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Abstract

We study low rank matrix and tensor completion and propose novel algorithms
that employ adaptive sampling schemes to obtain strong performance guarantees.
Our algorithms exploit adaptivity to identify entries that are highly informative
for learning the column space of the matrix (tensor) and consequently, our results
hold even when the row space is highly coherent, in contrast with previous analy-
ses. In the absence of noise, we show that one can exactly recover a n X n matrix
of rank 7 from merely Q(nr3/2 log(r)) matrix entries. We also show that one can
recover an order 7' tensor using Q(nr” ~'/2T2log(r)) entries. For noisy recov-
ery, our algorithm consistently estimates a low rank matrix corrupted with noise
using Q(nr?/?polylog(n)) entries. We complement our study with simulations
that verify our theory and demonstrate the scalability of our algorithms.

1 Introduction

Recently, the machine learning and signal processing communities have focused considerable atten-
tion toward understanding the benefits of adaptive sensing. This theme is particularly relevant to
modern data analysis, where adaptive sensing has emerged as an efficient alternative to obtaining
and processing the large data sets associated with scientific investigation. These empirical observa-
tions have lead to a number of theoretical studies characterizing the performance gains offered by
adaptive sensing over conventional, passive approaches. In this work, we continue in that direction
and study the role of adaptive data acquisition in low rank matrix and tensor completion problems.

Our study is motivated not only by prior theoretical results in favor of adaptive sensing but also
by several applications where adaptive sensing is feasible. In recommender systems, obtaining a
measurement amounts to asking a user about an item, an interaction that has been deployed in
production systems. Another application pertains to network tomography, where a network operator
is interested in inferring latencies between hosts in a communication network while injecting few
packets into the network. The operator, being in control of the network, can adaptively sample the
matrix of pair-wise latencies, potentially reducing the total number of measurements. In particular,
the operator can obtain full columns of the matrix by measuring from one host to all others, a
sampling strategy we will exploit in this paper.

Yet another example centers around gene expression analysis, where the object of interest is a matrix
of expression levels for various genes across a number of conditions. There are typically two types
of measurements: low-throughput assays provide highly reliable measurements of single entries
in this matrix while high-throughput microarrays provide expression levels of all genes of interest
across operating conditions, thus revealing entire columns. The completion problem can be seen
as a strategy for learning the expression matrix from both low- and high-throughput data while
minimizing the total measurement cost.



1.1 Contributions

We develop algorithms with theoretical guarantees for three low-rank completion problems. The
algorithms find a small subset of columns of the matrix (tensor) that can be used to reconstruct or
approximate the matrix (tensor). We exploit adaptivity to focus on highly informative columns, and
this enables us to do away with the usual incoherence assumptions on the row-space while achieving
competitive (or in some cases better) sample complexity bounds. Specifically our results are:

1. In the absence of noise, we develop a streaming algorithm that enjoys both low sample
requirements and computational overhead. In the matrix case, we show that Q(nr/2 log )
adaptively chosen samples are sufficient for exact recovery, improving on the best known
bound of Q(nr? 1og2 n) in the passive setting [21]. This also gives the first guarantee for
matrix completion with coherent row space.

2. In the tensor case, we establish that Q(m"T*I/ 2T?1ogr) adaptively chosen samples are
sufficient for recovering a n X ... X n order T tensor of rank . We complement this
with a necessary condition for tensor completion under random sampling, showing that
our adaptive strategy is competitive with any passive algorithm. These are the first sample
complexity upper and lower bounds for exact tensor completion.

3. In the noisy matrix completion setting, we modify the adaptive column subset selection
algorithm of Deshpande et al. [10] to give an algorithm that finds a rank-r approximation
to a matrix using Q(nr3/2polylog(n)) samples. As before, the algorithm does not require
an incoherent row space but we are no longer able to process the matrix sequentially.

4. Along the way, we improve on existing results for subspace detection from missing data,
the problem of testing if a partially observed vector lies in a known subspace.

2 Related Work

The matrix completion problem has received considerable attention in recent years. A series of
papers [6, 7, 13, 21], culminating in Recht’s elegent analysis of the nuclear norm minimization pro-
gram, address the exact matrix completion problem through the framework of convex optimization,
establishing that Q((n1 + ng)r max{ o, 43} log*(ns)) randomly drawn samples are sufficient to
exactly identify an n; X ng matrix with rank r. Here po and p; are parameters characterizing the
incoherence of the row and column spaces of the matrix, which we will define shortly. Candes and
Tao [7] proved that under random sampling Q(n17 o log(ne)) samples are necessary, showing that
nuclear norm minimization is near-optimal.

The noisy matrix completion problem has also received considerable attention [5, 17, 20]. The
majority of these results also involve some parameter that quantifies how much information a single
observation reveals, in the same vein as incoherence.

Tensor completion, a natural generalization of matrix completion, is less studied. One challenge
stems from the NP-hardness of computing most tensor decompositions, pushing researchers to study
alternative structure-inducing norms in lieu of the nuclear norm [11, 22]. Both papers derive algo-
rithms for tensor completion, but neither provide sample complexity bounds for the noiseless case.

Our approach involves adaptive data acquisition, and consequently our work is closely related to
a number of papers focusing on using adaptive measurements to estimate a sparse vector [9, 15].
In these problems, specifically, problems where the sparsity basis is known a priori, we have a
reasonable understanding of how adaptive sampling can lead to performance improvements. As a
low rank matrix is sparse in its unknown eigenbasis, the completion problem is coupled with learning
this basis, which poses a new challenge for adaptive sampling procedures.

Another relevant line of work stems from the matrix approximations literature. Broadly speaking,
this research is concerned with efficiently computing a structured matrix, i.e. sparse or low rank,
that serves as a good approximation to a fully observed input matrix. Two methods that apply to
the missing data setting are the Nystrom method [12, 18] and entrywise subsampling [1]. While
the sample complexity bounds match ours, the analysis for the Nystrom method has focused on
positive-semidefinite kernel matrices and requires incoherence of both the row and column spaces.
On the other hand, entrywise subsampling is applicable, but the guarantees are weaker than ours.



It is also worth briefly mentioning the vast body of literature on column subset selection, the task
of approximating a matrix by projecting it onto a few of its columns. While the best algorithms,
namely volume sampling [14] and sampling according to statistical leverages [3], do not seem to be
readily applicable to the missing data setting, some algorithms are. Indeed our procedure for noisy
matrix completion is an adaptation of an existing column subset selection procedure [10].

Our techniques are also closely related to ideas employed for subspace detection — testing whether a
vector lies in a known subspace — and subspace tracking — learning a time-evolving low-dimensional
subspace from vectors lying close to that subspace. Balzano et al. [2] prove guarantees for subspace
detection with known subspace and a partially observed vector, and we will improve on their result
en route to establishing our guarantees. Subspace tracking from partial information has also been
studied [16], but little is known theoretically about this problem.

3 Definitions and Preliminaries

Before presenting our algorithms, we clarify some notation and definitions. Let M € R™ *"2 be a
rank r matrix with singular value decomposition UX V™. Let ¢y, . . . ¢, denote the columns of M.

Let M € R™t*--X"T denote an order T’ tensor with canonical decomposition:

M=) a'®a? ®...0a]" (M
k=1
where ® is the outer product. Define rank(M) to be the smallest value of 7 that establishes this
equality. Note that the vectors {a,(;') }— need not be orthogonal, nor even linearly independent.

The mode-t subtensors of M, denoted Mgt), are order 7' — 1 tensors obtained by fixing the ith
coordinate of the ¢-th mode. For example, if M is an order 3 tensor, then MZ@ are the frontal slices.

We represent a d-dimensional subspace U C R™ as a set of orthonormal basis vectors U = {u;}¢_,
and in some cases as n X d matrix whose columns are the basis vectors. The interpretation will be
clear from context. Define the orthogonal projection onto U as Pyv = U(UTU) U v.

For aset 2 C [n]!, cq € RI€l is the vector whose elements are ¢;, i € 2 indexed lexicographically.
Similarly the matrix U € RI®I*? has rows indexed by © lexicographically. Note that if U is a
orthobasis for a subspace, Ug, is a || x d matrix with columns ;o where u; € U, rather than a set
of orthonormal basis vectors. In particular, the matrix Ug need not have orthonormal columns.

These definitions extend to the tensor setting with slight modifications. We use the vec operation
to unfold a tensor into a single vector and define the inner product (z, y) = vec(z)Tvec(y). For a
subspace U C R®"i we write it as a ([[ n;) X d matrix whose columns are vec(u;), u; € U. We
can then define projections and subsampling as we did in the vector case.

As in recent work on matrix completion [7, 21], we will require a certain amount of incoherence
between the column space associated with M (M) and the standard basis.

Definition 1. The coherence of an r-dimensional subspace U C R™ is:
n
U)£ = )2 2
w(U) = - max |[Puel| 2
where e; denotes the jth standard basis element.

In previous analyses of matrix completion, the incoherence assumption is that both the row and col-
umn spaces of the matrix have coherences upper bounded by 0. When both spaces are incoherent,
each entry of the matrix reveals roughly the same amount of information, so there is little to be
gained from adaptive sampling, which typically involves looking for highly informative measure-
ments. Thus the power of adaptivity for these problems should center around relaxing the incoher-
ence assumption, which is the direction we take in this paper. Unfortunately, even under adaptive
sampling, it is impossible to identify a rank one matrix that is zero in all but one entry without ob-
serving the entire matrix, implying that we cannot completely eliminate the assumption. Instead, we
will retain incoherence on the column space, but remove the restrictions on the row space.

"We write [n] for {1,...,n}



Algorithm 1: Sequential Tensor Completion (M, {m;}1_;)

1. Letid = 0.
2. Randomly draw entries  C H;‘F:_ll [n¢] uniformly with replacement w. p. mr/ H:;F:_ll ny.
ET) of M, i € [nr]:
() I [Mig) — Poi MIQI3 > 0:

i. MgT) < recurse on (MET), {m}5h

PMLMET)
u i

(b) Otherwise MET) — Z/I(Uguﬂ)fluﬂMg)

4. Return M with mode-T" subtensors Mi(T).

3. For each mode-T" subtensor M

ii. U; «

4 Exact Completion Problems

In the matrix case, our sequential algorithm builds up the column space of the matrix by selecting a
few columns to observe in their entirety. In particular, we maintain a candidate column space U and

test whether a column c¢; lives in U or not, choosing to completely observe ¢; and add it to U if it
does not. Balzano et al. [2] observed that we can perform this test with a subsampled version of c;,
meaning that we can recover the column space using few samples. Once we know the column space,
recovering the matrix, even from few observations, amounts to solving determined linear systems.

For tensors, the algorithm becomes recursive in nature. At the outer level of the recursion, the
algorithm maintains a candidate subspace U/ for the mode 7T subtensors M,ET). For each of these
subtensors, we test whether MET) lives in U and recursively complete that subtensor if it does not.

Once we complete the subtensor, we add it to ¢/ and proceed at the outer level. When the subtensor
itself is just a column; we observe the columns in its entirety.

The pseudocode of the algorithm is given in Algorithm 1. Our first main result characterizes the
performance of the tensor completion algorithm. We defer the proof to the appendix.

Theorem 2. Let M = Y| | ®tT:1a§-t) be a rank v order-T tensor with subspaces A®) =
span({a?) _1). Suppose that all of AW AT have coherence bounded above by jig. Set
my = 36rt=1/2 b= log(2r/8) for each t. Then with probability > 1 — 58Tr", Algorithm 1 exactly
recovers M and has expected sample complexity

T
36(> _ na)r" 2 pud " log(2r/6) 3)

t=1

In the special case of an X ... X n tensor of order T', the algorithm succeeds with high probability
using Q(nr” =12l =172 1og(Tr/5)) samples, exhibiting a linear dependence on the tensor dimen-
sions. In comparison, the only guarantee we are aware of shows that {2 ((HtT;Q nt) r) samples are
sufficient for consistent estimation of a noisy tensor, exhibiting a much worse dependence on tensor

dimension [23]. In the noiseless scenario, one can unfold the tensor into a n; X HtT:2 7 matrix
and apply any matrix completion algorithm. Unfortunately, without exploiting the additional tensor

structure, this approach will scale with ]_[th2 ng, which is similarly much worse than our guarantee.
Note that the naive procedure that does not perform the recursive step has sample complexity scaling
with the product of the dimensions and is therefore much worse than the our algorithm.

The most obvious specialization of Theorem 2 is to the matrix completion problem:

Corollary 3. Let M := UXVT € R™*"2 have rank r, and fix § > 0. Assume u(U) < po. Setting
m 2 my > 36132 log(%), the sequential algorithm exactly recovers M with probability at least
1 — 4rd + & while using in expectation

36n27% % g log(2r /8) + rny 4)



observations. The algorithm runs in O(ninar + r3m) time.

A few comments are in order. Recht [21] guaranteed exact recovery for the nuclear norm minimiza-
tion procedure as long as the number of observations exceeds 32(n1+ns )r max{ g, 112 }3log?(2ns)
where 3 controls the probability of failure and ||[UV ||, < p1+/7/(n1n2) with iy as another co-
herence parameter. Without additional assumptions, p; can be as large as jo+/7. In this case, our
bound improves on his in its the dependence on 7, 1y and logarithmic terms.

The Nystrom method can also be applied to the matrix completion problem, albeit under non-
uniform sampling. Given a PSD matrix, one uses a randomly sampled set of columns and the corre-
sponding rows to approximate the remaining entries. Gittens showed that if one samples O(r log r)
columns, then one can exactly reconstruct a rank r matrix [12]. This result requires incoherence of
both row and column spaces, so it is more restrictive than ours. Almost all previous results for exact
matrix completion require incoherence of both row and column spaces.

The one exception is a recent paper by Chen et al. that we became aware of while preparing the
final version of this work [8]. They show that sampling the matrix according to statistical leverages
of the rows and columns can eliminate the need for incoherence assumptions. Specifically, when the
matrix has incoherent column space, they show that by first estimating the leverages of the columns,
sampling the matrix according to this distribution, and then solving the nuclear norm minimization
program, one can recover the matrix with Q(nrug log? n) samples. Our result improves on theirs
when 7 is small compared to n, specifically when /7 log r < log® n, which is common.

Our algorithm is also very computationally efficient. Existing algorithms involve successive singular
value decompositions (O(nqnar) per iteration), resulting in much worse running times.

The key ingredient in our proofs is a result pertaining to subspace detection, the task of testing if
a subsampled vector lies in a subspace. This result, which improves over the results of Balzano et
al. [2], is crucial in obtaining our sample complexity bounds, and may be of independent interest.
Theorem 4. Let U be a d-dimensional subspace of R™ and y = = + v where x € U and v € U=,
Fix§ >0, m > %du(U ) log (%d) and let Q) be an index set with entries sampled uniformly with
replacement with probability m/n. Then with probability at least 1 — 44:

m(1 — o) — dp(U) 2~

e m

I < Hlya — Puayally < (14 ) vll (5)

Where o = 2%10g(1/6) + 2%10&1/6), B = 6log(d/d) + %d“n(f) log(d/s), v =
S Yog(2d/5) and p(v) = n|[v]Z./|[v]3.

This theorem shows that if m = Q(max{u(v),du(U), d\/pu(U)u(v)} logd) then the orthogonal
projection from missing data is within a constant factor of the fully observed one. In contrast,
Balzano et al. [2] give a similar result that requires m = Q(max{u(v)?, du(U), du(U)u(v)} log d)
to get a constant factor approximation. In the matrix case, this improved dependence on incoherence
parameters brings our sample complexity down from n7-2 2 log 7 to nr3/2 g log 7. We conjecture

that this theorem can be further improved to eliminate another +/r factor from our final bound.

4.1 Lower Bounds for Uniform Sampling

We adapt the proof strategy of Candes and Tao [7] to the tensor completion problem and establish
the following lower bound for uniform sampling:

Theorem 5 (Passive Lower Bound). Fix 1 < m,r < mingn; and po > 1. Fix0 < § < 1/2 and
suppose that we do not have the condition:

T—-1,T-1
m ,Uzo T ni
—log[1— > log ( —= (6)
’ ( HT > HZT:2 g ¢ <25)

i=1"

Then there exist infinitely many pairs of distinct ny X ... X ny order-T tensors Ml # M of rank r
with coherence parameter < pg such that Po (M) = Pq (M) with probability at least §. Each entry
is observed independently with probability T = HTLn

i=1 "



Theorem 5 implies that as long as the right hand side of Equation 6 is at most € < 1, and:
ni

55) (1= </2) ™

then with probability at least ¢ there are infinitely many matrices that agree on the observed entries.
This gives a necessary condition on the number of samples required for tensor completion. Note
that when 7' = 2 we recover the known lower bound for matrix completion.

m < ner_lu(:)F_l log (

Theorem 5 gives a necessary condition under uniform sampling. Comparing with Theorem 2 shows
that our procedure outperforms any passive procedure in its dependence on the tensor dimensions.
However, our guarantee is suboptimal in its dependence on r. The extra factor of /r would be
eliminated by a further improvement to Theorem 5, which we conjecture is indeed possible.

For adaptive sampling, one can obtain a lower bound via a parameter counting argument. Observing
the (i1, ...,i7)th entry leads to a polynomial equation of the form >, ], a,(f)(it) =M, i If
m < (3, ne), this system is underdetermined showing that Q((3_, n¢)r) observations are neces-
sary for exact recovery, even under adaptive sampling. Thus, our algorithm enjoys sample complex-
ity with optimal dependence on matrix dimensions.

5 Noisy Matrix Completion

Our algorithm for noisy matrix completion is an adaptation of the column subset selection (CSS)
algorithm analyzed by Deshpande et al. [10]. The algorithm builds a candidate column space in
rounds; at each round it samples additional columns with probability proportional to their projection
on the orthogonal complement of the candidate column space.

To concretely describe the algorithm, suppose that at the beginning of the /th round we have a
candidate subspace U;. Then in the lth round, we draw s additional columns according to the
distribution where the probability of drawing the ith column is proportional to ||y . ¢;| 2. Observing
these s columns in full and then adding them to the subspace U; gives the candidate subspace U1
for the next round. We initialize the algorithm with U; = (). After L rounds, we approximate each
column ¢ with é = U, (U LTQ ULQ)*lULTQcQ and concatenate these estimates to form M.

The challenge is that the algorithm cannot compute the sampling probabilities without observing
entries of the matrix. However, our results show that with reliable estimates, which can be computed
from few observations, the algorithm still performs well.

We assume that the matrix M € R™*™2 can be decomposed as a rank r matrix A and a random
gaussian matrix R whose entries are independently drawn from N'(0,02). We write A = UXVT
and assume that 4(U) < pp. As before, the incoherence assumption is crucial in guaranteeing that
one can estimate the column norms, and consequently sampling probabilities, from missing data.

Theorem 6. Let ) be the set of all observations over the course of the algorithm, let Uy
be the subspace obtained after L = log(ning) rounds and M be the matrix whose columns
¢ = UL (Ul UpLa) Ul cqi. Then there are constants cy, co such that:

~ c1
14 = B3 < S 1A + el Ral

M can be computed from Q((ny + no)r®/?u(U)polylog(ning)) observations. In particular, if
||A||% = 1 and R;; ~ N (0,02 /(nins)), then there is a constant c, for which:

(1 +o2 ((m + nz)T3/2M(U)Polylog(nmz)))

Cx

A— AR <
I ||F—n1n2

The main improvement in the result is in relaxing the assumptions on the underlying matrix A.
Existing results for noisy matrix completion require that the energy of the matrix is well spread
out across both the rows and the columns (i.e. incoherence), and the sample complexity guarantees
deteriorate significantly without such an assumption [5, 17]. As a concrete example, Negahban and

Wainwright [20] use a notion of spikiness, measured as /112 |‘||‘2‘|‘|1° which can be as large as \/n2

in our setup, e.g. when the matrix is zero except for on one column and constant across that column.
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Figure 1: Probability of success curves for our noiseless matrix completion algorithm (top) and
SVT (middle). Top: Success probability as a function of: Left: p, the fraction of samples per
column, Center: np, total samples per column, and Right: nplog® n, expected samples per column
for passive completion. Bottom: Success probability of our noiseless algorithm for different values
of r as a function of p, the fraction of samples per column (left), p/ r3/2 (middle) and p/r (right).

The choices of ||A||% = 1 and noise variance rescaled by ﬁ enable us to compare our results
with related work [20]. Thinking of n; = no = n and the incoherence parameter as a constant, our

results imply consistent estimation as long as 0% = w (ﬁ) On the other hand, thinking
polylog(n)

2
of the spikiness parameter as a constant, [20] show that the error is bounded by Z""1°€™ \where

m is the total number of observations. Using the same number of samples as our procedure, their
results implies consistency as long as 02 = w(rpolylog(n)). For small r (i.e. 7 = O(1)), our noise
tolerance is much better, but their results apply even with fewer observations, while ours do not.

6 Simulations

We verify Corollary 3’s linear dependence on n in Figure 1, where we empirically compute the
success probability of the algorithm for varying values of n and p = m/n, the fraction of entries
observed per column. Here we study square matrices of fixed rank » = 5 with u(U) = 1. Figure 1(a)
shows that our algorithm can succeed with sampling a smaller and smaller fraction of entries as n
increases, as we expect from Corollary 3. In Figure 1(b), we instead plot success probability against
total number of observations per column. The fact that the curves coincide suggests that the samples
per column, m, is constant with respect to n, which is precisely what Corollary 3 implies. Finally,
in Figure 1(c), we rescale instead by n/ log? n, which corresponds to the passive sample complexity
bound [21]. Empirically, the fact that these curves do not line up demonstrates that our algorithm
requires fewer than log® n samples per column, outperforming the passive bound.

The second row of Figure 1 plots the same probability of success curves for the Singular Value
Thresholding (SVT) algorithm [4]. As is apparent from the plots, SVT does not enjoy a linear
dependence on n; indeed Figure 1(f) confirms the logarithmic dependency that we expect for passive
matrix completion, and establishes that our algorithm has empirically better performance.



Unknown M Results
0.8 ‘ : ; n r m/d, m/n2 time (s)
or| o ggg 1 10 34 007 16
506 1
EU 1 | 1000 50 3.3 0.33 29
@ 0"4 | | 100 3.2 0.61 45
Eﬂ:z | | 10 3.4 0.01 3
£ o2} | 5000 50 3.5 0.07 27
0.1 f\v\,\(\/\M’ 100 3.4 0.14 104
ﬂ'ﬂ(l 1‘() 2‘[] 3‘() 4‘(1 50 10 3'4 001 10
Row Space Coherence 10000 50 3.5 0.03 84
100 3.5 0.07 283

Figure 2: Reconstruction error as a function of Table 1: Computational results on large low-
row space incoherence for our noisy algorithm rank matrices. d,. = r(2n — r) is the degrees of
(CSS) and the semidefinite program of [20]. freedom, so m/d,. is the oversampling ratio.

In the third row, we study the algorithm’s dependence on r on 500 x 500 square matrices. In Fig-
ure 1(g) we plot the probability of success of the algorithm as a function of the sampling probability
p for matrices of various rank, and observe that the sample complexity increases with r. In Fig-
ure 1(h) we rescale the z-axis by r~3/2 so that if our theorem is tight, the curves should coincide. In
Figure 1(i) we instead rescale the x-axis by r—! corresponding to our conjecture about the perfor-
mance of the algorithm. Indeed, the curves line up in Figure 1(i), demonstrating that empirically, the
number of samples needed per column is linear in 7 rather than the 73/2 dependence in our theorem.

To confirm the computational improvement over existing methods, we ran our matrix completion
algorithm on large-scale matrices, recording the running time and error in Table 1. To contrast with
SVT, we refer the reader to Table 5.1 in [4]. As an example, recovering a 10000 x 10000 matrix of
rank 100 takes close to 2 hours with the SVT, while it takes less than 5 minutes with our algorithm.

For the noisy algorithm, we study the dependence on row-space incoherence. In Figure 2, we plot the
reconstruction error as a function of the row space coherence for our procedure and the semidefinite
program of Negahban and Wainwright [20], where we ensure that both algorithms use the same
number of observations. It’s readily apparent that the SDP decays in performance as the row space
becomes more coherent while the performance of our procedure is unaffected.

7 Conclusions and Open Problems

In this work, we demonstrate how sequential active algorithms can offer significant improvements
in time, and measurement overhead over passive algorithms for matrix and tensor completion. We
hope our work motivates further study of sequential active algorithms for machine learning.

Several interesting theoretical questions arise from our work:

1. Can we tighten the dependence on rank for these problems? In particular, can we bring the
dependence on r down from 7-3/2 to linear? Simulations suggest this is possible.

2. Can one generalize the nuclear norm minimization program for matrix completion to the
tensor completion setting while providing theoretical guarantees on sample complexity?

We hope to pursue these directions in future work.
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