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Abstract

Recent extensions of the Perceptron as the Tempotron ardhifumotron sug-
gest that this theoretical concept is highly relevant faenstanding networks of
spiking neurons in the brain. It is not known, however, hoe tomputational
power of the Perceptron might be accomplished by the plgstitechanisms of
real synapses. Here we prove that spike-timing-dependastigty having an
anti-Hebbian form for excitatory synapses as well as a sfiikisng-dependent
plasticity of Hebbian shape for inhibitory synapses aréceht for realizing the
original Perceptron Learning Rule if these respectivetjgifg mechanisms act in
concert with the hyperpolarisation of the post-synaptioroas. We also show that
with these simple yet biologically realistic dynamics Testrpns and Chronotrons
are learned. The proposed mechanism enables incremest&iats/e learning
from a continuous stream of patterns and might thereforeynthe acquisition
of long term memories in cortex. Our results underline tlearming processes
in realistic networks of spiking neurons depend crucialfytbe interactions of
synaptic plasticity mechanisms with the dynamics of pgréiting neurons.

1 Introduction

Perceptrons are paradigmatic building blocks of neuratoets [1]. The original Perceptron Learn-
ing Rule (PLR) is a supervised learning rule that employsrestiold to control weight changes,
which also serves as a margin to enhance robustieSs [2,tBE léarning set is separable, the PLR
algorithm is guaranteed to converge in a finite number ofss[#} which justifies the term 'perfect
learning’.

Associative learning can be considered a special case efwspd learning where the activity of the
output neuron is used as a teacher signal such that afteiriganissing activities are filled in. For

this reason the PLR is very useful for building associativamries in recurrent networks where
it can serve to learn arbitrary patterns in a 'quasi-unstiped’ way. Here it turned out to be far

more efficient than the simple Hebb rule, leading to a supemg@mory capacity and non-symmetric
weights [4]. Note also that over-learning from repetitimfigraining examples is not possible with
the PLR because weight changes vanish as soon as the actaeohinfauts are sufficient, a property



which in contrast to the naive Hebb rule makes it suitalsle &ir incremental learning of associative
memories from sequential presentation of patterns.

On the other hand, it is not known if and how real synaptic rmeg@ms might realize the success-
dependent self-regulation of the PLR in networks of spikiegirons in the brain. For example in
the Tempotror]5], a generalization of the perceptron tdisgamporal patterns, learning was con-
ceived even somewhat less biological than the PLR, sinaeihaot only depends on the potential
classification success, but also on a process that is ndtitottene, namely the localization of the
absolute maximum of the (virtual) postsynaptic membranem@l of the post-synaptic neuron.
The simplified tempotron learning rule, while biologicattyore plausible, still relies on a reward
signal which tells each neuron specifically that it shouldehspiked or not. Taken together, while
highly desirable, the feature of self regulation in the PliR poses a challenge for biologically
realistic synaptic mechanisms.

The classical form of spike-timing-dependent plasticB DP) for excitatory synapses (here de-
noted CSTDP) states that the causal temporal order of fiessymaptic activity and then postsy-
naptic activity leads to long-term potentiation of the gys& (LTP) while the reverse order leads to
long-term depression (LTD)[E] 7} 8]. More recently, howeitdbecame clear that STDP can exhibit
different dependencies on the temporal order of spikesaitiqular, it was found that the reversed
temporal order (first post- then presynaptic spiking) cdaitl to LTP (and vice versa; RSTDP),
depending on the location on the dendrife[T9, 10]. For irthilyisynapses some experiments were
performed which indicate that here STDP exists as well asdieform of CSTDP[11]. Note that
CSTDRP of inhibitory synapses in its effect on the postsyieapturon is equivalent to RSTDP of
excitatory synapses. Additionally it has been shown that@Sdoes not always rely on spikes, but
that strong subthreshold depolarization can replace tisesyoaptic spike for LTD while keeping
the usual timing dependence]12]. We therefore assumehbet exists a second threshold for the
induction of timing dependent LTD. For simplicity and withtdoss of generality, we restrict the
study to RSTDP for synapses that in contradiction to Dakisd¢an change their sign.

Itis very likely that plasticity rules and dynamical propies of neurons co-evolved to take advan-
tage of each other. Combining them could reveal new andatdsieffects. A modeling example
for a beneficial effect of such an interplay was investiganefi3], where CSTDP interacted with
spike-frequency adaptation of the postsynaptic neuroretfopm a gradient descent on a square
error. Several other studies investigate the effect of StBmetwork function, however mostly
with a focus on stability issues (e.gi_[14,] 15] 16]). In castr we here focus on the construc-
tive role of STDP for associative learning. First we provattRSTDP of excitatory synapses (or
CSTDP on inhibitory synapses) when acting in concert withraeal after-hyperpolarisation and
depolarization-dependent LTD is sufficient for realizihg tclassical Perceptron learning rule, and
then show that this plasticity dynamics realizes a learmirlg suited for the Tempotron and the
Chronotron[[1F].

2 Ingredients

2.1 Neuron model and network structure

We assume a feed-forward network 8fpresynaptic neurons and one postsynaptic integrate-and-
fire neuron with a membrane potentialgoverned by

7—UUv =-U+ Isyn + Iemta (1)

wherel,,, denotes the input from the presynaptic neurons, fapdis an input which can be used

to drive the postsynaptic neuron to spike at certain timesheithe neuron reaches a threshold
potentialUy,,,., it is reset to a reset potentiél..s.; < 0, from where it decays back to the resting
potentiallU,, = 0 with time constant;;. Spikes and other signals (depolarization) take finite $ime
to travel down the axonr{) and the dendriter{;). Synaptic transmission takes the form of delta
pulses, which reach the soma of the postsynaptic neurontafte r, + 7., and are modulated by

the synaptic weight. We denote the presynaptic spike train of neurasz; with spike times:

pre:

zi(t) =) _0(t—th,,). )

"

i
pre



postsynaptic trace y

T
presynaptic spikes x

L/

subthreshold events z(t)

Figure 1:1llustration of STDP mechanism. A: Upper trace (red) is the membrane potential of the
postsynaptic neuron. Shown are the firing threstiglgd. and the threshold for LT/,;. Middle
trace (black) is the variablg(t), the train of LTD threshold crossing events. Please notetiedirst
spike inz(t) occurs at a different time than the neuronal spike. Bott@oes showu(t) (yellow)
andz (blue) of a selected synapse. The second eventrigads out the trace of the presynaptic
spikez, leading to LTD.B: Learning rule[(¥) is equivalent to RSTDP. A postsynaptikapeads

to an instantaneous jump in the tracéop left, red line), which decays exponentially. Subseque
presynaptic spikes (dark blue bars and corresponding taintzars in the STDP window) “read” out
the state of the trace for the respecti¥e = t,,.. — t,0s:. Similarly, z(¢) reads out the presynaptic
tracez (lower left, blue line). Sampling for all possible timesuds in the STDP window (right).

A postsynaptic neuron receives the in;m;n( ) = >, wizi(t — 7o — 74). The postsynaptic spike
train is similarly denoted by(t) = >_, _ d(t — post)

2.2 Theplasticity rule

The plasticity rule we employ mimics reverse STDP: A poséptit spike which arrives at the
synapse shortly before a presynaptic spike leads to synppténtiation. For synaptic depression
the relevant signal is not the spike, but the point in time neli&(¢) crosses an additional threshold
Uy from below, withU,, < Uy < Uy, (“subthreshold threshold”). These events are modelled as
d-pulses in the function(t) = >, d(t—tx), wheret,, are the times of the aforementioned threshold
crossing events (see Fifl 1 A for an |IIustration of the pple). The temporal characteristic of
(reverse) STDP is preserved: If a presynaptic spike octwelg before the membrane potential
crosses this threshold, the synapse depresses. Timingdkmd TD without postsynaptic spiking
has been observed, although with classical timing requérgsi12].

We formalize this by letting pre- and postsynaptic spikeshadxive a synaptic trace:
Tprel = —T + x(t — 74)
Tposty = =4 + y(t — 7a).

The learning rule is a read—out of the traces by spiking arestiold crossing events, respectively:

®)

W x ga(t — 14) — YZ2(t — 74), 4)

where~ is a factor which scales depression and potentiation vel&di each other. Fidl 1 B shows
how this plasticity rule creates RSTDP.

3 Equivalenceto Perceptron Learning Rule

The Perceptron Learning Rule (PLR) for positive binary itspand outputs is given by
Aw' oc 25" (25 — 1O [r — (2yg — (A" = )], (5)



()

wherez(" € {0,1} denotes the activity of presynaptic neurbin patterny € {1,..., P},
yh € {0,1} signals the desired response to patterm > 0 is a margin which ensures a certain
robustness against noise after convergehte= > w;xz{" is the input to a postsynaptic neuron,
¥ denotes the firing threshold, afiz) denotes the Heaviside step function. If tRepatterns are
linearly separable, the perceptron will converge to a @gelution of the weights in a finite number
of steps. For random patterns this is generally the cas® far2N. A finite margins reduces the
capacity.

Interestingly, for the case of temporally well separateactyonous spike patterns the combination
of RSTDP-like synaptic plasticity dynamics with depolation-dependent LTD and neuronal hy-

perpolarization leads to a plasticity rule which can be negjjo the Perceptron Learning Rule. To
cut down unnecessary notation in the derivation, we dropnitiees: andy except where necessary

and consider only tmes < ¢t < 7, + 274.

We consider a single postsynaptic neuron wittpresynaptic neurons, with the condition< .
During learning, presynaptic spike patterns consistingysfchronous spikes at time= 0 are
induced, concurrent with a possibly occuring postsynaggike which signals the class the presy-
naptic pattern belongs to. This is equivalent to the settihg single layered perceptron with bi-
nary neurons. Withry andy, used as above we can write the pre- and postsynaptic acéisity
x(t) = xod(t) andy(t) = yod(t). The membrane potential of the postsynaptic neuron depamds
Yo:

U(t) = yOUreset eXP(_t/TU)

6
U(Ta + Td) = yOUreset eXP(_(Ta + 7—d)/TU) = yOUad- ( )
Similarly, the synaptic current is
Ioyn(t) = Z wxhO(t — Ty — Ta)
' : (7
Isyn(Ta + Td) = Zwlxé = I,4-
The activity traces at the synapses are
—(t - a Te
:E(t)zxo@(t—Ta)eXp( ( T)/TP )
T, e
" 8

)exp(—(t - Td)/Tpost) _

y(t) = yoO(t — 1a
The variable of threshold crossingt) depends on the history of the postsynaptic neurons, which
again can be written with the aid gf as:
2(t) = O(1oq + YoUad — Ust)O(t — 7o — Ta)- 9)

Here, © reflects the condition for induction of LTD. Only when the mymaptic input at time
t = 1, + 74 IS greater than the residual hyperpolarizatibij{ < 0!) plus the threshold/,;, a
potential LTD event gets enregistered. These are the ifgrexfor the plasticity ruld{4):

Aw oc/ [gz(t — 7a) — yZ2(t — 74)] dt

—\a 08 -2 Te
exp(= (ra 4 70) pont) __ D27/ )
Tpost Tpre

We shorten this expression by choosinguch that the factors of both terms are equal, which we
can drop subsequently:

(10)

=ToYo Iog + yoUaa — Usy).

Aw x 2o (Yo — O(Lag + yoUad — Ust)) - (11)
We expand the equation by adding and substragiéd( /. + yoUasa — Ust):
Aw xzg [Yo(1 — OTga + yYoUad — Ust)) — (1 — 90)O(Lag + yoUad — Ust)]
=To [yog(_lad - Uad + Ust) - (1 - yO)G(Iad - Us )] .

We usedl — ©(z) = ©(—x) in the last transformation, and droppggfrom the argument of the
Heaviside functions, as the two terms are seperated intoviheases), = 0 andy, = 1. We do a

(12)



similar transformation to construct an expresdiothat turns either into the argument of the left or
right Heaviside function depending @g. That expression is

G= Iad - Ust + yO(_2Iad - Uad + 2Ust)a (13)
with which we replace the arguments:
Aw o< 2oyoO(G) — xo(1 — y0)O(G) = z0(2y0 — 1)O(G). (14)

The last task is to show tha@t and the argument of the Heaviside function in equatidn (B) ar
equivalent. For this we choodg, = h, U,q = —2k andUy = ¢ — k and keep in mind, that
¥ = Uy, is the firing threshold. If we put this int@ we get

G :Iad - Ust + yO(_2Iad - Uad + 2Ust)
=h — 9+ k + 2yoh + 2yor + 2y — 2yokK (15)
—r— (20— 1)(h— ),

which is the same as the argument of the Heaviside functi@yiration[[b). Therefore, we have
shown the equivalence of both learning rules.

4 Associative learning of spatio-temporal spike patterns

4.1 Tempotron learning with RSTDP

The condition of exact spike synchrony used for the abovévalmnce proof can be relaxed to
include the association of spatio-temporal spike pattettisa desired postsynaptic activity. In the
following we take the perspective of the postsynaptic newrbich during learning is externally
activated (or not) to signal the respective class by spikirtgmet = 0 (or not). During learning in
each trial presynaptic spatio-temporal spike patternpaggented in the time spén< ¢t < 7', and
plasticity is ruled by[[4). For these conditions the resgjtsynaptic weights realize a Tempotron
with substantial memory capacity.

A Tempotron is an integrate-and-fire neuron with input wésgdjusted to perform arbitrary clas-
sifications of (sparse) spike patterfs[[5] 18]. To implenseiempotron, we make two changes
to the model. First, we separate the time scales of membrateaal and hyperpolarization by

introducing a variable:

W= —V. (16)

Immediately after a postsynaptic spike,is reset tov,,;z,c < 0. The reason is that the length
of hyperpolarization determines the time window where ificant learning can take place. To
improve comparability with the Tempotron as presentediaity in [5], we setT = 0.5s and
Ty = Tpost = 0.2s, S0 that the postsynaptic neuron can learn to spike almgstisTe over the time
window, and we introduce postsynaptic potentials (PSH) a/finite rise time:

Tsjsyn — _Isyn + Z wixi(t - Ta)a (17)

wherew; denotes the synaptic weight of presynaptic neurdfvith 7, = 3ms andry = 15ms the
PSPs match the ones used in the original Tempotron studg.s€leond change has little impact on
the capacity or otherwise. With these changes, the memipteatial is governed by

U = (v =U) + Lyyn(t — 7a). (18)

A postsynaptic spike resets to vspie = Ureser < 0. Ureser 1S the initial hyperpolarization which
is induced after a spike, which relaxes back to zero with ithe tonstant,, > 7;. Presynaptic
spikes add up linearly, and for simplicity we assume thalltio¢ axonal and the dendritic delay are
negligibly small:7, = 74 = 0.

It is a natural choice to sei; = 7,,.c andr, = 7,0s. 7y Sets the time scale for the summation
of EPSP contributing to spurious spikes,sets the time window where the desired spikes can lie.
They therefore should coincide with LTD and LTP, respewtivl
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Figure 2: lllustration of Perceptron learning with RSTDRwsubthreshold LTD and postsynaptic
hyperpolarization. Shown are the traceg; andU. Pre- and postsynaptic spikes are displayed as
black bars at = 0. A: Learning in the case afy = 1, i.e. a postsynaptic spike as the desired
output. Initially the weights are too low and the synapticrent (summed PSPs) is smaller than
U,:. Weight change is LTP only until during pattern presentatlte membrane potential hits;;.

At this point LTP and LTD cancel exactly, and learning stops.Pattern completion fog, = 1.
Shown are the same traces as in A at the absence of an initalypaptic spike. The membrane
potential after learning is drawn as a dashed line to higllige amplitude. Without the initial hy-
perpolarization, the synaptic current after learningiligdsenough to cross the spiking threshold, the
postsynaptic neuron fires the desired spike. Learning Ugtils reached ensures a minimum height
of synaptic currents and therefore robustness againg.n@iPattern presentation and completion
for yo = 0. Initially, the synaptic current during pattern preseiotatcauses a spike and conse-
quently LTD. Learning stops when the membrane potentigkstelowU,;. Again, this ensures a
certain robustness against noise, analogous to the martiie PLR.
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Figure 3: Performance of Tempotron and Chronotron aftevegence A: Classification perfor-
mance of the Tempotron. Shown is the fraction of pattern hliit the desired postsynaptic activ-
ity upon presentation. Perfect recall for allis achieved up taxr = 0.18. Beyond that mark, some
of the patterns become incorrectly classified. The insewshie learning curves fer = 7/16. The
final fraction of correctly classified pattern is the averfigetion of the last 500 blocks of each run.
B: Performance of the Chronotron. Shown is the fraction ofguativhich during recall succeed in
producing the correct postsynaptic spike time in a windowenfith 30 ms after the teacher spike.
See supplemental material for a detailed description. seleate that the scale of the load axis is
differentin A and B.

Table 1: Parameters for Tempotron learning

TU Tpre Tvy Tpost Ts Uthr Ust Vspike n i

15ms | 200ms | 3ms|{20mV | 19mV | -20mV | 10°° | 2

4.1.1 Learning performance

We test the performance of networks/éfinput neurons at classifying spatio-temporal spike pagter
by generatingP® = aN patterns, which we repeatedly present to the network. I @attern,
each presynaptic neuron spikes exactly once at a fixed tireadh presentation, with spike times
uniformly distributed over the trial. Learning is orgarizi@ learning blocks. In each block aft
patterns are presented in randomized order. Synaptic geagh initialized as zero, and are updated
after each pattern presentation. After each block, we tdkei postsynaptic output matches the
desired activity for each pattern. If during training a pysiaptic spike at = 0 was induced, the
output can lie anytime in the testing trial for a positive @uhe. To test scaling of the capacity,
we generate networks of 100 to 600 neurons and present ttegnsatintil the classification error
reaches a plateau. Examples of learning curves (Clasgificatror over time) are shown in Figl 3.
For each combination ef and NV, we run 40 simulations. The final classification error is tresam
over the last 500 blocks, averaged over all runs. The pamswe use in the simulations are shown
in Tab.[0. Fig[B shows the final classification performanca fasction of the memory load, for

all network sizes we use. Up to a loadi 8, the networks learns to perfectly classify each pattern.
Higher loads leave a residual error which increases witt.ld@@e drop in performance is steeper
for larger networks. In comparison, the simplified Tempotiearning rule proposed ial[5] achieves
perfect classification up ta ~ 1.5, i.e. one order of magnitude higher.

4.2 Chronotron learning with RSTDP

In the Chronotron[[117] input spike patterns become assedtiaith desired spike trains. There are
different learning rules which can achieve this mappingluding E-learning, I-learning, ReSuMe

and PBSNLRI[[1I7._19,20]. The plasticity mechanism presehté has the tendency to generate
postsynaptic spikes as close in time as possible to the eeagliike during recall. The presented
learning principle is therefore a candidate for Chronolearning. The average distance of these



spikes depends on the time constants of hyperpolarizatidthee learning window, especialty,:.
The modifications of the model necessary to implement Chrondearning are described in the
supplement. The resulting capacity, i.e. the ability toegate the desired spike times within a short
window in time, is shown in Fidd3 B. Up to a load af= 0.01, the recall is perfect within the limits
of the learning windowr;,, = 30ms. Inspection of the spike times reveals that the averagaruist
of output spikes to the respective teacher spike is muchehibian the learning windows( 2ms

for a = 0.01, see supplemental Fig. 1).

5 Discussion

We present a new and biologically highly plausible approtckearning in neuronal networks.
RSTDP with subthreshold LTD in concert with hyperpolaiimatis shown to be mathematically
equivalent to the Perceptron learning rule for activityt@ats consisting of synchronous spikes,
thereby inheriting the highly desirable properties of th&Fconvergence in finite time, stop condi-
tion if performance is sufficient and robustness againg@a)oiT his provides a biologically plausible
mechanism to build associative memories with a capacitgecto the theoretical maximum. Equiv-
alence of STDP with the PRL was shown beforelid [21], but thisiealence only holds on average.
We would like to stress that we here present a novel apprdedlensures exact mathematical eqi-
valence to the PRL.

The mechanism proposed here is complementary to a previgusach [1B] which uses CSTDP
in combination with spike frequency adaptation to perfomadient descent learning on a squared
error. However, that approach relies on an explicit teaslgaral, and is not applicable to auto-
associative memories in recurrent networks. Most impdlstathe approach presented here inherits
the important feature of selfregulation and fast convecgdrom the original Perceptron which is
absent in[[1B].

For sparse spatio-temporal spike patterns extensive atimos show that the same mechanism is
able to learn Tempotrons and Chronotrons with substantéhary capacity. In the case of the
Tempotron, the capacity achieved with this mechanism igitaan with a comparably plausible
learning rule. However, in the case of the Chronotron thexciy comes close to the one obtained
with a commonly employed, supervised spike time learning.rMoreover, these rules are biolog-
ically quite unrealistic. A prototypical example for suck@#pervised learning rule is the Temptron
rule proposed by Giitig and SompolingKi [5]. Essentialfieraa pattern presentation the complete
time course of the membrane potential during the presemntatiexamined, and if classification was
erroneous, the synaptic weights which contributed modh¢cabsolute maximum of the potential
are changed. In other words, the neurons would have to abktrmspectivly disentangle contri-
butions to their membrane potential at a certain time in #&.pAs we showed here, RSTDP with
subthreshold LTD together with postsynaptic hyperpotdian for the first time provides a realistic
mechanism for Tempotron and Chronotron learning.

Spike after-hyperpolarization is often neglected in tleéioal studies or assumed to only play a role
in network stabilization by providing refractoriness. Dé&rization dependent STDP receives little
attention in modeling studies (but s€el[22]), possibly heeahere are only few studies which show
that such a mechanism exists][[[Z] 23]. The novelty of thenlagrmechanism presented here lies
in the constructive roles both play in concert. After-hygmarization allows synaptic potentiation

for presynaptic inputs immediately after the teacher spikbout causing additional non-teacher
spikes, which would be detrimental for learning. Duringalédhe absence of the hyperpolarization
ensures the then desired threshold crossing of the mempodesetial (see Fig. 2 B). Subthreshold
LTD guarantees convergence of learning. It counteractagjmpotentiation when the membrane
potential becomes sufficiently high after the teacher spikee combination of both provides the

learning margin, which makes the resulting network robgatrast noise in the input. Taken together,
our results show that the interplay of neuronal dynamicssyméptic plasticity rules can give rise

to powerful learning dynamics.
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