent rank (LR) complexity, respectively, as follows:

TR complexity =
(

1
K

∑K
k=1

√
1
nk

)2 (
1
K

∑K
k=1

√
rk

)2
, (17)

LR complexity =

∑K
k=1 r̄k
nK

, (18)

where without loss of generality we assume n1 ≥ · · · ≥ nK . We have ignored terms like
√
nk/N

because they are negligible for nk ≈ 50 and N ≈ 50, 000. The TR complexity is equivalent to the
normalized rank in [26]. Note that the TR complexity (17) is defined in terms of the multilinear rank
(r1, . . . , rK) of the truth W∗, whereas the LR complexity (18) is defined in terms of the ranks of the
latent factors (r1, . . . , rK) in (9). In order to find a decomposition that minimizes the right hand side
of (18), we ran the latent approach to the true tensor W∗ without noise, and took the minimum of
the sum of ranks found by the run and mink rk, i.e., the minimal mode-k rank (because a singleton
solution is also allowed). The whole procedure is repeated 10 times and averaged.

Figure 2 shows the results of the experiment. The left panel shows the MSE of the overlapped
approach against the TR complexity (17). The middle panel shows the MSE of the latent approach
against the LR complexity (18). The right panel shows the improvement (i.e., MSE of the overlap
approach over that of the latent approach) against the ratio of the respective complexity measures.

First, from the left panel, we can confirm that as predicted by [26], the MSE of the overlapped
approach scales linearly against the TR complexity (17) for each value of the regularization constant.

From the central panel, we can clearly see that the MSE of the latent approach scales linearly against
the LR complexity (18) as predicted by Theorem 3. The series with △ (λ = 3.79 for 50× 50× 20,

2The solver is available online: https://github.com/ryotat/tensor.
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λ = 5.46 for 80× 80× 40) is mostly below other series, which means that the optimal choice of the
regularization constant is independent of the rank of the true tensor and only depends on the size;
this agrees with the condition on λ in Theorem 3. Since the blue series and red series with the same
markers lie on top of each other (especially the series with △ for which the optimal regularization
constant is chosen), we can see that our theory predicts not only the scaling against the latent ranks
but also that against the size of the tensor correctly. Note that the regularization constants are scaled
by roughly 1.6 to account for the difference in the dimensionality.

The right panel reveals that in many cases the latent approach performs better than the overlapped
approach, i.e., MSE (overlap)/ MSE (latent) greater than one. Moreover, we can see that the success
of the latent approach relative to the overlapped approach is correlated with high TR complexity
to LR complexity ratio. Indeed, we found that an optimal decomposition of the true tensor W∗

was typically a singleton decomposition corresponding to the smallest tucker rank (see Section 3.2).
Note that the two approaches perform almost identically when they are under-regularized (crosses).

The improvements here are milder than that in Figure 1. This is because most of the randomly
generated low-rank tensors were simultaneously low-rank to some degree. It is encouraging that the
latent approach perform at least as well as the overlapped approach in such situations as well.

5 Conclusion

In this paper, we have presented a framework for structured Schatten norms. The current framework
includes both the overlapped Schatten 1-norm and latent Schatten 1-norm recently proposed in the
context of convex-optimization-based tensor decomposition [9, 15, 23, 25], and connects these stud-
ies to the broader studies on structured sparsity [2, 13, 17, 21]. Moreover, we have shown a duality
that holds between the two types of norms.

Furthermore, we have rigorously studied the performance of the latent approach for tensor decom-
position. We have shown the consistency of the latent Schatten 1-norm minimization. Next, we have
analyzed the denoising performance of the latent approach and shown that the error of the latent ap-
proach is upper bounded by the minimal mode-k rank, which contrasts sharply against the average
(square root) dependency of the overlapped approach analyzed in [26]. This explains the empirically
observed superior performance of the latent approach compared to the overlapped approach. The
most difficult case for the overlapped approach is when the unknown tensor is only low-rank in one
mode as in Figure 1.

We have also confirmed through numerical simulations that our analysis precisely predicts the scal-
ing of the mean squared error as a function of the dimensionalities and the sum of ranks of the factors
of the unknown tensor, which is dominated by the minimal mode-k rank. Unlike mode-k ranks, the
ranks of the factors are not easy to compute. However, note that the theoretically optimal choice of
the regularization constant does not depend on these quantities.

Thus, we have theoretically and empirically shown that for noisy tensor decomposition, the latent
approach is more likely to perform better than the overlapped approach. Analyzing the performance
of the latent approach for tensor completion would be an important future work.

The structured Schatten norms proposed in this paper include norms for tensors that are not em-
ployed in practice yet. Therefore, it would be interesting to explore various extensions, such as,
using the overlapped S1/∞-norm instead of the S1/1-norm or a non-sparse tensor decomposition.

Acknowledgment: This work was carried out while both authors were at The University of Tokyo.
This work was partially supported by JSPS KAKENHI 25870192 and 25730013, and the Aihara
Project, the FIRST program from JSPS, initiated by CSTP.

References
[1] A. Agarwal, S. Negahban, and M. J. Wainwright. Noisy matrix decomposition via convex relaxation:

Optimal rates in high dimensions. The Annals of Statistics, 40(2):1171–1197, 2012.

[2] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsity-inducing norms. In
Optimization for Machine Learning. MIT Press, 2011.

8



[3] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Technical report,
arXiv:0912.3599, 2009.

[4] V. Chandrasekaran, B. Recht, P. Parrilo, and A. Willsky. The convex geometry of linear inverse problems,
prepint. Technical report, arXiv:1012.0621v2, 2010.

[5] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl., 21(4):1253–1278, 2000.

[6] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-(R1, R2, . . . , RN ) ap-
proximation of higher-order tensors. SIAM J. Matrix Anal. Appl., 21(4):1324–1342, 2000.

[7] M. Fazel, H. Hindi, and S. P. Boyd. A Rank Minimization Heuristic with Application to Minimum Order
System Approximation. In Proc. of the American Control Conference, 2001.

[8] R. Foygel and N. Srebro. Concentration-based guarantees for low-rank matrix reconstruction. Technical
report, arXiv:1102.3923, 2011.

[9] S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via convex opti-
mization. Inverse Problems, 27:025010, 2011.

[10] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys., 6(1):
164–189, 1927.

[11] D. Hsu, S. M. Kakade, and T. Zhang. Robust matrix decomposition with sparse corruptions. Information
Theory, IEEE Transactions on, 57(11):7221–7234, 2011.

[12] A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multi-task learning. In Advances in
NIPS 23, pages 964–972. 2010.

[13] R. Jenatton, J. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. J.
Mach. Learn. Res., 12:2777–2824, 2011.

[14] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500,
2009.

[15] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual data.
In Prof. ICCV, 2009.

[16] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex and network flow optimization for structured
sparsity. J. Mach. Learn. Res., 12:2681–2720, 2011.

[17] A. Maurer and M. Pontil. Structured sparsity and generalization. Technical report, arXiv:1108.3476,
2011.

[18] M. Mørup. Applications of tensor (multiway array) factorizations and decompositions in data mining.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1):24–40, 2011.

[19] C. Mu, B. Huang, J. Wright, and D. Goldfarb. Square deal: Lower bounds and improved relaxations for
tensor recovery. arXiv preprint arXiv:1307.5870, 2013.

[20] S. Negahban, P. Ravikumar, M. Wainwright, and B. Yu. A unified framework for high-dimensional
analysis of m-estimators with decomposable regularizers. In Advances in NIPS 22, pages 1348–1356.
2009.

[21] G. Obozinski, L. Jacob, and J.-P. Vert. Group lasso with overlaps: the latent group lasso approach.
Technical report, arXiv:1110.0413, 2011.

[22] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via
nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

[23] M. Signoretto, L. De Lathauwer, and J. Suykens. Nuclear norms for tensors and their use for convex
multilinear estimation. Technical Report 10-186, ESAT-SISTA, K.U.Leuven, 2010.

[24] N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In Proc. of the 18th Annual Conference
on Learning Theory (COLT), pages 545–560. Springer, 2005.

[25] R. Tomioka, K. Hayashi, and H. Kashima. Estimation of low-rank tensors via convex optimization.
Technical report, arXiv:1010.0789, 2011.

[26] R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima. Statistical performance of convex tensor decompo-
sition. In Advances in NIPS 24, pages 972–980. 2011.

[27] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279–311,
1966.

[28] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. Technical report,
arXiv:1011.3027, 2010.

9


